1
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
2
|
Wu S, Liang H, Xu B, Zhang Q, Fan H, Wang J, Han Q, Gao M, Yang J, Lang J. A co-precipitation route for the preparation of eco-friendly Cu-Al-layered double hydroxides with efficient tetracycline degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99412-99426. [PMID: 37612561 DOI: 10.1007/s11356-023-29345-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
The construction of novel efficient catalysts for the treatment of organic pollutants in the aqueous environment is essential. The lamellar-like Cu-Al layered double hydroxides (CuAl-LDHs) with various mole ratios were synthesized by a simple route of co-precipitation, and the corresponding degradation characteristic was tested for the removal of tetracycline (TC) using PMS activation. The degradation efficiency of TC over CuAl-LDHs increased up to 93% within 10 min for the Cu/Al mole ratio of 3:1 and almost not changed at a higher mole ratio. For further calcining the optimal catalyst at 300 ℃, the degradation efficiency of TC was found to be increased to 96%. Sulfuric radicals and singlet oxygen were analyzed to be the main reason for the change in degradation characteristics, which was proved by radical quenching experiments and electron paramagnetic resonance technique. The parameters including PMS concentration, catalyst dosage, and reaction temperature on the TC degradation as well as the degradation mechanism for PMS activation were elaborated. The best proportion of CuAl-LDHs owned splendid stability and catalytic activity after reusing, which showed enormous potential in practical application.
Collapse
Affiliation(s)
- Si Wu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Huicong Liang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Bingyan Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Hougang Fan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Jingshu Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Qiang Han
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China.
| |
Collapse
|
3
|
Chen X, Liu L, Yan W, Li M, Li Q, He X, Zhao Z, Liu R, Zhang S, Huang Y, Jiang F. Impacts of calcium peroxide on phosphorus and tungsten releases from sediments. ENVIRONMENTAL RESEARCH 2023; 231:116060. [PMID: 37149024 DOI: 10.1016/j.envres.2023.116060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
In this study, CaO2 was used as a capping material to control the release of Phosphate (P) and tungsten (W) from the sediment due to its oxygen-releasing and oxidative properties. The results revealed significant decreases in SRP and soluble W concentrations after the addition of CaO2. The mechanisms of P and W adsorption by CaO2 were mainly chemisorption and ligand exchange mechanisms. In addition, the results showed significant increases in HCl-P and amorphous and poorly crystalline(oxyhydr)oxides bound W after the addition of CaO2. The highest reduction rates of sediment SRP and soluble W release were 37 and 43%, respectively. Furthermore, CaO2 can promote the redox of iron (Fe) and manganese (Mn). On the other hand, a significant positive correlation was observed between SRP/soluble W and soluble Fe (II) and between SRP/soluble W and soluble Mn, indicating that the effects of CaO2 on Fe and Mn redox play a crucial role in controlling P and W releases from sediments. However, the redox of Fe plays a key role in controlling sediment P and W release. Therefore, CaO2 addition can simultaneously inhibit sediment internal P and W release.
Collapse
Affiliation(s)
- Xiang Chen
- Nanjing Inst Environm Sci, Minist Ecol & Environm, Nanjing, 210042, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Ling Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Wenming Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Minjuan Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Xiangyu He
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ziyi Zhao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ruiyan Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shunting Zhang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yanfen Huang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Feng Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
4
|
Ma S, Yang H, Fu S, He P, Duan X, Yang Z, Jia D, Colombo P, Zhou Y. Additive manufacturing of geopolymers with hierarchical porosity for highly efficient removal of Cs . JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130161. [PMID: 36327833 DOI: 10.1016/j.jhazmat.2022.130161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Geopolymers (GPs) have emerged as promising adsorbents for wastewater treatment due to their superior adsorption stability, tunable porosity, high adsorption capacity, and low-energy production. Despite their great promise, developing GPs with well-controlled hierarchical structures and high porosity remains challenging, and the mechanism underlying the ion adsorption process remains elusive. Here we report a cost-effective and universal approach to fabricate Na or K GPs with sophisticated architectures, high porosity, and arbitrary cation species exchange by means of additive manufacturing and a surfactant. The introduction of sodium lauryl sulfate (SLS) enhanced the porosity of the GP adsorbents, yielding NaGP-lattice-10%SLS adsorbent with a high total porosity of 80.8 vol%. Combining static and dynamic adsorption tests, the effects of morphology, surfactant content, and cation species on Cs+ adsorption performance were systemically investigated. With an initial Cs+ concentration of 900 mg/L, the printed NaGP exhibited a maximum Cs+ adsorption capacity of 80.1 mg/g, outperforming other adsorbents reported so far. The quasi-second-order fit of the NaGP adsorbent showed overall higher R2 values than the quasi-first-order fit, indicating that the adsorption process was dominated by ion exchange. Combined with first-principles calculations, we verified that the content of water in the GP sod cages also affected the ion-exchange process between Na+ and Cs+.
Collapse
Affiliation(s)
- Siqi Ma
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China
| | - Hualong Yang
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China
| | - Shuai Fu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Peigang He
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China.
| | - Xiaoming Duan
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China
| | - Zhihua Yang
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China
| | - Dechang Jia
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China.
| | - Paolo Colombo
- Department of Industrial Engineering, University of Padova, Padova, Italy; Department of Materials Science and Engineering, The Pennsylvania State University, Philadelphia, USA
| | - Yu Zhou
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
5
|
Tian Q, Bai Y, Pan Y, Yao S, Chen C, Zhang H, Sasaki K. Influence of aluminate and silicate on selenate immobilization using alkaline-earth metal oxides and ferrous salt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158126. [PMID: 35987217 DOI: 10.1016/j.scitotenv.2022.158126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Effects of aluminate and silicate species on the SeO42- immobilization using alkali-earth metal oxides and ferrous species have not been clearly elucidated. In the present study, Al and Si species were separately added into MgO/Fe(II) and CaO/Fe(II) reactions containing SeO42-, studied by toxicity characteristic leaching procedure (TCLP), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray absorption fine structure (XAFS), and PHREEQC simulation. Approximately 42 % of SeO42- was reduced to SeO32- for MgO/Fe(II) reaction in the presence of Al species, being consistent with the case without Al species. The Al species only showed slight inhibition of Se leaching for the MgO/Fe(II) reaction. Most of Se oxyanions were adsorbed onto Mg(OH)2 through outer-sphere complexation. For CaO/Fe(II) reaction, all of SeO42- was reduced to SeO32- with or without Al species. However, the Se leaching amount (3 %) of sample added with Al species (CE3) is much lower than that (12 %) of sample without Al species (CE2). This is mainly because SeO32- can be sorbed onto the iron-based minerals through binuclear bidentate corner-sharing (2C) complexation instead of monodentate mononuclear corner-sharing (1V) complexation of the case without Al species. On the other hand, SeO42- was not reduced to SeO32- in the presence of silicate, and almost all of Se was leached out for silicate-contained samples except CaO/Fe(II) reaction with the addition of Al species. This is due to the polymerization of Al and Si species under a high-alkalinity environment, thereby stabilizing SeO42- in the amorphous silicon-aluminum structure and contributing to the decrease of Se leaching.
Collapse
Affiliation(s)
- Quanzhi Tian
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China; Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yingchu Bai
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yinhai Pan
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Shuo Yao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Changshuai Chen
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Haijun Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China.
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Yang H, Zhou X, Wang JS, Liu DW. Simultaneous stabilization/solidification of arsenic in acidic wastewater and tin mine tailings with synthetic multiple solid waste base geopolymer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115783. [PMID: 35940009 DOI: 10.1016/j.jenvman.2022.115783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Stabilization/Solidification (S/S) is considered as a feasible technology for the treatment of arsenic (As) in acidic wastewater (AW) and tin mine tailings (TMTs); however, high cost, high carbon footprint, and strict reaction conditions are the main limitations. Herein, a novel alkali-activated geopolymer material (AAGM) for S/S As was synthesized by combining AW, TMT, gypsum (GP), and metakaolin (MK). At room temperature, an initial As concentration of 3914 mg/L, a NaOH content of 4.98%, and an MK content of 20% decreased the As leaching concentration to 1.55 mg/L (<5 mg/L). The main S/S mechanisms of As included physical encapsulation of C-(A)-S-H and geopolymer structures, ion exchange of ettringite, and formation of Fe-As and Ca-As precipitates. Further studies showed that increasing initial As concentration and MK content facilitated the formation of Ca-As precipitates and C-(A)-S-H gels. The semi-dynamic leaching tests revealed that the leaching mechanism of As was surface wash-off. The effective diffusion coefficients of the samples were less than 10-13 cm2/s, and the respective leachability indexes were greater than 9, indicating that AAGM was effective in preventing the leaching of As. Therefore, this study provides a green and low cost solution for the synergistic utilization of AW, TMT, GP, and MK.
Collapse
Affiliation(s)
- Hui Yang
- Kunming University of Science and Technology, Kunming, 650093, China
| | - Xian Zhou
- Kunming University of Science and Technology, Kunming, 650093, China; Kunming Metallurgical Research Institute Co. LTD, Kunming, 650031, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, 650093, China
| | - Jin-Song Wang
- Kunming University of Science and Technology, Kunming, 650093, China
| | - Dian-Wen Liu
- Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
7
|
Kobylinska NG, Puzyrnaya LM, Pshinko GM. Layered Double Hydroxides as Promising Adsorbents for Purification of Radioactive Polluted Water: A Review. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Tian Q, Bai Y, Pan Y, Chen C, Yao S, Sasaki K, Zhang H. Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review. Molecules 2022; 27:4570. [PMID: 35889449 PMCID: PMC9317415 DOI: 10.3390/molecules27144570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Geopolymers, as a kind of inorganic polymer, possess excellent properties and have been broadly studied for the stabilization/solidification (S/S) of hazardous pollutants. Even though many reviews about geopolymers have been published, the summary of geopolymer-based S/S for various contaminants has not been well conducted. Therefore, the S/S of hazardous pollutants using geopolymers are comprehensively summarized in this review. Geopolymer-based S/S of typical cations, including Pb, Zn, Cd, Cs, Cu, Sr, Ni, etc., were involved and elucidated. The S/S mechanisms for cationic heavy metals were concluded, mainly including physical encapsulation, sorption, precipitation, and bonding with a silicate structure. In addition, compared to cationic ions, geopolymers have a poor immobilization ability on anions due to the repulsive effect between them, presenting a high leaching percentage. However, some anions, such as Se or As oxyanions, have been proved to exist in geopolymers through electrostatic interaction, which provides a direction to enhance the geopolymer-based S/S for anions. Besides, few reports about geopolymer-based S/S of organic pollutants have been published. Furthermore, the adsorbents of geopolymer-based composites designed and studied for the removal of hazardous pollutants from aqueous conditions are also briefly discussed. On the whole, this review will offer insights into geopolymer-based S/S technology. Furthermore, the challenges to geopolymer-based S/S technology outlined in this work are expected to be of direct relevance to the focus of future research.
Collapse
Affiliation(s)
- Quanzhi Tian
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China; (Q.T.); (Y.B.); (Y.P.); (C.C.); (S.Y.)
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yingchu Bai
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China; (Q.T.); (Y.B.); (Y.P.); (C.C.); (S.Y.)
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yinhai Pan
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China; (Q.T.); (Y.B.); (Y.P.); (C.C.); (S.Y.)
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Changshuai Chen
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China; (Q.T.); (Y.B.); (Y.P.); (C.C.); (S.Y.)
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Shuo Yao
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China; (Q.T.); (Y.B.); (Y.P.); (C.C.); (S.Y.)
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Haijun Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
9
|
A Bibliometric Analysis of Research Progress and Trends on Fly Ash-Based Geopolymer. MATERIALS 2022; 15:ma15144777. [PMID: 35888243 PMCID: PMC9324275 DOI: 10.3390/ma15144777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
The objective of this work is to present the research progress and applications of fly ash-based geopolymer, and summarize the future research hotpots. Since 1998, scholars have made important contributions to the study of fly ash-based geopolymer, and a large number of research studies have been published. Therefore, a bibliometric analysis for the determination of the research status, trend, and history of fly ash-based geopolymer was conducted in the present study. A total of 4352 publications on fly ash-based geopolymer were collected between 1998 and 2022, with an increasing trend year by year. China and Australia are the largest contributors to the field, and the research institutions in each country cooperate closely. In addition, the most contributing research areas are MATERIALS SCIENCE, ENGINEERING, and CONSTRUCTION & BUILDING TECHNOLOGY. The keywords including fly ash, compressive strength, and mechanical property are the most frequently appearing words. On the whole, the development of fly ash-based geopolymer could be divided into three stages including the replacement of ordinary Portland cement, the development of multifunctional materials, and the reduction of environmental impact by the conversion of solid waste. This overview could provide an important guidance for the development of fly ash-based geopolymer.
Collapse
|
10
|
Niu X, Elakneswaran Y, Islam CR, Provis JL, Sato T. Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128373. [PMID: 35121289 DOI: 10.1016/j.jhazmat.2022.128373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Geopolymers are a class of alkaline-activated materials that have been considered as promising materials for radioactive waste disposal. Currently, metakaolin-based geopolymers (MK-GPs) are attracting interest for the immobilisation of radionuclides in contaminated water from the Fukushima Daiichi Nuclear Power Station. However, the associated chemical interaction mechanisms and the theoretical prediction of the adsorption behaviour of MK-GP in response to cationic radionuclides have not been thoroughly studied or fully understood. In addition, there is a lack of studies on the adsorption capacity of MK-GP for anionic radionuclides. In this study, two types of metakaolin-based (Metastar501 and Sobueclay) geopolymers were synthesised at a K2O:SiO2:H2O ratio of 1:1:13. The binding capacity and interaction mechanism of MK-GP with Cs+, Sr2+, Co2+, I-, IO3-, SeO32-, and SeO42- were evaluated based on the zeta potential, radionuclide binding, and alkali leaching. The results showed that MK-GP does not have the ability to incorporate anionic radionuclides irrespective of the metakaolin source used, but both types of geopolymers have a high capacity to immobilise cationic radionuclides. The uptake of Cs+ was observed as a one-to-one exchange between Cs+ and K+ whereas both one-two and one-one ion exchanges are possible in the case of Sr2+ and Co2+ with K+. The formation of cobalt blue (CoAl2O4) also contributed to the binding of Co2+. Thermodynamic modelling was conducted according to the ion exchange mechanism which predicts the binding of Cs+ and Sr2+ at low concentrations.
Collapse
Affiliation(s)
- Xiaobo Niu
- Division of Sustainable Resources, Graduate School of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido 060-8628, Japan
| | - Yogarajah Elakneswaran
- Division of Sustainable Resources, Graduate School of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido 060-8628, Japan.
| | - Chaerun Raudhatul Islam
- Division of Sustainable Resources, Graduate School of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido 060-8628, Japan
| | - John L Provis
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield S1 3JD, United Kingdom
| | - Tsutomu Sato
- Division of Sustainable Resources, Graduate School of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
11
|
Filip J, Vinter Š, Čechová E, Sotolářová J. Materials interacting with inorganic selenium from the perspective of electrochemical sensing. Analyst 2021; 146:6394-6415. [PMID: 34596173 DOI: 10.1039/d1an00677k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inorganic selenium, the most common form of harmful selenium in the environment, can be determined using electrochemical sensors, which are compact, fast, reliable and easy-to-operate devices. Despite progress in this area, there is still significant room for developing high-performance selenium electrochemical sensors. To achieve this, one should take into account (i) the electrochemical process that selenium undergoes on the electrode; (ii) the valence state of selenium species in the sample and (iii) modification of the sensor surface by a material with high affinity to selenium. The goal of this review is to provide a knowledge base for these issues. After the Introduction section, mechanisms and principles of the electrochemical reduction of selenium are introduced, followed by a section introducing the modification of electrodes with materials interacting with selenium and a section dedicated to speciation methods, including the reduction of non-detectable Se(VI) to detectable Se(IV). In the following sections, the main types of materials (metallic, polymers, hybrid (nano)materials…) interacting with inorganic selenium (mostly absorbents) are reviewed to show the diversity of properties that may be endowed to sensors if the materials were to be used for the modification of electrodes. These features for the main material categories are outlined in the conclusion section, where it is stated that the engineered polymers may be the most promising modifiers.
Collapse
Affiliation(s)
- Jaroslav Filip
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Štěpán Vinter
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Erika Čechová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Jitka Sotolářová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| |
Collapse
|
12
|
Tian Q, Chen C, Wang M, Guo B, Zhang H, Sasaki K. Effect of Si/Al molar ratio on the immobilization of selenium and arsenic oxyanions in geopolymer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116509. [PMID: 33524648 DOI: 10.1016/j.envpol.2021.116509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The effect of Si/Al molar ratio of geopolymer on the immobilization of Se and As oxyanions was studied through leaching test and solid characterizations including XRD, FTIR, TG, NMR, XAFS, and N2 adsorption-desorption isotherm. As a whole, the leaching percentages of Se and As oxyanions increased with the increase of the Si/Al molar ratio of geopolymer. Linear combination fitting confirmed that most of selenite, selenate and arsenate ions existed in geopolymers through electrostatic interaction. Thus, Al tetrahedrons in geopolymer structure control the charge stability for these oxyanions to a large extent. Differently, as for arsenate ions, they were recrystallized into an arsenate compound (Na3.25(OH)0.25(H2O)12)(AsO4) in geopolymers. The additive of these pollutants has an adverse effect on the compactness of geopolymer, then influencing the leaching performance in turn. However, the changes in leaching results did not follow the variation trend of specific surface areas and pore volumes of geopolymers with different Si/Al ratios. The number and distribution of Al tetrahedron and compactness of geopolymer have a synergistic effect on the immobilization of these oxyanions. Besides, the compressive strengths of geopolymer samples are always higher than 20 MPa, which meets the requirement of safe disposal of hazardous waste.
Collapse
Affiliation(s)
- Quanzhi Tian
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, 221116, China; Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Changshuai Chen
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, 221116, China; School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - MengMeng Wang
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Binglin Guo
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Haijun Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
13
|
Zhang L, Jiang SC, Guan Y. Efficient removal of selenate in water by cationic poly(allyltrimethylammonium) grafted chitosan and biochar composite. ENVIRONMENTAL RESEARCH 2021; 194:110667. [PMID: 33400948 DOI: 10.1016/j.envres.2020.110667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The discovery of cheap and eco-friendly functional materials for the removal of anionic heavy metal ions is still challenging in the treatment of heavy metal-contaminated water. Herein, a new poly(allyltrimethylammonium) grafted chitosan and biochar composite (PATMAC-CTS-BC) was introduced for the removal of selenate (SeO42-) in water. Results suggest that the PATMAC-CTS-BC showed a rapid removal of SeO42- with efficiency of >97% within 10 min and it followed a pseudo-second-order model. High capacity of SeO42- adsorption by the composite was achieved, with maximum value of 98.99 mg g-1 based on Langmuir model, considerably higher than most of reported adsorbents. The thermodynamic results reflected the spontaneous and exothermic nature of SeO42- adsorption onto the composite. The composite could be applied at a wide initial pH range (2-10) with high removal efficiency of SeO42- because of permanent positive charges of quaternary ammonium groups (=N+-). The removal mechanisms of SeO42- were mainly attributed to electrostatic interactions with =N+- and protonated -NH3+ groups, and redox-complexation interactions with -NH2, -NH-, and -OH groups. Besides SeO42-, the hexavalent chromium (Cr2O72-) was considered as example to further demonstrate the anion removal capability of cationic hydrogel-BC composite. The study outcomes open up new opportunities to efficiently remove anionic heavy metal ions (e.g., SeO42- and Cr2O72-) in water using these materials.
Collapse
Affiliation(s)
- Lixun Zhang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92612, United States; Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92612, United States
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
14
|
Tian Q, Guo B, Sasaki K. Influence of silicate on the structural memory effect of layered double hydroxides for the immobilization of selenium. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122674. [PMID: 32335282 DOI: 10.1016/j.jhazmat.2020.122674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The influence of silicate on the structural memory effect of layered double hydroxides (LDHs) has been rarely reported. In this study, five kinds of calcined LDHs (CLDHs) were synthesized and used as adsorbents for the sorption of selenium with or without silicate, under the initial pH 10 and 13, respectively, characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), infrared spectroscopy (IR), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption isotherm. The results indicated that silicate can significantly affect the phase transformation of CLDHs, and the sorption amounts of selenite and selenate dramatically decreased in the presence of silicate. Specifically, silicate can react with MgO and Al2O3 in CLDHs to generate magnesium silicate hydrate and geopolymer-like substance which were covered on the surface of particles, blocking the hydroxylation of metal oxides. However, higher pH suppressed the interaction between MgO and silicate and enhanced the formation of geopolymer-like substance, which promoted the regeneration of LDHs. Al in CLDHs plays a critical role in the regeneration of LDHs. Besides, the ternary oxides (CLDH-2, Mg2Al0.75Fe0.25-oxide; CLDH-3, Mg2Al0.5Fe0.5-oxide) possessed larger specific surface areas (127.7 and 158.2 m2/g) and consequently presented more resistance to the effect of silicate.
Collapse
Affiliation(s)
- Quanzhi Tian
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Binglin Guo
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
15
|
Lin J, Wang Y, Zhan Y. Novel, recyclable active capping systems using fabric-wrapped zirconium-modified magnetite/bentonite composite for sedimentary phosphorus release control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138633. [PMID: 32339830 DOI: 10.1016/j.scitotenv.2020.138633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
A zirconium-modified magnetite/bentonite composite (M-ZrFeBT) was synthesized, characterized and combined with water-permeable fabric to construct novel, recyclable active capping systems for sedimentary phosphorus (P) release control. Three fabric-wrapped M-ZrFeBT capping devices with different shapes were designed, i.e., CAP-1, CAP-2 and CAP-3, and they are disc-shaped, cuboid-shaped and spindle-shaped capping devices, respectively. The behavior and mechanism for phosphate adsorption onto M-ZrFeBT was studied. The impact of CAP-1, CAP-2 and CAP-3 capping on the mobilization of P in sediments was investigated. The results showed that M-ZrFeBT possessed good phosphate adsorption ability, with a largest monolayer adsorption capacity of 8.02 mg P/g. The replacement of Fe/Zr bound hydroxyl groups with phosphate through ligand-exchange reactions to generate the inner-sphere Fe-O-P and Zr-O-P bonding played a key part in the uptake of phosphate from water by M-ZrFeBT. Sediment capping with fabric-wrapped M-ZrFeBT not only brought about a significant decline in the concentrations of soluble reactive P (SRP) and DGT (diffusive gradient in thin films)-labile P (LPDGT) in the overlying water, but also gave rise to the diminished SRP and LPDGT concentrations in the upper sediment. Most (96.5%-98.2%) of P bound by the M-ZrFeBT in the capping layers was in the form of NaOH extractable inorganic P, HCl-extractable P and residual P, which were considered to be hard to be released back into the water column under common pH and oxygen-deficient conditions. The reduction of pore water SRP and LPDGT in the upper sediment layer induced by the adsorption of SRP on the M-ZrFeBT-based capping layer played a key part in the interception of SRP liberation from the sediment solid into the overlying water. Results indicate that fabric-wrapped M-ZrFeBT capping is promising for controlling the internal P loading from sediments in shallow freshwater bodies.
Collapse
Affiliation(s)
- Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Yan Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
16
|
Tian Q, Guo B, Chuaicham C, Sasaki K. Mechanism analysis of selenium (VI) immobilization using alkaline-earth metal oxides and ferrous salt. CHEMOSPHERE 2020; 248:126123. [PMID: 32059334 DOI: 10.1016/j.chemosphere.2020.126123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/16/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The immobilization of selenate (SeO42-) using metal oxides (CaO and MgO) and ferrous salt as the immobilization reagents were examined by the leaching test and solid-phase analysis via XRD, XAFS, TGA, and XPS. The results indicated that nearly all of SeO42- was reduced to SeO32- in the CaO-based reaction within 7 days. Then, the generated SeO32- was mainly sorbed onto the iron-based minerals (Fe2O3 and FeOOH) through the formation of both bidentate mononuclear edge-sharing (1E) and monodentate mononuclear corner-sharing (1V) inner-sphere surface complexes, suggested by PHREEQC simulation and EXAFS analysis. Differently, less amount of SeO42- (approximately 45.50%) was reduced to SeO32- for the MgO-based reaction. However, if the curing time increases to a longer time (more than 7 days), the further reduction could occur because there are still Fe(II) species in the matrix. As for the associations of Se in the solid residue, most of the selenium (SeO32- and SeO42-) was preferentially distributed onto the Mg(OH)2 through outer-sphere adsorption. Definitely, this research can provide a deep understanding of the immobilization of selenium using alkaline-earth metal oxide related materials and ferrous substances.
Collapse
Affiliation(s)
- Quanzhi Tian
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Binglin Guo
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
17
|
Guo B, Xiong Y, Chen W, Saslow SA, Kozai N, Ohnuki T, Dabo I, Sasaki K. Spectroscopic and first-principles investigations of iodine species incorporation into ettringite: Implications for iodine migration in cement waste forms. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121880. [PMID: 31843402 DOI: 10.1016/j.jhazmat.2019.121880] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Low-level radioactive wastes are commonly immobilized in cementitious materials, where cement-based material can incorporate radionuclides into their crystal structure. Specifically, ettringite (Ca6Al2(OH)12(SO4)3∙26H2O) is known to stabilize anionic species, which is appealing for waste streams with radioactive iodine (129I) that persists as iodide (I-) and iodate (IO3-) in the cementitious nuclear waste repository. However, the structural information and immobilization mechanisms of iodine species in ettringite remain unclear. The present results suggested minimal I- incorporation into ettringite (0.05 %), whereas IO3- exhibited a high affinity for ettringite via anion substitution for SO42- (96 %). The combined iodine K-edge extended X-ray absorption fine structure (EXAFS) spectra and first-principles calculations using density functional theory (DFT) suggested that IO3- was stabilized in ettringite by hydrogen bonding and electrostatic forces. Substituting IO3- for SO42- was energetically favorable by -0.41 eV, whereas unfavorable substitution energy of 4.21 eV was observed for I- substitution. Moreover, the bonding charge density analysis of the substituted IO3- and I- anions into the ettringite structure revealed the interaction between intercalated ions with the structural water molecules. These results provided valuable insight into the long-term stabilization of anionic iodine species and their migration in cementitious nuclear waste repository or alkaline environments.
Collapse
Affiliation(s)
- Binglin Guo
- Department of Earth Resource Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Yihuang Xiong
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Weinan Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Sarah A Saslow
- Pacific Northwest National Laboratory, 902 Battelle Boulevartd, Richland, Washington, 99352, United States
| | - Naofumi Kozai
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Toshihiko Ohnuki
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan; Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ismaila Dabo
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States.
| | - Keiko Sasaki
- Department of Earth Resource Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
18
|
Tian Q, Guo B, Sasaki K. Immobilization mechanism of Se oxyanions in geopolymer: Effects of alkaline activators and calcined hydrotalcite additive. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121994. [PMID: 31901840 DOI: 10.1016/j.jhazmat.2019.121994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Geopolymers have been widely adopted to stabilize the cationic pollutants. However, few studies have focused on the immobilization of anionic species. In this study, the immobilization of SeO32- and SeO42- was explored for the first time using geopolymer activated by different alkaline solutions (NaOH and Na2SiO3) with and without calcined hydrotalcite (CHT), characterized by TCLP, XRD, FTIR, TG, NMR, XAFS, and N2 adsorption-desorption isotherm. Na2SiO3-activated geopolymers without CHT additive showed lower leaching percentages of SeO32- and SeO42- (approximately 10 % and 18 %) than NaOH-activated geopolymers (approximately 58 % and 74 %). It has been proven that electrostatic interaction is the main association mode of SeO32- and SeO42- in both NaOH- and Na2SiO3-activated geopolymers. Hence, compactness plays a vital role in the Se leaching from geopolymer. The addition of CHT reduced the compactnesses of both NaOH- and Na2SiO3-geopolymers. Due to the formation of hydrotalcite, the CHT additive contributed to immobilize SeO32- and SeO42- in NaOH-activated geopolymers. However, this phenomenon was not observed in Na2SiO3-activated geopolymers. Thus, the leaching amount of Se greatly increased from Na2SiO3-activated geopolymers with CHT additive. This study provides new insights on the application of geopolymer to immobilize anionic pollutants.
Collapse
Affiliation(s)
- Quanzhi Tian
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Binglin Guo
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|