1
|
Hu Z, He Q, Zhao H, Wang L, Cheng Y, Ji X, Guo Y, Hu W, Li M. Organic carbon compounds removal and phosphate immobilization for internal pollution control: Sediment microbial fuel cells, a prospect technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125110. [PMID: 39395732 DOI: 10.1016/j.envpol.2024.125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
As a current technology that can effectively remove organic carbon compounds and immobilize phosphorus in sediment, sediment microbial fuel cells (SMFCs) can combine sediment remediation with power generation. This review discusses the removal efficiency of SMFCs on organic carbon compounds, including sediment organic matter, antibiotics, oil-contaminated sediments, methane, persistent organic pollutants, and other organic pollutants in sediment, with more comprehensive and targeted summaries, and it also emphasizes the mitigation of phosphorus pollution in water from the perspective of controlling endogenous phosphorus. In this review, the microbial community is used as a starting point to explore more about its roles on phosphorus and organic carbon compounds under SMFCs. Electrode modification, addition of exogenous substances and combinations with other technologies to improve the performance of SMFCs are also reviewed. It is further demonstrated that SMFCs have the prospect of long-term sustainability, but more attention needs to be paid to the study of the mechanism of SMFCs and the continuous improvement of devices for further application in practice.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qinqin He
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongjun Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lingjun Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuxin Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Lang X, Yu K, Zhao Z, Chen Y, Tian J, Zhang M, Wang Y. Vertical distribution, environmental occurrence, and risk assessment of organic pollutants in lacustrine sediments in southeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51206-51216. [PMID: 36809627 DOI: 10.1007/s11356-023-25712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 04/16/2023]
Abstract
To clarify the impact of human activities on the natural environment, as well as the current ecological risks to the environment surrounding Zhushan Bay in Taihu Lake, the characteristics of deposited organic materials, including elements and 16 polycyclic aromatic hydrocarbons (∑16PAHs), in a sediment core from Taihu Lake were determined. The nitrogen (N), carbon (C), hydrogen (H), and sulfur (S) contents ranged from 0.08 to 0.3%, 0.83 to 3.6%, 0.63 to 1.12%, and 0.02 to 0.24%, respectively. The most abundant element in the core was C followed by H, S, and N, while elemental C and the C/H ratio displayed a decreasing trend with depth. The ∑16PAH concentration was in the range of 1807.48-4674.83 ng g-1, showing a downward trend with depth, with some fluctuations. Three-ring PAHs dominated in surface sediment, while 5-ring PAHs dominated at a depth of 55-93 cm. Six-ring PAHs appeared in the 1830s and gradually increased over time before slowly decreasing from 2005 onward due to the establishment of environmental protection measures. The ratio of PAH monomers indicated that PAHs in samples from a depth of 0 to 55 cm were mainly derived from the combustion of liquid fossil fuels, while the PAHs in the deeper samples mainly originated from petroleum. The results of a principal component analysis (PCA) showed that the PAHs in the sediment core of Taihu Lake were mainly derived from the combustion of fossil fuels, such as diesel, petroleum, gasoline, and coal. The contributions of biomass combustion, liquid fossil fuel combustion, coal combustion, and unknown source were 8.99%, 52.68%, 1.65%, and 36.68%, respectively. The results of a toxicity analysis indicated that most of the PAH monomers had little impact on the ecology, and the annual increase of a small number of monomers might have toxic effects on the biological community, resulting in a serious ecological risks, that requires the imposition of control measures.
Collapse
Affiliation(s)
- Xiulu Lang
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Kangkang Yu
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
| | - Zihan Zhao
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
| | - Yan Chen
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
| | - Jiming Tian
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
| | - Mingli Zhang
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
| | - Yanhua Wang
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China.
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
3
|
Abbas SZ, Wang JY, Wang H, Wang JX, Wang YT, Yong YC. Recent advances in soil microbial fuel cells based self-powered biosensor. CHEMOSPHERE 2022; 303:135036. [PMID: 35609665 DOI: 10.1016/j.chemosphere.2022.135036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The soil microbial fuel cell (SMFC) is a new device that was originally designed to generate electricity from organic matter in soil using microorganisms. Currently, SMFC based biosensors are emerging as a new and promising research direction for real-time and rapid monitoring of soil quality or soil pollution. Compared to conventional biosensors, SMFC based biosensors exhibit advantages such as low-cost, simple design, in-situ, and long-term self-powering monitoring, which makes it become attractive devices for in-situ long-term soil quality or soil pollution monitoring. Thus, this review aims to provide a comprehensive overview of SMFC based biosensors. In this review, different prototypes of SMFC based biosensors developed in recent years are introduced, the biosensing mechanisms and the roles of SMFC are highlighted, and the emerging applications of these SMFC based biosensors are discussed. Since the SMFC based biosensors are applied in open-air conditions, the effects of different environmental factors on the biosensing response are also summarized. Finally, to further expand the understanding and boost the practical application of the SMFC based biosensors, future perspectives including fundamental mechanism exploration and investigation of the full-scale application are proposed.
Collapse
Affiliation(s)
- Syed Zaghum Abbas
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jia-Yi Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Hongcheng Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jing-Xian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Yi-Ting Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|
4
|
Joksimović K, Kodranov I, Randjelović D, Slavković Beškoski L, Radulović J, Lješević M, Manojlović D, Beškoski VP. Microbial fuel cells as an electrical energy source for degradation followed by decolorization of Reactive Black 5 azo dye. Bioelectrochemistry 2022; 145:108088. [DOI: 10.1016/j.bioelechem.2022.108088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022]
|
5
|
Tian L, Jiang H, Song N, He S, Ali F. Comparing the effects of algae and macrophyte residues' degradation on biological nitrogen fixation in freshwater lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151129. [PMID: 34688766 DOI: 10.1016/j.scitotenv.2021.151129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The degradation and mineralization of organic residues are important factors that drive biochemical processes in lake ecosystems. However, the effect of organic matter's degradation on biological nitrogen fixation (BNF) in freshwater lake sediments remains poorly understood. This study investigated the response of sediment nitrogen fixation to the degradations of algae and macrophyte residues through continuous flow mesocosms combined with nifH sequencing analysis and isotope tracing. The results suggested that the active nitrogen fixation of sediments only occurred in the first two weeks of the rapid degradation of organic residues. Degradation of algae and macrophytes residues quickly increased the nifH abundance and the nitrogenase activity (NA) in sediments; however, the maximum NA triggered by algae's degradation (658.2 ± 16.8 ng g-1 day-1) was six times higher than that induced by the degradation of macrophytes residues. There was no significant difference in NA of sediments with the degradation of Potamogeton and Phragmites. Redundancy analysis (RDA) showed that the variation of diazotrophic community in sediment was significantly (p < 0.01) correlated with the concentrations of SO42- and NH4+ in overlying water and the Fe(II) content and Eh in sediment. Overall, the BNF of sediments can quickly respond to the degradation of organic residues, and the degradation of algae has a stronger promoting effect on the nitrogen fixation in sediments than that of macrophyte residues.
Collapse
Affiliation(s)
- Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Na Song
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shangwei He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Farasat Ali
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Shu L, Ng JC, Tang W, Zhao Y, Sun L, Zhang H. Assessment methodology applied to arsenic pollution in lake sediments combining static and dynamic processes. CHEMOSPHERE 2021; 277:130260. [PMID: 34384176 DOI: 10.1016/j.chemosphere.2021.130260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
The fraction transformation from stable to mobile forms in sediments is continuous, slow, and spontaneous chain reactions causing static risks to the aquatic system. However, this process may change into abrupt, rapid, and dynamic paths when certain physicochemical conditions changed. Using the Delayed Geochemical Hazard (DGH) model, comprehensive methods combing both static and dynamic risk assessment were therefore conducted to evaluate the aforementioned processes. By applying these methods, arsenic (As) pollution in surface sediments of the Baiyangdian Lake (BYD Lake) was investigated thoroughly as a case study area. The results showed that the total As concentrations in those sediment samples ranged from 4.87 to 17.94 mg/kg, with an average of 8.75 mg/kg. In a fraction, Fe and Mn were observed to pose effects on the surface-adsorbed (AsS) and residual fractions (AsR) with the coefficient analysis. The static risk assessment showed that both the contamination and ecological risk are at a low level in the total content but a low to moderate risk in the fraction. The dynamic risk assessment posted the potential transformation paths of As in the sediments, indicating a trend of potential DGH burst in 45.24%-78.57% of the BYD Lake. In summary, this study provides a methodology for the risk assessment of arsenic that may extend to other heavy metal(loid)s combining static and dynamic processes in sediments.
Collapse
Affiliation(s)
- Limin Shu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Brisbane, QLD, 4102, Australia
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Chung TH, Dhar BR. Paper-based platforms for microbial electrochemical cell-based biosensors: A review. Biosens Bioelectron 2021; 192:113485. [PMID: 34274625 DOI: 10.1016/j.bios.2021.113485] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
The development of low-cost analytical devices for on-site water quality monitoring is a critical need, especially for developing countries and remote communities in developed countries with limited resources. Microbial electrochemical cell-based (MXC) biosensors have been quite promising for quantitative and semi-quantitative (often qualitative) measurements of various water quality parameters due to their low cost and simplicity compared to traditional analytical methods. However, conventional MXC biosensors often encounter challenges, such as the slow establishment of biofilms, low sensitivity, and poor recoverability, making them unable to be applied for practical cases. In response, MXC biosensors assembled with paper-based materials demonstrated tremendous potentials to enhance sensitivity and field applicability. Furthermore, the paper-based platforms offer many prominent features, including autonomous liquid transport, rapid bacterial adhesion, lowered resistance, low fabrication cost (<$1 in USD), and eco-friendliness. Therefore, this review aims to summarize the current trend and applications of paper-based MXC biosensors, along with critical discussions on their field applicability. Moreover, future advancements of paper-based MXC biosensors, such as developing a novel paper-based biobatteries, increasing the system performance using an unique biocatalyst, such as yeast, and integrating the biosensor system with other advanced tools, such as machine learning and 3D printing, are highlighted.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
8
|
Abbas SZ, Rafatullah M. Recent advances in soil microbial fuel cells for soil contaminants remediation. CHEMOSPHERE 2021; 272:129691. [PMID: 33573807 DOI: 10.1016/j.chemosphere.2021.129691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The cost-effective and eco-friendly approaches are needed for decontamination of polluted soils. The bio-electrochemical system, especially microbial fuel cells (MFCs) offer great promise as a technology for remediation of soil, sediment, sludge and wastewater. Recently, soil MFCs (SMFCs) have been attracting increasing amounts of interest in environmental remediation, since they are capable of providing a clean and inexhaustible source of electron donors or acceptors and can be easily controlled by adjusting the electrochemical parameters. In this review, we comprehensively covered the principle of SMFCs including the mechanisms of electron releasing and electron transportation, summarized the applications for soil contaminants remediation by SMFCs with highlights on organic contaminants degradation and heavy metal ions removal. In addition, the main factors that affected the performance of SMFCs were discussed in details which would be helpful for performance optimization of SMFCs as well as the efficiency improvement for soil remediation. Moreover, the key issues need to be addressed and future perspectives are presented.
Collapse
Affiliation(s)
- Syed Zaghum Abbas
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
9
|
Olias LG, Di Lorenzo M. Microbial fuel cells for in-field water quality monitoring. RSC Adv 2021; 11:16307-16317. [PMID: 35479166 PMCID: PMC9031575 DOI: 10.1039/d1ra01138c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The need for water security pushes for the development of sensing technologies that allow online and real-time assessments and are capable of autonomous and stable long-term operation in the field. In this context, Microbial Fuel Cell (MFC) based biosensors have shown great potential due to cost-effectiveness, simplicity of operation, robustness and the possibility of self-powered applications. This review focuses on the progress of the technology in real scenarios and in-field applications and discusses the technological bottlenecks that must be overcome for its success. An overview of the most relevant findings and challenges of MFC sensors for practical implementation is provided. First, performance indicators for in-field applications, which may diverge from lab-based only studies, are defined. Progress on MFC designs for off-grid monitoring of water quality is then presented with a focus on solutions that enhance robustness and long-term stability. Finally, calibration methods and detection algorithms for applications in real scenarios are discussed.
Collapse
Affiliation(s)
- Lola Gonzalez Olias
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Chemical Engineering, University of Bath Bath BA2 7AY UK
- Water Innovation Research Centre (WIRC), University of Bath Bath BA2 7AY UK
| | - Mirella Di Lorenzo
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Chemical Engineering, University of Bath Bath BA2 7AY UK
| |
Collapse
|
10
|
Xu P, Xiao ER, He F, Xu D, Zhang Y, Wu Z. Microbial fuel cell improves restoration of Hydrilla verticillata in an algae-rich sediment microcosm system. CHEMOSPHERE 2021; 266:128987. [PMID: 33248728 DOI: 10.1016/j.chemosphere.2020.128987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Settled algae may be used as nutrient for macrophyte establishment, but also can induce marked macrophyte decline during deep anaerobic decomposition. Sediment microbial fuel cells (SMFCs) may promote the utilization of algae-derived nutrients and relieve bio-toxicity from settled algae to submerged macrophytes, thus facilitating plant production. To test these hypotheses, a 62-day comparative study was designed and conducted in microcosms with the following six treatments: control (open-circuit SMFC), plant (open-circuit SMFC with plants), algae (open-circuit SMFC with algae), algae-plant (open-circuit SMFC with algae and plants), algae-SMFC (closed-circuit SMFC with algae), and algae-plant-SMFC (closed-circuit SMFC with algae and plants). The results showed that the presence of Hydrilla verticillata improved the power generation of SMFCs when algae were used as substrates during the whole operation. The decomposition of sedimented algae experienced two periods since the injection. During the slight decomposition period (14-38 day), the algal retention in sediments was enhanced by H. verticillata as a nutrient source. Nitrogen (N) assimilation in plant shoots was facilitated under electrogenesis due to a simultaneous increase of algae-derived dissolved inorganic carbon (DIC) and ammonium (NH4+) in the water column. At the end of the 38th day, the biomass of H. verticillata were increased by 21.4% and 52.3%, respectively, in the algae-plant and algae-plant-SMFC, compared with that in plant treatment. Obvious NH4+-stress was exerted on H. verticillata during the following intense algal decomposition period (38-62 day). Compared with shoots, roots of H. verticillata were more sensitive to the biotoxicity of algae-derived NH4+. The electrogenetic process diverted the degradation pathway from acetoclastic methanogenesis to electrogenesis via redox cycle, resulting in delayed algal decomposition in algae-SMFC treatment. In addition, electrogenesis enhanced the removal of algae-derived N. As a result, NH4+ toxicity to plant roots was effectively alleviated, and sedimented algae served as a stable nutrient source for plant development. Stable transfer rate of algae-derived N from sediments to plant roots was observed, while the assimilation rate of algae-derived N from water column to plant shoots showed a constant increase in the algae-plant-SMFC treatment. Electrogenesis enhanced N-fixing capacity belonged to rhizosphere of H. verticillata, evidenced by greater enrichment of some plant growth-promoting rhizobacteria (PGPRs), including Bradyrhizobium, Mycobacterium, Paenibacillus, Mesorhizobium, and Roseomonas in the algae-plant-SMFC treatment. At the end of the experiment, marked increases in the production of H. verticillata in algae-plant-SMFC were observed, with 90.1% and 32.8%, respectively, when compared with algae-plant and plant treatments (p < 0.05). SMFC application could be used as a strategy to promote the growth of submerged macrophytes in algae-rich sediments.
Collapse
Affiliation(s)
- Peng Xu
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China
| | - En-Rong Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Dong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| |
Collapse
|
11
|
Wang S, Corredor Garcia JL, Davidson J, Nichols A. Conductance-Based Interface Detection for Multi-Phase Pipe Flow. SENSORS 2020; 20:s20205854. [PMID: 33081178 PMCID: PMC7589208 DOI: 10.3390/s20205854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Sediment and flow depth monitoring in sewers is important for informing flow models and for predicting and mitigating against sewer blockage formation and surcharge. In this study, a novel sensor based on conductance measurement has been developed and tested under a laboratory environment and validated by a finite-element model. The relative conductance is measured between pairs of adjacent electrodes to provide a conductance profile along the sensor length. A piecewise linear relationship between conductance and electrode length was derived and the interface positions between sediment, water, and air can be determined from the profile. The results demonstrated that the root mean square error of the model and the measured interface level are within 1.4% and 2.6% of sensor’s measurement range. An error distribution of interface height shows that all anticipated errors are within the resolution of the electrode length increments. Furthermore, it was found that the conductivity of the measured medium is proportional to the gradient of the linear relationship of conductance and electrode length. It could therefore prove a valuable new tool for the accurate quantification of sediment and flow levels in sewer conduits, coastal environments, drainage systems for transport networks, and other industrial or academic applications.
Collapse
Affiliation(s)
- Shiyao Wang
- Department of Civil and Structural Engineering, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (S.W.); (J.L.C.G.)
| | - Jesus Leonardo Corredor Garcia
- Department of Civil and Structural Engineering, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (S.W.); (J.L.C.G.)
| | - Jonathan Davidson
- Department of Electronic and Electrical Engineering, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK;
| | - Andrew Nichols
- Department of Civil and Structural Engineering, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (S.W.); (J.L.C.G.)
- Correspondence: ; Tel.: +44-(0)-114-222-0256
| |
Collapse
|
12
|
Wang C, Yao Z, Huang L, Fang H, Jiang H. Reliance and effect of sediment bulking on the physicochemical properties of sediments in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137872. [PMID: 32217399 DOI: 10.1016/j.scitotenv.2020.137872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Sediment bulking is intently related to the occurrence of black water agglomerate, sediment resuspension and erosion in aquatic environments. In this study, five different lake sediments were sampled to study effects of sediment characteristics on sediment bulking and then investigate how sediment bulking affected in turn sediment physicochemical properties. Within 30 days of experiments, the sediment properties showed an obvious influence on variation in sediment height (VSH) ranging from only 0.03 to 1.26 cm for five sediment samples. It was found that labile nutrients were closely related to the VSH (P < 0.05) during sediment bulking. In addition, the high-throughput sequencing revealed that the microbial communities in sediments associated with degradation of organic matter and anaerobic environments, were also related to sediment bulking. Through comparing sediments with and without bulking, it was found that sediment bulking would clearly increase the proportion of air around 2.14 times, and reduce the critical shear stress of sediment with a decrease by 67.33% after 30 days, which favored sediment resuspension and erosion. Thus, this study could provide a deep insight in the key factors and the environmental effects of sediment bulking, and then be helpful in protecting the aquatic environments against ecological disasters.
Collapse
Affiliation(s)
- Chunliu Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongbao Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lei Huang
- State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Hongwei Fang
- State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|