1
|
Li S, Liu Y, Zhang Y, Huang P, Bartlam M, Wang Y. Stereoselective behavior of naproxen chiral enantiomers in promoting horizontal transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137692. [PMID: 40007369 DOI: 10.1016/j.jhazmat.2025.137692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Antibiotic resistance poses a global threat to public health, with recent studies highlighting the role of non-antibiotic pharmaceuticals in the transmission of antibiotic resistance genes (ARGs). This study provides insights into the comprehensive profile, horizontal gene transfer potential, hosts, and public health risks associated with antibiotic resistomes in river ecosystems exposed to chiral naproxen (NAP). Our findings demonstrate that NAP stress selectively enriches ARGs and mobile genetic elements (MGEs), thereby bolstering bacterial resistance to specific antibiotics. Importantly, the spatial variation of NAP chiral enantiomers influences the enantioselective response of bacterial communities to antibiotics. While (S)-NAP and (R)-NAP exhibit differing degrees of horizontal transfer potential, (S/R)-NAP notably facilitates microbial aggregation and DNA transport via type IV secretion system (T4SS)-related functional genes, promoting the conjugation of sul1. Moreover, (S/R)-NAP promotes the horizontal transfer of ARGs by stimulating ROS production and altering cell membrane permeability. Chiral NAP exposure induces pathogens to acquire ARGs and accelerates the proliferation of Burkholderia. ARG-Rank analysis indicates that the health risk posed by (R)-NAP exposure surpasses that of (S)-NAP, with the highest risk observed when both enantiomers are present. This study elucidates the horizontal transfer and transmission mechanisms of ARGs under chiral NAP stress, underscoring the potential health hazards associated with NAP chiral enantiomers.
Collapse
Affiliation(s)
- Shuhan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pan Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin 300350, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Pawłowska B, Biczak R. Drugs in the environment - Impact on plants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104557. [PMID: 39245245 DOI: 10.1016/j.etap.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Medicines, like food, are necessities. Many of the commonly used pharmaceuticals, especially antibiotics and NSAIDs end up in the environment and are detected in it (especially in water) at concentrations in the ng·L-1- μg·L-1 range. Although the concentrations of individual drugs in the environment are low, their high biological activity can cause them to be toxic to the environment. This review analyzes and summarizes the effects of drugs, primarily antibiotics and NSAIDs on photosynthesizing organisms, i.e., algae, aquatic and terrestrial plants. Acute drug toxicity to algae and plants occurs most often at high, often non-existent environmental concentrations, while sublethal effects occur at low drug concentrations. The review also points out the problems associated with ecotoxicological studies and the lack of systemic solutions to better assess the risks associated with the presence of drugs in the environment.
Collapse
Affiliation(s)
- Barbara Pawłowska
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland.
| | - Robert Biczak
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland
| |
Collapse
|
3
|
Pérez-Pereira A, Carrola JS, Tiritan ME, Ribeiro C. Enantioselectivity in ecotoxicity of pharmaceuticals, illicit drugs, and industrial persistent pollutants in aquatic and terrestrial environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169573. [PMID: 38151122 DOI: 10.1016/j.scitotenv.2023.169573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
At present, there is a serious concern about the alarming number of recalcitrant contaminants that can negatively affect biodiversity threatening the ecological status of marine, estuarine, freshwater, and terrestrial ecosystems (e.g., agricultural soils and forests). Contaminants of emerging concern (CEC) such as pharmaceuticals (PHAR), illicit drugs (ID), industrial persistent pollutants, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and chiral ionic solvents are globally spread and potentially toxic to non-target organisms. More than half of these contaminants are chiral and have been measured at different enantiomeric proportions in diverse ecosystems. Enantiomers can exhibit different toxicodynamics and toxicokinetics, and thus, can cause different toxic effects. Therefore, the enantiomeric distribution in occurrence cannot be neglected as the toxicity and other adverse biological effects are expected to be enantioselective. Hence, this review aims to reinforce the recognition of the stereochemistry in environmental risk assessment (ERA) of chiral CEC and gather up-to-date information about the current knowledge regarding the enantioselectivity in ecotoxicity of PHAR, ID, persistent pollutants (PCBs and PBDEs) and chiral ionic solvents present in freshwater and agricultural soil ecosystems. We performed an online literature search to obtain state-of-the-art research about enantioselective studies available for assessing the impact of these classes of CEC. Ecotoxicity assays have been carried out using organisms belonging to different trophic levels such as microorganisms, plants, invertebrates, and vertebrates, and considering ecologically relevant aquatic and terrestrial species or models organisms recommended by regulatory entities. A battery of ecotoxicity assays was also reported encompassing standard acute toxicity to sub-chronic and chronic assays and different endpoints as biomarkers of toxicity (e.g., biochemical, morphological alterations, reproduction, behavior, etc.). Nevertheless, we call attention to the lack of knowledge about the potential enantioselective toxicity of many PHAR, ID, and several classes of industrial compounds. Additionally, several questions regarding key species, selection of most appropriate toxicological assays and ERA of chiral CEC are addressed and critically discussed.
Collapse
Affiliation(s)
- A Pérez-Pereira
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; University of Trás-os-Montes and Alto Douro (UTAD), Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Vila Real, Portugal
| | - J S Carrola
- University of Trás-os-Montes and Alto Douro (UTAD), Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Vila Real, Portugal; Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal
| | - M E Tiritan
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.
| | - C Ribeiro
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal.
| |
Collapse
|
4
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
5
|
Ding C, Lei J, Cai Z, Gao M, Zou Z, Li Y, Deng J. Catalytic oxidation activation of peroxymonosulfate over Fe-Co bimetallic oxides for flurbiprofen degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53355-53369. [PMID: 36854945 DOI: 10.1007/s11356-023-25914-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In this research, FeCo2O4 nanomaterial was successfully synthesized by a typical sol-gel method and conducted as an effective agent for peroxymonosulfate (PMS) activation to eliminate antibiotics flurbiprofen (FLU), a strong nonsteroidal drug. FeCo2O4 nanomaterial was characterized by XRD, TEM, SEM, and XPS. Various characterization results proved that FeCo2O4 held stable spinel structure. The interfering factors including initial pH, PMS concentration, catalyst dosage, inorganic anions, and humic acid on FLU removal were also discussed. The conclusion was that the removal efficiency of FLU reached 98.2% within 120 min after adding FeCo2O4 (0.4 g L-1) and PMS (3 mM). The optimal pH for FLU degradation was the initial pH of 6.5; too acidic or alkaline was not conductive to the degradation. The existence of HA and Cl- restrained the degradation of FLU, and HCO3- promoted the removal, while the influence of NO3- and SO42- could not be considered. The radical scavenging experiment confirmed that •OH, O2•-, and SO4•- participated in FLU removal and SO4•- functioned a leading role. FeCo2O4 showed high efficiency for PMS activation in pH range of 3.0 to 10.0. After the fourth cycle operation, the FLU removal rate exceeded 76.9%, and the Co leaching rate was low during the catalytic reaction. This study shows that FeCo2O4 nanomaterial is an efficient and environment-friendly catalyst, which can be applied for PMS activation to remove organic pollutants in water.
Collapse
Affiliation(s)
- Chunsheng Ding
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jia Lei
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Zhiyue Cai
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Mengying Gao
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Zhaozheng Zou
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Yuanfeng Li
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| |
Collapse
|
6
|
Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules 2023; 28:molecules28052097. [PMID: 36903343 PMCID: PMC10004696 DOI: 10.3390/molecules28052097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
The anti-inflammatory drug ibuprofen is considered to be an emerging contaminant because of its presence in different environments (from water bodies to soils) at concentrations with adverse effects on aquatic organisms due to cytotoxic and genotoxic damage, high oxidative cell stress, and detrimental effects on growth, reproduction, and behavior. Because of its high human consumption rate and low environmental degradation rate, ibuprofen represents an emerging environmental problem. Ibuprofen enters the environment from different sources and accumulates in natural environmental matrices. The problem of drugs, particularly ibuprofen, as contaminants is complicated because few strategies consider them or apply successful technologies to remove them in a controlled and efficient manner. In several countries, ibuprofen's entry into the environment is an unattended contamination problem. It is a concern for our environmental health system that requires more attention. Due to its physicochemical characteristics, ibuprofen degradation is difficult in the environment or by microorganisms. There are experimental studies that are currently focused on the problem of drugs as potential environmental contaminants. However, these studies are insufficient to address this ecological issue worldwide. This review focuses on deepening and updating the information concerning ibuprofen as a potential emerging environmental contaminant and the potential for using bacteria for its biodegradation as an alternative technology.
Collapse
|
7
|
Mussa ZH, Al-Qaim FF, Jawad AH, Scholz M, Yaseen ZM. A Comprehensive Review for Removal of Non-Steroidal Anti-Inflammatory Drugs Attained from Wastewater Observations Using Carbon-Based Anodic Oxidation Process. TOXICS 2022; 10:598. [PMID: 36287878 PMCID: PMC9610849 DOI: 10.3390/toxics10100598] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) (concentration <µg/L) are globally acknowledged as hazardous emerging pollutants that pass via various routes in the environment and ultimately enter aquatic food chains. In this context, the article reviews the occurrence, transport, fate, and electrochemical removal of some selected NSAIDs (diclofenac (DIC), ketoprofen (KTP), ibuprofen (IBU), and naproxen (NPX)) using carbon-based anodes in the aquatic environment. However, no specific protocol has been developed to date, and various approaches have been adopted for the sampling and elimination processes of NSAIDs from wastewater samples. The mean concentration of selected NSAIDs from different countries varies considerably, ranging between 3992−27,061 µg/L (influent wastewater) and 1208−7943 µg/L (effluent wastewater). An assessment of NSAIDs removal efficiency across different treatment stages in various wastewater treatment plants (WWTPs) has been performed. Overall, NSAIDs removal efficiency in wastewater treatment plants has been reported to be around 4−89%, 8−100%, 16−100%, and 17−98% for DIC, KTP, NPX, and IBU, respectively. A microbiological reactor (MBR) has been proclaimed to be the most reliable treatment technique for NSAIDs removal (complete removal). Chlorination (81−95%) followed by conventional mechanical biological treatment (CMBT) (94−98%) treatment has been demonstrated to be the most efficient in removing NSAIDs. Further, the present review explains that the electrochemical oxidation process is an alternative process for the treatment of NSAIDs using a carbon-based anode. Different carbon-based carbon anodes have been searched for electrochemical removal of selected NSAIDs. However, boron-doped diamond and graphite have presented reliable applications for the complete removal of NSAIDs from wastewater samples or their aqueous solution.
Collapse
Affiliation(s)
| | - Fouad Fadhil Al-Qaim
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
- Department of Chemistry, College of Science for Women, University of Babylon, Hillah 51001, Iraq
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Miklas Scholz
- Directorate of Engineering the Future, School of Science, Engineering and Environment, The University of Salford, Newton Building, Salford M5 4WT, Greater Manchester, UK
- Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, Johannesburg 2092, South Africa
- Department of Town Planning, Engineering Networks and Systems, South Ural State University (National Research University), 76, Lenin Prospekt, 454080 Chelyabinsk, Russia
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
8
|
Nguyen QA, Vu HP, McDonald JA, Nguyen LN, Leusch FDL, Neale PA, Khan SJ, Nghiem LD. Chiral Inversion of 2-Arylpropionic Acid Enantiomers under Anaerobic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8197-8208. [PMID: 35675163 DOI: 10.1021/acs.est.2c01602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work examined the chiral inversion of 2-arylpropionic acids (2-APAs) under anaerobic conditions and the associated microbial community. The anaerobic condition was simulated by two identical anaerobic digesters. Each digester was fed with the substrate containing 11 either pure (R)- or pure (S)-2-APA enantiomers. Chiral inversion was evidenced by the concentration increase of the other enantiomer in the digestate and the changes in the enantiomeric fraction between the two enantiomers. Both digesters showed similar and poor removal of 2-APAs (≤30%, except for naproxen) and diverse chiral inversion behaviors under anaerobic conditions. Four compounds exhibited (S → R) unidirectional inversion [flurbiprofen, ketoprofen, naproxen, and 2-(4-tert-butylphenyl)propionic acid], and the remaining seven compounds showed bidirectional inversion. Several aerobic and facultative anaerobic bacterial genera (Candidatus Microthrix, Rhodococcus, Mycobacterium, Gordonia, and Sphingobium) were identified in both digesters and predicted to harbor the 2-arylpropionyl-CoA epimerase (enzyme involved in chiral inversion) encoding gene. These genera presented at low abundances, <0.5% in the digester dosed with (R)-2-APAs and <0.2% in the digester dosed with (S)-2-APAs. The low abundances of these genera explain the limited extent of chiral inversion observed in this study.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - James A McDonald
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| |
Collapse
|
9
|
Moreno Ríos AL, Gutierrez-Suarez K, Carmona Z, Ramos CG, Silva Oliveira LF. Pharmaceuticals as emerging pollutants: Case naproxen an overview. CHEMOSPHERE 2022; 291:132822. [PMID: 34767851 DOI: 10.1016/j.chemosphere.2021.132822] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), including naproxen (NP), diclofenac, ibuprofen, etc., are widely used for fever and pain relief. NP is one of the most widely consumed drugs in the world, because it is available over the counter in many countries. Many studies have proven that NP is not eliminated in conventional water treatment processes and its biodegradation in the environment is also difficult compared to other drugs. Along these lines, we are aware that both the original compound and its metabolites can be found in different destinations in the environment. To assess the environmental exposure and the risks associated with NP, it is important to understand better the environment where they finally reach, the behavior of its original compounds, its metabolites, and its transformation products. In this sense, the purpose of this review is to summarize the current state of knowledge about the introduction and behavior of NP in the environments they reach and highlight research needs and gaps. Likewise, we present the sources, environmental destinations, toxicology, environmental effects, and quantification methodologies.
Collapse
Affiliation(s)
- Andrea Liliana Moreno Ríos
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Karol Gutierrez-Suarez
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Zenen Carmona
- Faculty of Medicine, Campus of Zaragocilla, University of Cartagena, Cartagena, Colombia
| | - Claudete Gindri Ramos
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Luis Felipe Silva Oliveira
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| |
Collapse
|
10
|
Nguyen AQ, Nguyen LN, McDonald JA, Nghiem LD, Leusch FDL, Neale PA, Khan SJ. Chiral inversion of 2-arylpropionoic acid (2-APA) enantiomers during simulated biological wastewater treatment. WATER RESEARCH 2022; 209:117871. [PMID: 34872028 DOI: 10.1016/j.watres.2021.117871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
This study examined the removal and enantio‑specific fate of a suite of eleven chiral 2-arylpropionic acids (2-APAs) during biological wastewater treatment simulated in a laboratory-scale membrane bioreactor (MBR). Using pure (R)- and (S)- enantiomers in the MBR influent, chiral inversion was determined through the increase in the concentration of the non-dominant enantiomer and changes in the enantiomeric fraction (EF) between the two enantiomers during the treatment process. Effective (>90%) and similar removal rates between (R)- and (S)- enantiomers were confirmed for eight 2-APAs. In this study, 2-APAs exhibited diverse and distinctive chiral inversion behaviours: two 2-APAs showed (R→S) unidirectional inversion, three 2-APAs showed (S→R) unidirectional inversion, and six 2-APAs showed bidirectional inversion. This is the first study to report chiral inversion behaviours of a comprehensive suite of 2-APAs with a variety of functional groups substituted onto the aryl ring. A decrease in effluent EF over time was observed for two 2-APAs. This study shows that chiral inversion of 2-APAs varies significantly from compound to compound, despite the high similarity in their chemical structures.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - James A McDonald
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
11
|
Javadi N, Rezaeian M, Fakhraian H. The conglomerate crystal formation of methoxetamine salts in the presence of some organic achiral anions: a theoretical approach. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1961259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nabi Javadi
- Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Mojtaba Rezaeian
- Research Center for Modeling and Computational Science, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Fakhraian
- Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran
| |
Collapse
|
12
|
Duarte B, Gameiro C, Matos AR, Figueiredo A, Silva MS, Cordeiro C, Caçador I, Reis-Santos P, Fonseca V, Cabrita MT. First screening of biocides, persistent organic pollutants, pharmaceutical and personal care products in Antarctic phytoplankton from Deception Island by FT-ICR-MS. CHEMOSPHERE 2021; 274:129860. [PMID: 33607598 DOI: 10.1016/j.chemosphere.2021.129860] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 05/26/2023]
Abstract
In recent years, the Antarctic territory has seen a rise in the number of tourists and scientists. This has led to an increase in the anthropogenic footprint in Antarctic ecosystems, namely in terms of emerging contaminants, such as Biocides, Persistent Organic Pollutants (POPs) as well as Pharmaceutical and Personal Care Products (PPCPs). Yet scarce information on the presence of these emerging contaminants is available for trophic compartments, especially the phytoplankton community. Using high resolution Fourier-transform ion cyclotron-resonance mass spectrometry (FT-ICR-MS), an untargeted screening of the metabolome of the phytoplankton community was performed. Seventy different contaminant compounds were found to be present in phytoplankton collected at two sites in Port Foster Bay at Deception Island. These emerging contaminants included 1 polycyclic aromatic hydrocarbon (PAH), 10 biocides (acaricides, fungicides, herbicides, insecticides and nematicides), 11 POPs (flame retardants, paints and dyes, polychlorinated biphenyl (PCB), phthalates and plastic components), 5 PCPs (cosmetic, detergents and dietary compounds), 40 pharmaceutical compounds and 3 illicit drugs. Pharmaceutical compounds were, by far, the largest group of emerging contaminants found in phytoplankton cells (anticonvulsants, antihypertensives and beta-blockers, antibiotics, analgesic and anti-inflammatory drugs). The detection of several of these potentially toxic compounds at the basis of the marine food web has potentially severe impacts for the whole ecosystem trophic structure. Additionally, the present findings also point out that the guidelines proposed by the Antarctic Treaty and Protocol on Environmental Protection to the Antarctic Treaty should be revisited to avoid the proliferation of these and other PPCPs in such sensitive environments.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Carla Gameiro
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Instituto Do Mar e da Atmosfera (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006, Algés, Lisboa, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Andreia Figueiredo
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Marta Sousa Silva
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo-Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo-Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA, 5005, Australia
| | - Vanessa Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento Do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisboa, Portugal
| |
Collapse
|
13
|
Stepnowski P, Wolecki D, Puckowski A, Paszkiewicz M, Caban M. Anti-inflammatory drugs in the Vistula River following the failure of the Warsaw sewage collection system in 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140848. [PMID: 32758731 DOI: 10.1016/j.scitotenv.2020.140848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
At the end of August 2019, in Warsaw, the sewage collection system of the Wastewater Treatment Plant malfunctioned. During the subsequent 12 days, over 3.6 million m3 of untreated sewage was introduced from the damaged collector directly into the Vistula River. It is one of the biggest known failures of its kind in the world so far. In this study we investigated to what extent the incident contributed to the increased discharge of anti-inflammatory drugs into the environment. The study covered the section from the point of discharge to the city of Toruń (ca. 170 km downstream). It was found that in the river waters downstream of the damaged collector, the concentrations of selected pharmaceuticals increased considerably in comparison with the waters upstream of the collector. The highest concentrations were observed for paracetamol (102.9 μg/L), ibuprofen (5.3 μg/L) and diclofenac (4.8 μg/L). We also measured to what extent and at what rate these pollutants were distributed along the river. The effects of the incident were observed in further parts of the river after 16 days. In the study we also detected elevated concentrations of ibuprofen and diclofenac in the bottom sediments collected 6 weeks after the failure. Measurements of the levels of pharmaceuticals in estuarial and marine waters in the vicinity of the mouth of the Vistula River indicate that the incident did not significantly increase the load of these pollutants in the waters of the southern Baltic Sea.
Collapse
Affiliation(s)
- Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Daniel Wolecki
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Alan Puckowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
14
|
Ge H, Zhou M, Lv D, Wang M, Dong C, Wan Y, Zhang Z, Wang S. New Insight Regarding the Relationship Between Enantioselective Toxicity Difference and Enantiomeric Toxicity Interaction from Chiral Ionic Liquids. Int J Mol Sci 2019; 20:ijms20246163. [PMID: 31817689 PMCID: PMC6941021 DOI: 10.3390/ijms20246163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Chirality is an important property of molecules. The study of biological activity and toxicity of chiral molecules has important theoretical and practical significance for toxicology, pharmacology, and environmental science. The toxicological significance of chiral ionic liquids (ILs) has not been well revealed. In the present study, the enantiomeric joint toxicities of four pairs of chiral ILs 1-alkyl-3-methylimidazolium lactate to Allivibrio fischeri were systematically investigated by using a comprehensive approach including the co-toxicity coefficient (CTC) integrated with confidence interval (CI) method (CTCICI), concentration-response curve (CRC), and isobole analysis. The direct equipartition ray (EquRay) design was used to design five binary mixtures of enantiomers according to molar ratios of 1:5, 2:4, 3:3, 4:2, and 5:1. The toxicities of chiral ILs and their mixtures were determined using the microplate toxicity analysis (MTA) method. Concentration addition (CA) and independent action (IA) were used as the additive reference models to construct the predicted CRC and isobole of mixtures. On the whole, there was an enantioselective toxicity difference between [BMIM]D-Lac and [BMIM]L-Lac, and [HMIM]D-Lac and [HMIM]L-Lac, while no enantioselective toxicity difference was observed for [EMIM]D-Lac and [EMIM]L-Lac, and [OMIM]D-Lac and [OMIM]L-Lac. Thereinto, the enantiomer mixtures of [BMIM]D-Lac and [BMIM]L-Lac, and [HMIM]D-Lac and [HMIM]L-Lac presented antagonistic action, and the enantiomer mixtures of [EMIM]D-Lac and [EMIM]L-Lac, and [OMIM]D-Lac and [OMIM]L-Lac overall presented additive action. Moreover, the greatest antagonistic toxicity interaction occurred at the equimolar ratio of enantiomers. Based on these results, we proposed two hypotheses, (1) chiral molecules with enantioselective toxicity difference tended to produce toxicity interactions, (2) the highest or lowest toxicity was usually at the equimolar ratio and its adjacent ratio for the enantiomer mixture. These hypotheses will need to be further validated by other enantiomer mixtures.
Collapse
Affiliation(s)
- Huilin Ge
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
- College of Plant Protection, Hainan University, Haikou 570228, China;
- Correspondence: (H.G.); (M.W.); Tel.: +86-898-6689-5011 (H.G.); +86-898-6689-5002 (M.W.)
| | - Min Zhou
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
- College of Plant Protection, Hainan University, Haikou 570228, China;
| | - Daizhu Lv
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
| | - Mingyue Wang
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
- Correspondence: (H.G.); (M.W.); Tel.: +86-898-6689-5011 (H.G.); +86-898-6689-5002 (M.W.)
| | - Cunzhu Dong
- College of Plant Protection, Hainan University, Haikou 570228, China;
| | - Yao Wan
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
| | - Zhenshan Zhang
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
| | - Suru Wang
- Hainan Key Laboratory of Tropical Fruit and Vegetable Products Quality and Safety, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.Z.); (D.L.); (Y.W.); (Z.Z.); (S.W.)
| |
Collapse
|
15
|
Wang J, Xu X, Qiu X, Zhang S, Peng Y. Yolk–shell structured Au@Ag@mSiO2 as a probe for sensing cysteine enantiomers and Cu2+ based on circular dichroism. Analyst 2019; 144:7489-7497. [DOI: 10.1039/c9an01541h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel yolk–shell structured Au@Ag@mSiO2 was fabricated and used as a probe for recognition and quantification of cysteine enantiomers and Cu2+.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Xu Xu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Xiaolin Qiu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Shuaishuai Zhang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Yinxian Peng
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| |
Collapse
|