1
|
Ni J, Song W, Wang K, Mao W, Wang G, Peng B. Identifying effects of volatile organic compounds exposure on kidney stone prevalence in U.S. adults: a cross-sectional analysis of NHANES 2007-2020. BMC Public Health 2024; 24:2727. [PMID: 39375640 PMCID: PMC11460169 DOI: 10.1186/s12889-024-20251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
OBJECTIVE Our aim was to comprehensively investigate the relationship between blood volatile organic compounds (VOCs) and kidney stone prevalence for U.S. adults. METHODS In this cross-sectional study, 10,052 participants from the 2007-2020 National Health and Nutrition Examination Survey (NHANES) were included. Multivariate logistic regression model was employed to investigate the association between 9 blood VOCs and kidney stones. We explored the dose-response relationship between blood VOCs and kidney stones using restricted cubic spline (RCS) analysis. Additionally, weighted quantile sum (WQS) regression model was performed to assess the overall association of 9 blood VOCs with kidney stones. Finally, subgroup analyses were conducted to identify the findings in different populations at high prevalence. RESULTS Logistic regression analysis and dose-response risk curves revealed that blood benzene (aOR = 1.308, 95% CI: 1.118-1.530, P = 0.001), blood ethylbenzene (aOR = 1.280, 95% CI: 1.054-1.554, P = 0.013), blood m-/p-xylene (aOR = 1.187, 95% CI: 1.008-1.398, P = 0.040), blood 2,5-dimethylfuran (aOR = 1.319, 95% CI: 1.135-1.533, P < 0.001) and blood furan (aOR = 1.698, 95% CI: 1.305-2.209, P < 0.001) were positively associated with the prevalence of kidney stones. WQS regression analysis revealed that exposure to mixed blood VOCs was positively correlated with kidney stone prevalence (OR = 1.34, 95% CI: 1.14-1.57), with furans carrying the greatest weight. Subgroup analyses suggested that kidney stones were more susceptible to the effects of blood VOCs in young and middle-aged, female, overweight and obese, non-hypertensive, and non-diabetic populations. CONCLUSIONS In this study, the results indicated that high VOC exposure was positively and independently associated with kidney stones in U.S. adults. This finding highlighted the need for public health strategies to reduce VOC exposure and its role in kidney stone prevention and treatment.
Collapse
Affiliation(s)
- Jinliang Ni
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Jing'an District, Shanghai, 200072, P.R. China
| | - Wei Song
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Jing'an District, Shanghai, 200072, P.R. China
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Jing'an District, Shanghai, 200072, P.R. China.
| | - Bo Peng
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China.
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Jing'an District, Shanghai, 200072, P.R. China.
| |
Collapse
|
2
|
Li Y, Zhang J, Wang W, Lu Y, Sun L, Zhang Y. Ecological Risk Assessment of Three Pesticide Additives in Soil and Application to the Remediation of Contaminated Soil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1677-1689. [PMID: 38661489 DOI: 10.1002/etc.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Pesticide additives (PAs) are auxiliary ingredients added to the pesticide manufacturing and use processes, constituting 1% to 99% of the pesticide and often composed of benzene and chlorinated hydrocarbons. We selected three typical PAs, toluene, chloroform, and trichloroethylene, to evaluate their retention function toxicity and ecological risk in soil. Soil immobilization techniques and aquatic model organisms were used to demonstrate the effectiveness of the immobilized soil method to determine the ecological risk of chemicals. The 48-h median lethal concentrations of toluene, chloroform, and trichloroethylene alone in spiked soil on Daphnia magna were 10.5, 2.3, and 1.1 mg/L (medium, high, and high toxicity, respectively). The toxicity of the three-PA mixtures showed an antagonistic effect. The risk levels of toluene, chloroform, and trichloroethylene in the soil were evaluated as moderate to high, low to high, and high risk, respectively. The toxicity of two pesticide-contaminated sites in the Yangtze River Delta before and after remediation was successfully evaluated by immobilized soil technology. The toxicity of two soil sampling points was reduced from medium toxic to low toxic and no toxic, respectively, after remediation. The results of our study give a rationale for and prove the validity of the aquatic model organisms and soil immobilization techniques in assessing the soil retention functions toxicity of PAs. Environ Toxicol Chem 2024;43:1677-1689. © 2024 SETAC.
Collapse
Affiliation(s)
- Ying Li
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Jing Zhang
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Wenqiang Wang
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Yongze Lu
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Liwei Sun
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Yimin Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| |
Collapse
|
3
|
Gao M, Li X, Zhang Q, Li S, Wu S, Wang Y, Sun H. Spatial distribution of volatile organic compounds in contaminated soil and distinct microbial effect driven by aerobic and anaerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172256. [PMID: 38583613 DOI: 10.1016/j.scitotenv.2024.172256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The vertical distribution of 35 volatile organic compounds (VOCs) was investigated in soil columns from two obsolete industrial sites in Eastern China. The total concentrations of ΣVOCs in surface soils (0-20 cm) were 134-1664 ng g-1. Contamination of VOCs in surface soil exhibited remarkable variability, closely related to previous production activities at the sampling sites. Additionally, the concentrations of ΣVOCs varied with increasing soil depth from 0 to 10 m. Soils at depth of 2 m showed ΣVOCs concentrations of 127-47,389 ng g-1. Among the studied VOCs, xylene was the predominant contaminant in subsoils (2 m), with concentrations ranging from n.d. to 45,400 ng g-1. Chlorinated alkanes and olefins demonstrated a greater downward migration ability compared to monoaromatic hydrocarbons, likely due to their lower hydrophobicity. As a result, this vertical distribution of VOCs led to a high ecological risk in both the surface and deep soil. Notably, the risk quotient (RQ) of xylene in subsoil (2 m, RQ up to 319) was much higher than that in surface soil. Furthermore, distinct effects of VOCs on soil microbes were observed under aerobic and anaerobic conditions. Specifically, after the 30-d incubation of xylene-contaminated soil, Ilumatobacter was enriched under aerobic condition, whereas Anaerolineaceae was enriched under anaerobic condition. Moreover, xylene contamination significantly affected methylotrophy and methanol oxidation functions for aerobic soil (t-test, p < 0.05). However, aromatic compound degradation and ammonification were significantly enhanced by xylene in anaerobic soil (t-test, p < 0.05). These findings suggest that specific VOC compound has distinct microbial ecological effects under different oxygen content conditions in soil. Therefore, when conducting soil risk assessments of VOCs, it is crucial to consider their ecological effects at different soil depths.
Collapse
Affiliation(s)
- Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuelin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shanxing Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Zhao X, Meng J, Li Q, Su G, Zhang Q, Shi B, Dai L, Yu Y. Source apportionment and suitability evaluation of seasonal VOCs contaminants in the soil around a typical refining-chemical integration park in China. J Environ Sci (China) 2024; 137:651-663. [PMID: 37980048 DOI: 10.1016/j.jes.2023.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 11/20/2023]
Abstract
Accurate source apportionment of volatile organic compounds (VOCs) in soil nearby petrochemical industries prevailing globally, is critical for preventing pollution. However, in the process, seasonal effect on contamination pathways and accumulation of soil VOCs is often neglected. Herein, Yanshan Refining-Chemical Integration Park, including a carpet, refining, synthetic rubber, and two synthetic resin zones, was selected for traceability. Season variations resulted in a gradual decrease of 31 VOCs in soil from winter to summer. A method of dry deposition resistance model coupling partitioning coefficient model was created, revealing that dry deposition by gas phase was the primary pathway for VOCs to enter soil in winter and spring, with 100 times higher flux than by particle phase. Source profiles for five zones were built by gas sampling with distinct substance indicators screened, which were used for positive matrix factorization factors determination. Contributions of the five zones were 14.9%, 20.8%, 13.6%, 22.1%, and 28.6% in winter and 33.4%, 12.5%, 10.7%, 24.9%, and 18.5% in spring, respectively. The variation in the soil sorption capacity of VOCs causes inter-seasonal differences in contribution. The better correlation between dry deposition capacity and soil storage of VOCs made root mean square and mean absolute errors decrease averagely by 8.8% and 5.5% in winter compared to spring. This study provides new perspectives and methods for the source apportionment of soil VOCs contamination in industrial sites.
Collapse
Affiliation(s)
- Xu Zhao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qifan Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Yu
- State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Center, Beijing 100012, China.
| |
Collapse
|
5
|
Hui K, Yuan Y, Xi B, Tan W. A review of the factors affecting the emission of the ozone chemical precursors VOCs and NO x from the soil. ENVIRONMENT INTERNATIONAL 2023; 172:107799. [PMID: 36758299 DOI: 10.1016/j.envint.2023.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The soil environment is one of the main places for the generation, emission, and absorption of various atmospheric pollutants, including nitrogen oxides (NOx) and volatile organic compounds (VOCs), which are the main chemical precursors for the formation of ground-level ozone. Ground-level ozone pollution has become a concerning environmental problem because of the harm it poses to human health and the surrounding ecological environment. However, current studies on chemical precursors of ozone mainly focus on emissions from industrial sources, forest vegetation, and urban vehicle exhaust; by contrast, few studies have examined the role of the soil environment on NOx and VOCs emissions. In addition, the soil environment is complex and heterogeneous. Agricultural activities (fertilization) and atmospheric deposition provide nutrients for the soil environment, with a significant effect on NOx and VOCs emissions. There is thus a need to study the environmental factors related to the release of NOx and VOCs in the soil to enhance our understanding of emission fluxes and the types of NOx and VOCs in the soil environment and aid efforts to control ground-level ozone pollution through appropriate measures such as management of agricultural activities. This paper reviews the generation of NOx and VOCs in the soil environment and the effects of various environmental factors on this process. Some suggestions are provided for future research on the regulation of NOx and VOCs emissions in the soil environment and the ability of the soil environment to contribute to ground-level ozone pollution.
Collapse
Affiliation(s)
- Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Liu W, Cao S, Ma J, Shi D, Yu L, Ye Z, Yang M, Wang B, Chen W. Exposures to volatile organic compounds, serum vitamin D, and kidney function: association and interaction assessment in the US adult population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7605-7616. [PMID: 36044140 DOI: 10.1007/s11356-022-22637-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The relationships of exposures to volatile organic compounds (VOCs) with vitamin D and kidney function remain unclear. Our analyses included 6070 adults from 2003 to 2010 survey cycles of the National Health and Nutrition Examination Survey to explore associations of six VOCs with serum vitamin D, albumin-to-creatinine ratio (ACR), and estimated glomerular filtration rate (eGFR). The results suggested that dibromochloromethane was positively associated with ACR, and chloroform was inversely associated with ACR. U-shaped associations of toluene, m-/p-xylene, bromodichloromethane, and 1,4-dichlorobenzene with ACR were observed. Toluene, m-/p-xylene, and 1,4-dichlorobenzene were associated with eGFR in U-shaped manners, while bromodichloromethane and chloroform were inversely associated with eGFR. Elevation in 1,4-dichlorobenzene was associated with decrease in vitamin D, while chloroform and m-/p-xylene were in U-shaped associations with vitamin D. VOCs mixture was U-shaped associated with ACR, inversely associated with eGFR, and inversely associated with vitamin D. Vitamin D was in a U-shaped association with ACR. Vitamin D significantly interacted with VOCs on the two kidney parameters. In the US adult population, exposures to VOCs were associated with kidney function and serum vitamin D level decline, and the serum vitamin D may have interaction effects with VOCs exposures on kidney function.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuting Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Da Shi
- Food and Human Nutritional Science, Faculty of Agriculture and Food Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China.
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
7
|
Li Y, Wei M, Yu B, Liu L, Xue Q. Impact of simulating real microplastics on toluene removal from contaminated soil using thermally enhanced air injection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119895. [PMID: 35961571 DOI: 10.1016/j.envpol.2022.119895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
This paper investigated the impacts of various real microplastics (MPs), i.e., polyethylene (PE) and polyethylene terephthalate (PET) with different sizes (1000-2000 and 100-200 μm) and different dosages (0.5 and 5% on a dry weight basis), on the toluene removal during the thermally enhanced air injection treatment. First, microscopic tests were carried out to determine the MPs' microstructure and behavior. The PE was mainly a small block, and PET appeared filamentous and sheeted with a larger slenderness ratio. Second, the interactions between MPs and toluene-contaminated soils were revealed by batch adsorption equilibrium experiments and low-field magnetic resonance. The morphological differences and dosage of the MPs impacted soils' total porosity (variation range: 39.2-42.7%) and proportion of the main pores (2-200 μm). Third, the toluene removal during the air injection consisted of compaction, rapid growth, rapid reduction, and tailing stages, and the MPs were regarded as an emerging solid state to affect these removal stages. The final cumulative toluene concentrations of soil-PET mixtures were influenced by total porosity, and those of soil-PE mixtures were controlled by total porosity (influence weight: 0.67) and adsorption capacity (influence weight: 0.33); meanwhile, a self-built comprehensive coefficient of MPs can reflect the relationship between them and cumulative concentrations (correlation coefficient: 0.783).
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingli Wei
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; Jiangsu Institute of Zoneco Co., Ltd., Yixing, 214200, China.
| | - Bowei Yu
- Specialist Laboratory, Alliance Geotechnical Pty Ltd, 2147, Australia
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Qi H, Zhao B, Li L, Qu B. Effect-directed analysis of toxic organics in PM 2.5 exposure to the cellular bioassays in vitro: Application in Shanxi of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113501. [PMID: 35453017 DOI: 10.1016/j.ecoenv.2022.113501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
To optimize the effect-directed analysis (EDA) approach to identify the fine particulate matter (PM2.5) bound organic toxicants, Jinzhong city, in the Shanxi Province of China, was selected as the object of our study. First, PM2.5 samples were collected and their organic extracts were separated out in 9 fractions (F1-F9) using reversed-phase high performance liquid chromatography after purification using gel permeation chromatography. Second, the toxicity effects of each fraction were measured by human bronchial epithelial cells (BEAS-2B) in vitro. And toxicity effects included antioxidant stress (ROS, LDH, and CAT) and an inflammatory response (IL-6, IL-1β, and TNF-α). The results showed that the scores of the toxicity effects on multiple lines of evidence were the highest in the F3 and F4 fractions compared with those of the control. Subsequently, the main poisons, o-cymene, p-cymene, benzene, ethylbenzene, xylene, and styrene, were identified using GC×GC-TOF/MS. Finally, to confirm the above possible candidates, (1) the levels of o-cymene, p-cymene and BTEXS in daily PM2.5 were measured using GC-MS in November 2020, and the rates of detection of these pollutants were 100% in PM2.5. Among them, o-cymene and p-cymene were first reported as the key toxic substances of PM2.5, and their average concentration values were 0.16 ± 0.11 and 0.18 ± 0.15 ng‧m-3, respectively. (2) the toxicity of p-cymene may be no less than that of other benzene derivatives according to their LC50 in Daphnia magna. (3) based on canonical correlation analysis, the exposure to p-cymene, benzene, and styrene in PM2.5 was most likely associated with the toxicity effects (CAT, IL-6, and TNF-α), which in turn caused the observed toxicity. In conclusion, p-cymene, benzene, and styrene were found to be the key toxic organics in PM2.5 for cells in vitro. EDA technology avoids the limitations of chemical analysis and uncertainty of the biological testing and adds new toxicants to the control list of PM2.5, contributing to this study field. However, the application of EDA to PM2.5 still faces challenges such as the selection of biological effects, loss of toxicity with the separation process, influence of the dosing method, and identification of the unknown effects of pollutants.
Collapse
Affiliation(s)
- Hongxue Qi
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, Shanxi, China
| | - Bingqing Zhao
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, Shanxi, China
| | - Lihong Li
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, Shanxi, China.
| | - Bo Qu
- Department of Environmental Science and Biotechnology, Medical Science, Jeonju University, Jeonju 555069, Republic of Korea
| |
Collapse
|
9
|
Zuo R, Han K, Xu D, Li Q, Liu J, Xue Z, Zhao X, Wang J. Response of environmental factors to attenuation of toluene in vadose zone. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113968. [PMID: 34689029 DOI: 10.1016/j.jenvman.2021.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Contaminated groundwater migrates in reverse direction under capillary force in vadose zone, and the attenuation process of pollutant adsorption and microbial degradation changes the environment of vadose zone. In this study, the response of toluene to environmental factors during reverse migration and attenuation of toluene from aquifer to vadose zone was studied by column experiment and experimental data analysis. The changes of environmental factors, including potential of hydrogen (pH), dissolved oxygen (DO), and oxidation-reduction potential (ORP), and toluene concentration were monitored by soil column experiment under sterilized and non-sterilized conditions. The 16S rRNA molecular biological detection technology was used to quantitatively analyze the impact of microbial degradation on the environment. Finally, the correlation between environmental factors and concentration in the attenuation process of toluene in the vadose zone was quantitatively studied by Pearson Correlation Coefficient (PCC) and multivariate statistical equation. The results showed that pH was primarily affected by microbial degradation, and DO and ORP were primarily affected by both adsorption and microbial degradation. The attenuation of toluene was divided into two stages: adsorption dominated (0~26 d) and microbial degradation dominated (26~55 d). The degradation amounts of microorganisms at each position in the non-sterilized column from bottom to top were 9.37%, 55.34%, 68.64%, 75.70%, 66.03% and 42.50%. At the same time, the article proposes for the first time that there is an obvious functional relationship between environmental factors (DO, ORP, pH), time (t) and concentration (CToluene):CToluene=C0+A100t+Bα+Cβ+D100γ, (α,β,γ are the pH, DO and ORP of capillary water, respectively; A, B, C and D are all undetermined coefficients), R2 > 0.95. The results of this study may facilitate the use of simple and easy-to-obtain environmental factors to characterize the dynamic process of pollutant concentration changes.
Collapse
Affiliation(s)
- Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Kexue Han
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Donghui Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China.
| | - Qiao Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Jiawei Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Zhenkun Xue
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Xiao Zhao
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Jinsheng Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| |
Collapse
|
10
|
Li Y, Wei M, Liu L, Yu B, Dong Z, Xue Q. Evaluation of the effectiveness of VOC-contaminated soil preparation based on AHP-CRITIC-TOPSIS model. CHEMOSPHERE 2021; 271:129571. [PMID: 33460903 DOI: 10.1016/j.chemosphere.2021.129571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Currently, several methods have been adopted for the laboratory preparation of artificial volatile organic compound (VOC) contaminated soils (VCSs). However, it remains unclear whether the prepared contaminated soils are homogenous. In this study, two representative VOCs, toluene and perchloroethylene, were separately mixed with a kaolin-based soil using six preparation methods. Thereafter, the homogeneity and recovery of the contaminated kaolin prepared using these methods were determined and analyzed. The six procedures were quantitatively assessed according to the comprehensive evaluation mathematical model (AHP-CRITIC-TOPSIS), and the final score order of the different procedures was: A > C > E > B > F > D. Additionally, the qualitative evaluation of the procedures was performed based on the phase transformation and mass transfer during the mixing processes. Based on these discussions, method A, which was considered to be optimal, was then adopted for further investigations with various natural soils. The results showed that this optimal method could be applied to natural soils and revealed that the adsorption-related characteristics of natural soils, including total organic carbon, specific surface area, pore volume, pH, plastic limit, particle size, and mineral composition, influenced the homogeneity and recovery through mass transfer. In addition, it was also observed that the chemical properties of VOCs, including molecular structure, vapor pressure, and the octanol/water partition coefficient, could also affect the effectiveness of sample recovery. Through this study, researchers can prepare VCSs with excellent homogeneity and low loss rates to conduct standardized tests for technology development.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingli Wei
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, China; Jiangsu Institute of Zoneco Co., Ltd., Yixing, 214200, China.
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, China
| | - Bowei Yu
- School of Civil Engineering, University of Sydney, 2008, Australia
| | - Zhiwei Dong
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, China.
| |
Collapse
|
11
|
Li Y, Wei M, Liu L, Xue Q, Yu B. Adsorption of toluene on various natural soils: Influences of soil properties, mechanisms, and model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140104. [PMID: 32927544 DOI: 10.1016/j.scitotenv.2020.140104] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
This study investigated toluene adsorption on natural soils. The linear partition model was found to represent the adsorption isotherm well (R2 = 0.958-0.994), compared with the Freundlich model (R2 = 0.901-0.991). Therefore, the coefficient, Kd, of the linear model indicated the adsorption capacity of soils A to F. Traditionally, Kd and the total organic carbon (TOC) content have a good linear relationship. However, this relationship was weak (correlation coefficient (r) = 0.689) when TOC values (8.43-12.9 mg/g) were low and close. To correct this deviation, this study investigated the influences of physicochemical properties, such as special surface area, mineral composition, functional groups, pH, and potentials. As soils B and C consisted of a large amount of active clayey minerals (69.4% kaolinite and 79.3% nacrite, respectively) and rich functional groups, they demonstrated the strongest adsorption capacity. Additionally, the r for pH-Kd, zeta potential-Kd, and redox potential-Kd were high, at 0.806, 0.914, and 0.932, respectively. To explore adsorption mechanisms, the adsorption thermodynamic parameter (enthalpy) was used initially to determine the forces. Combined with the analysis of soil properties, the mechanisms identified were hydrophobic interaction and hydrogen-pi bonding, involving co-adsorption with water molecules. Based on all studies, the properties were quantified and simplified by the plastic limit (PL), and TOC was simplified by soil organic matter (SOM). Then, PL and SOM were weighted by the entropy-weight method to obtain the determination factor, DF, a logarithmic parameter to replace TOC. Finally, a new model describing toluene adsorption on natural soils was established and expressed as Kd = 4.80 + 3.53DF. This new model had significantly improved the correlation between Kd and TOC (r = 0.933) and expanded the engineering adaptability.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100000, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, China
| | - Mingli Wei
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, China; Jiangsu Institute of Zoneco Co., Ltd., Yixing 214200, China.
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, China; Jiangsu Institute of Zoneco Co., Ltd., Yixing 214200, China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan 430071, China; Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, China; Jiangsu Institute of Zoneco Co., Ltd., Yixing 214200, China
| | - Bowei Yu
- School of Civil Engineering, University of Sydney, 2008, Australia
| |
Collapse
|
12
|
Lin X, Xu C, Zhou Y, Liu S, Liu W. A new perspective on volatile halogenated hydrocarbons in Chinese agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134646. [PMID: 31753494 DOI: 10.1016/j.scitotenv.2019.134646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 05/24/2023]
Abstract
Soil contamination by volatile organic compounds has been greatly studied. However, there is still limited information regarding the occurrence, distribution and health effects of typical volatile halogenated hydrocarbons (VHCs) in soils on a national scale. In this study, headspace-based extraction with gas chromatography/mass spectrometry (HS-GC/MS) detection was optimized for the simultaneous analysis of 18 VHCs (haloalkanes, haloalkenes and halogenated aromatics) in 112 surface agricultural soil samples across China in 2016. The results show that 100% of the soil samples were contaminated by VHCs, and 13 of the 18 VHCs investigated were detected. The haloalkanes were the dominant group. Five VHC components had detection rates greater than 35%, including dichloromethane (DCM), chloroform (CF), 1,2-dichloroethane (1,2-DCA), chlorobenzene (CB) and 1,4-dichlorobenzene (1,4-DCB). For total VHCs, North and Southwest China were the hotspots for contamination. The highest concentrations were found in Shanxi Province and Chongqing municipality, which could be the result of long-term aerial deposition and wet deposition from various accidental industrial leakages or natural sources. In addition, the applications of sewage sludge and pesticides in agricultural activities may also contribute to soil VHC pollution. By using the health risk-assessing models recommended by the U.S. Environment Protection Agency (U.S. EPA), the estimated hazard indices (HIs) of all VHCs were below 1, and the carcinogenic risk (CR) values were all at acceptable levels (<1 × 10-6). These findings indicated that the agricultural soils may not trigger serious long-term health impacts on public health nationwide. The results from this study can initially grasp the agricultural soil VHC pollution level and provide an understanding to avoid potential ecological and human health risks.
Collapse
Affiliation(s)
- Xinmeng Lin
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenye Xu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yuting Zhou
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuren Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|