1
|
Mao S, He C, Zhao Z, Wang F, Chen X, Liu X, Wang D. Lurgi-Thyssen dust catalytic thermal desorption remediation of di-(2-ethylhexyl) phthalate contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117138. [PMID: 36623387 DOI: 10.1016/j.jenvman.2022.117138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Fe2O3-assisted pyrolysis has been demonstrated to be a cost-effective thermal desorption (TD) technology. Lurgi-Thyssen dust (LTD) is a type of steel slag waste that contains a large amount of Fe2O3. In this study, to reduce energy consumption, LTD was added to contaminated soil to evaluate the feasibility of enhancing the TD removal efficiency of di-(2-ethylhexyl) phthalate (DEHP). The DEHP removal rate increased by 22.39% after adding 2% LTD at 200 °C for 20 min. Because of the catalytic pyrolysis of LTD, DEHP was pyrolyzed to form three types of short-chain esters: mono-(2-ethylhexyl) phthalate (MEHP), di (2-methylbutyl) ester, and methyl 2-ethylhexyl phthalate. The pyrolysis products of DEHP were less toxic and did not affect soil reuse. When the DEHP removal rate was 87.10%, LTD addition decreased the temperature and residence time of TD and alleviated the effect of TD on the soil physicochemical properties. Additionally, the desorption of DEHP from soil fitted the pseudo-second-order kinetic model well. Thus, the addition of LTD to contaminated soil enhanced the efficiency of TD remediation. Moreover, this study could provide a practical and economical strategy for LTD reuse.
Collapse
Affiliation(s)
- Shaohua Mao
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chiquan He
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Zhenzhen Zhao
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Feifei Wang
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xueping Chen
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Daoyuan Wang
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Arfaeinia H, Asadgol Z, Ramavandi B, Dobaradaran S, Kalantari RR, Poureshgh Y, Behroozi M, Asgari E, Asl FB, Sahebi S. Monitoring and eco-toxicity effect of paraben-based pollutants in sediments/seawater, north of the Persian Gulf. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4499-4521. [PMID: 35129708 DOI: 10.1007/s10653-021-01197-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The current work is documented as the first record of the characteristics, removal efficiency, partitioning behavior, fate, and eco-toxicological effects of paraben congeners in a municipal wastewater treatment plant (WWTP, stabilization ponds) and hospital WWTPs (septic tank and activated sludge), as well as seawater-sediments collected from runoff estuarine stations (RES) and coastal stations (CS) of the north of the Persian Gulf. The median values of Σparabens at the raw wastewater and effluent of the studied WWTPs were 1884 ng/L and 468 ng/L, respectively. The activated sludge system had a greater removal efficiency (56.10%) in removing ∑parabens than the septic tank (45.05%) and stabilization pond (35.54%). The discharge rates of methyl paraben (MeP) was computed to be 2.23, 21.18, and 9.12 g/d/1000 people for stabilization ponds, septic tank, and activated sludge, respectively. Median concentrations of Σparabens in seawater (103.42 ng/L) and sediments (322.05 ng/g dw) from RES stations were significantly larger than from CS stations (61.2 and 262.0 ng/g dw in seawater and sediments, respectively) (P < 0.05). The median of field-based koc for Σparabens was 130.81 cm3/g in RES stations and 189.51 cm3/g in CS stations. It was observed that the concentration of parabens could have negative impacts on some living aquatic populations (invertebrates and bacteria), but the risk was not significant for fishes and algae.
Collapse
Affiliation(s)
- Hossein Arfaeinia
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran.
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Zahra Asadgol
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Roshanak Rezaei Kalantari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Yusef Poureshgh
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mojtaba Behroozi
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Esrafil Asgari
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| | - Farshad Bahrami Asl
- Department of Environmental Health Engineering, School of Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Soleyman Sahebi
- Center of Excellence for Membrane Research and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| |
Collapse
|
3
|
Ye M, Fang Y, Xiang H, Liu H, Yan H, Wang B, Lin X, Liang J, Qian W. Preparation and modification of bagasse biochar unveiling ofloxacin wastewater adsorption. ENVIRONMENTAL TECHNOLOGY 2022:1-12. [PMID: 36420739 DOI: 10.1080/09593330.2022.2152222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Currently, ofloxacin (OFX) is widely used in various medical treatment and aquaculture industries. However, its production and application produces waste which pollutes the natural environment and causes ecological damage. The application of biochar is a crucial way to remove OFX antibiotics from wastewater. In this paper, bagasse was used as the material to be pyrolyzed to obtain bagasse biochar (BC). BC was modified with HNO3 and KOH to prepare acid-modified sugarcane biochar (HBC) and alkali-modified sugarcane biochar and subsequently applied to the treatment of ofloxacin wastewater. The results showed that the adsorption capacity of HBC was 2.2 times higher than that of BC, and it had better adsorption performance. When the dosage of acid-modified biochar was 1 g/L and the initial pH of the solution was 7.0, the OFX removal rate reached 88.5% after 90 min of reaction. HBC has good stability, and the OFX removal efficiency is still up to 78.5% after 5 cycles. According to the adsorption simulation results, the adsorption of the three biochar materials is more consistent with the Freundlich adsorption model, and the simulated linear correlation coefficient is higher than 0.99. The Kfr value of HBC is 6.6042, which exhibits the highest adsorption capacity. Moreover, the three biochars exhibit better simulation results in pseudo-second-order kinetics fitting, and the linear correlation coefficients are above 0.99. The adsorption mechanism of bagasse biochar for ofloxacin in wastewater was π-π electron donor-acceptor interactions. The results show that bagasse biochar has good feasibility in the treatment of ofloxacin wastewater.
Collapse
Affiliation(s)
- Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Yi Fang
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Hongjing Xiang
- Guangdong Environmental Protection Engineering Research & Design Institute Co., Ltd, Guangzhou, People's Republic of China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Huimin Yan
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Bingmin Wang
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Xinle Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Jialin Liang
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Wei Qian
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Tran HT, Nguyen MK, Hoang HG, Hutchison JM, Vu CT. Composting and green technologies for remediation of phthalate (PAE)-contaminated soil: Current status and future perspectives. CHEMOSPHERE 2022; 307:135989. [PMID: 35988768 PMCID: PMC10052775 DOI: 10.1016/j.chemosphere.2022.135989] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/29/2023]
Abstract
Phthalate esters (PAEs) are hazardous organic compounds that are widely added to plastics to enhance their flexibility, temperature, and acidic tolerance. The increase in global consumption and the corresponding environmental pollution of PAEs has caused broad public concerns. As most PAEs accumulate in soil due to their high hydrophobicity, composting is a robust remediation technology for PAE-contaminated soil (efficiency 25%-100%), where microbial activity plays an important role. This review summarized the roles of the microbial community, biodegradation pathways, and specific enzymes involved in the PAE degradation. Also, other green technologies, including biochar adsorption, bioaugmentation, and phytoremediation, for PAE degradation were also presented, compared, and discussed. Composting combined with these technologies significantly enhanced removal efficiency; yet, the properties and roles of each bacterial strain in the degradation, upscaling, and economic feasibility should be clarified in future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA.
| | - Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Justin M Hutchison
- Civil, Environmental, and Architectural Engineering Department, University of Kansas, Lawrence, KS, 66045, USA
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
5
|
Huang F, Guan R, Wang J, Wang L, Zhang Y, Wang S, Wang L, Qu J, Dong M, Rong S. Interference between di(2-ethylhexyl) phthalate and heavy metals (Cd and Cu) in a Mollisol during aging and mobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155635. [PMID: 35513158 DOI: 10.1016/j.scitotenv.2022.155635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Diffuse pollution of the soil by phthalates and heavy metals causes numerous concerns. Their respective fates when coexisting require further investigation. In this study, di(2-ethylhexyl) phthalate (DEHP) and Cd/Cu were used as subjects, focusing on their behavior in Mollisols under combined pollution based on their concentration, fractionation, and leaching. The results indicated that when the two pollutants coexist, the dissipation rate of DEHP in the soil decreased, and its half-life was extended from 30.81 to 40.53 (Cd) and 35.40 d (Cu). DEHP altered the distribution of Cd and Cu in the soil, and this effect persisted after most of the DEHP had degraded. Leaching tests showed that the interaction of DEHP with Cd and Cu hindered leaching during the first rainfall event, but as DEHP degraded and Cd/Cu stabilized, the trapped pollutants were gradually released in subsequent rainfall events. Additionally, to investigate the partitioning of pollutants between soil water and solid surfaces, a diffusion model of DEHP and metal ions on the surface of montmorillonite (high specific surface area adsorbents abundant in soils) was built using molecular dynamics simulations. Simulations revealed their density distribution on the clay surface increased synergistically, whereas their diffusion was antagonistic. This study provides basic data and theoretical support concerning the ecological risk assessment of combined phthalate and heavy metals pollution in soil.
Collapse
Affiliation(s)
- Fuxin Huang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui Guan
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingyi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shiyu Wang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Shaowen Rong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
6
|
Chang X, Song Z, Xu Y, Gao M. Response of soil characteristics to biochar and Fe-Mn oxide-modified biochar application in phthalate-contaminated fluvo-aquic soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112755. [PMID: 34500388 DOI: 10.1016/j.ecoenv.2021.112755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/15/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Biochar (BC) derived from agricultural biomass is effective at immobilizing phthalate in the agricultural soil environment. In this study, we assessed the effects of 0.5%, 1%, and 2% BC and Fe-Mn oxide-modified biochar (FMBC) addition on dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) residues and biochemical characteristics in the rhizosphere soil of mature wheat polluted with DBP and DEHP using a pot experiment. Scanning electron microscopy showed that the surfaces and pores of BC and FMBC adhered soil mineral particles after remediation. Therefore, DBP and DEHP residues were increased in BC- and FMBC-treated soils. Illumina HiSeq sequencing showed that, compared with the control, BC and FMBC addition significantly enhanced the relative abundance of Firmicutes and reduced Proteobacteria. The abundance of Sphenodons and Pseudomonas, which degrade phthalates, tended to be higher in FMBC-amended soils than in BC-amended and control soils. This result may be related to an increase in available nutrients and organic matter following BC and FMBC application. Subsequently, the changes in soil bacterial abundance and community structure induced an increase in polyphenol oxidase, β-glucosidase, neutral phosphatase, and protease activity in BC and FMBC remediation. In comparison with the BC treatment, FMBC addition had a significantly positive effect on enzyme activity, and the microbial structure and was therefore more effective at immobilizing DBP and DEHP in the soil. Thus, our findings strongly suggest that FMBC is a reliable remediation material for phthalate-contaminated soil.
Collapse
Affiliation(s)
- Xipeng Chang
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Yalei Xu
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China.
| |
Collapse
|
7
|
Ren T, Wang H, Yuan Y, Feng H, Wang B, Kuang G, Wei Y, Gao W, Shi H, Liu G. Biochar increases tobacco yield by promoting root growth based on a three-year field application. Sci Rep 2021; 11:21991. [PMID: 34754009 PMCID: PMC8578325 DOI: 10.1038/s41598-021-01426-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
In order to explore the effects of biochar on root system and growth characteristics of flue-tobacco, three years of field experiments were conducted to study the influence of different biochar application levels [600 (T1), 1200 (T2), 1800(T3), 2400 (T4), 3000 (T5) kg/ha] and no fertilizer (CK) on the root physiological indexes and growth index of tobacco. Compared with local conventional fertilization, the application rate of N fertilizer in each treatment (except for control) was reduced by 40% to analyze the effects of different amount of biochar on the physiological indexes of tobacco roots and leaf photosynthesis during flourishing. The results showed that tobacco plants' root development status in the flourishing period was consistent with the photosynthetic physiological indexes, chlorophyll content, and leaf-area coefficient. Compared with the control, the application of biochar could increase the root vigor by 177.8%. Biochar improved the roots, increasing the total root area by 91.35% and the number of root tips by 100.9%. Meanwhile, biochar increased the net photosynthetic rate of tobacco leaves by 77.3% and the total tobacco biomass by 72.5%. Studies have shown that biochar can promote the development of tobacco roots, and then enhance the photosynthesis of leaves, so that tobacco plants can grow healthily, which is conducive to the tobacco production and the cultivation of soil.
Collapse
Affiliation(s)
- Tianbao Ren
- Tobacco College of Henan Agricultural University, Zhengzhou, 450002, China
- Henan Biochar Engineering Technology Research Center, Zhengzhou, 450002, China
- Henan Biochar Technology Engineering Laboratory, Zhengzhou, 450002, China
| | - Huanhuan Wang
- Tobacco College of Henan Agricultural University, Zhengzhou, 450002, China
- Henan Biochar Engineering Technology Research Center, Zhengzhou, 450002, China
- Henan Biochar Technology Engineering Laboratory, Zhengzhou, 450002, China
| | - Ye Yuan
- Mudanjiang Tobacco Scientific Research Institute, Herbin, 150090, China
| | - Huilin Feng
- Tobacco College of Henan Agricultural University, Zhengzhou, 450002, China
| | - Bo Wang
- Mudanjiang Tobacco Company, Mudanjiang, 157000, China
| | - Gang Kuang
- Mudanjiang Tobacco Company, Mudanjiang, 157000, China
| | - Yuewei Wei
- Tobacco College of Henan Agricultural University, Zhengzhou, 450002, China
| | - Weikai Gao
- Guangdong China Tobacco Industry Co., Ltd, Guangzhou, 510032, China.
| | - Hongzhi Shi
- Tobacco College of Henan Agricultural University, Zhengzhou, 450002, China.
| | - Guoshun Liu
- Tobacco College of Henan Agricultural University, Zhengzhou, 450002, China
- Henan Biochar Engineering Technology Research Center, Zhengzhou, 450002, China
- Henan Biochar Technology Engineering Laboratory, Zhengzhou, 450002, China
| |
Collapse
|
8
|
Xiong YH, Pei DS. A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems. CHEMOSPHERE 2021; 277:130256. [PMID: 33773311 DOI: 10.1016/j.chemosphere.2021.130256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
As emerging contaminants, PAEs (Phthalic Acid Esters or Phthalate Esters) have been extensively utilized in industrial production to soften the rigid plastics (plasticizers), and their related products are widely distributed in our daily life. The PAEs can readily transfer from the products to the surrounding environment due to not being chemically bound to the products. In this study, we analyzed the PAEs' properties, usage, and consumption in the world, as well as toxicity to human beings. As endocrine-disrupting chemicals (EDCs), PAEs can disturb the normal hormones reactions, resulting in developmental and reproductive problems. Thus, we have to concern the removal strategies of PAEs. We summarized two novel approaches, including biochars and persulfate (PS) oxidation for effectively removing PAEs in the literature. Their characteristics, removal mechanisms, and the main impact factors on the removal of PAEs were highlighted. Moreover, transition metal-activated PS showed good performance on PAEs degradation. Furthermore, the synergy of biochars and transition metals-PS can overcome the disadvantages of a single approach, and show better performance on the removal of PAEs. Finally, we put forward vital strategies to update two approaches (including the combined) for enhancing the removal of PAEs. It is expected that the researchers or scientists can get a hint on effectively remediating PAEs-contaminated sites via the biochars' sorption/transition metals-PS or the combined two from this review paper.
Collapse
Affiliation(s)
- Yang-Hui Xiong
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
9
|
Tang W, Jing F, Laurent ZBLG, Liu Y, Chen J. High-temperature and freeze-thaw aged biochar impacts on sulfonamide sorption and mobility in soil. CHEMOSPHERE 2021; 276:130106. [PMID: 33711795 DOI: 10.1016/j.chemosphere.2021.130106] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Biomass-derived biochar is a carbon-rich product for soil amendment and sulfapyridine (SPY) is a typical sulfonamide of antibiotics in the soil. Amendment with biochar for soil could control SPY sorption or mobility. However, the pristine biochar inevitably goes through the long-term ageing in the environment and the information on such ageing impact on SPY sorption is not fully recognized. The simulated ageing process methods were employed for high-temperature and freeze-thraw climate to treat the biochar for two months in the present study. The batch adsorption of SPY and leaching column experiments were conducted for comparison of the fresh/aged biochar-soil system. The results showed that biochar addition could increase soil pH and saturated moisture, aged biochars own more O-containing functional groups and exhibit higher hydrophilicity and polarity. The sorption mechanism of unamended soil with SPY primarily resulted from the weak hydrophobic distribution. All fresh and aged biochar amended soil increased SPY sorption due to improvement of H-bonding interaction between SPY and biochar surface functional groups, indicating such initiative adsorption was stronger than passive partitioning. It is of importance for us to reconsider that aged biochar-amended soil, especially two-month high-temperature aged biochar-amended soil showed the highest adsorption performance and the lowest desorption capacity towards SPY. Both SPY leaching column experiments and the acid rain leaching tests suggested that the application of biochar in tropical or high-temperature climate regions for organics polluted soil remediation is favorable, but we should be aware of the uncertainty of soil amendment with biochar in cold regions.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Fanqi Jing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Zanli Bi Lepohi Guy Laurent
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Yuyan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
10
|
Ma J, Liu X, Yang Y, Qiu J, Dong Z, Ren Q, Zuo YY, Xia T, Chen W, Liu S. Binding of Benzo[ a]pyrene Alters the Bioreactivity of Fine Biochar Particles toward Macrophages Leading to Deregulated Macrophagic Defense and Autophagy. ACS NANO 2021; 15:9717-9731. [PMID: 34124884 DOI: 10.1021/acsnano.1c00324] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contaminant-bearing fine biochar particles (FBPs) may exert significantly different toxicity profiles from their contaminant-free counterparts. While the role of FBPs in promoting contaminant uptake has been recognized, it is unclear whether the binding of contaminants can modify the biochemical reactivity and toxicological profiles of FBPs. Here, we show that binding of benzo[a]pyrene (B(a)P, a model polycyclic aromatic hydrocarbon) at environmentally relevant exposure concentrations markedly alters the cytotoxicity of FBPs to macrophages, an important line of innate immune defense against airborne particulate matters (PMs). Specifically, B(a)P-bearing FBPs elicit more severe disruption of the phospholipid membrane, endocytosis, oxidative stress, autophagy, and compromised innate immune defense, as evidenced by blunted proinflammatory effects, compared with B(a)P-free FBPs. Notably, the altered cytotoxicity cannot be attributed to the dissolution of B(a)P from the B(a)P-bearing FBPs, but appears to be related to B(a)P adsorption-induced changes of FBPs bioreactivity toward macrophages. Our findings highlight the significance of environmental chemical transformation in altering the bioreactivity and toxicity of PMs and call for further studies on other types of carbonaceous nanoparticles and additional exposure scenarios.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinlei Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Yi Yang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, and Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Li X, Yan X, Wu T, Zhang X, Yu H. Risks and phyto-uptake of micro-nano size particulates bound with potentially toxic metals in Pb-contaminated alkaline soil (NW China): The role of particle size fractions. CHEMOSPHERE 2021; 272:129508. [PMID: 33494015 DOI: 10.1016/j.chemosphere.2020.129508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The fate and risk in the environment of potentially toxic metals (PTMs) pollutants depends on the size-fractions of contaminated soil. In this study, the variable micro-nano size-fractions of 50-250 μm, 5-50 μm, 1-5 μm, <1 μm in long-term Pb-contaminated alkaline soil (NW China) were obtained by Sequential Wet Sieving Separation Procedure (SWSSP). The chemical speciation, mobility and risk of PTMs in micro-nano particle fractions as well as their uptaken and translocation in Maize (Zea mays L.) plant were systematically determined. The results demonstrated that higher accumulation of both investigated PTMs was observed in the fine fractions of <1 μm. The metallic Pb predominantly occurred in all size-fractions (65%-86%) identified by XPS, and the reducible forms of lead oxide (Ⅱ,Ⅳ) would also likely preferred to enrich in the fine fraction of <1 μm. The mobility and bioaccessibility of PTMs in fine fraction of <1 μm were higher than other fractions, which were identified by the multi-indices, enrichment factor (EF), accumulation factor (AF), mobility factor (MF), potential ecological risk index of single metal (Eri) and the comprehensive potential ecological risk index (RI). The scenario for phyto-uptake of Pb and Cu in <1 μm soil nanoparticles under pot tests indicated that the Pb and Cu enriched in <1 μm with high ecological risk were inclined to translocate into the Maize roots and shoots with nano size fractions. The results implied that further environmental management should be needed in order to prevent the risk of PTMs from Pb-bearing micro-nano size fractions in the industrial contaminated alkaline soil.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Environmental Science, School of Geograph and Tourim, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China.
| | - Xiangyang Yan
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China
| | - Ting Wu
- Department of Environmental Science, School of Geograph and Tourim, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geograph and Tourim, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Hongtao Yu
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China; School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA
| |
Collapse
|
12
|
Nie T, Yang X, Chen H, Müller K, Shaheen SM, Rinklebe J, Song H, Xu S, Wu F, Wang H. Effect of biochar aging and co-existence of diethyl phthalate on the mono-sorption of cadmium and zinc to biochar-treated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124850. [PMID: 33385726 DOI: 10.1016/j.jhazmat.2020.124850] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
In this study, the influence of the aging process of pig-(PB) and P. orientalis-(POB) derived biochars on the sorption capacity of the biochar-treated soils for cadmium (Cd) and zinc (Zn) with and without the co-existence of diethyl phthalate (DEP) was investigated. Additionally, the surface and internal characteristics of biochars were determined before and after their aging in soils. The PB-treated soil had a higher sorption capacity for Cd2+ and Zn2+ than the POB-treated soil. The sorption capacity of the biochar-treated soils for Cd2+ and Zn2+ increased with biochar application rates. After aging, the abundance of oxygen-containing functional groups on the biochar surface, and the pH and organic carbon content of the biochar-treated soils significantly increased, thereby improving the sorption capacity for Cd2+ and Zn2+. The sorption capacities of biochar-treated soils for Cd2+ and Zn2+ followed the order of 1-month aging > 6-month aging > fresh. The co-existence of DEP enhanced the sorption capacity of the fresh biochar-treated soils for Cd2+ and Zn2+, whereas this enhancing effect disappeared for the aged biochar treatments. Our findings provide insights into the interactions between mixed contaminants in biochar-amended soils and the long-term efficacy of biochar treatments on metal sorption to soils.
Collapse
Affiliation(s)
- Tianhong Nie
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xing Yang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hanbo Chen
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Karin Müller
- The New Zealand Institute for Plant & Food Research Limited, Ruakura Research Centre, Private Bag, 3123 Hamilton, New Zealand
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Song Xu
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
13
|
Chen H, Qin P, Yang X, Bhatnagar A, Shaheen SM, Rinklebe J, Wu F, Xu S, Che L, Wang H. Sorption of diethyl phthalate and cadmium by pig carcass and green waste-derived biochars under single and binary systems. ENVIRONMENTAL RESEARCH 2021; 193:110594. [PMID: 33307079 DOI: 10.1016/j.envres.2020.110594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Potentially toxic elements (PTEs) and phthalic acid esters (PAEs) often coexist in contaminated soils. Their co-existence may affect the mutual sorption behavior, and thereby influence their bioavailability and fate in soils. To our best knowledge, the impacts of plant-and animal-derived biochar on the competitive sorption-desorption of PTEs and PAEs in soils with different organic carbon content have not been studied up to date. Therefore, in this study, batch sorption-desorption experiments were conducted to investigate the influence of biochars derived from pig carcass and Platanus orientalis branches on the mono- and competitive sorption of cadmium (Cd2+) and diethyl phthalate (DEP) in soils with high (HS) and low (LS) organic carbon content. The DEP sorption was well described by Freundlich isotherm model, while Cd2+ sorption fitted better with the Langmuir isotherm model. Application of both biochars enhanced soil sorption of DEP, which increased as the application doses increased. The HS showed a stronger affinity to both DEP and Cd2+ than the LS. In the LS, the pig carcass biochar (PB) addition was more effective to increase the sorption capacity of Cd2+ and DEP and to reduce their desorption than woody biochar (WB) treatments. Moreover, the co-existing of Cd2+ could reduce the sorption of DEP, especially in the LS. The presence of DEP enhanced Cd2+ sorption in LS treated by both biochars, but the sorption of Cd2+ was suppressed with DEP addition in the PB-amended HS. In conclusion, the soil sorption capacity of DEP and Cd2+ was affected by biochar type, application dose and soil organic carbon content. The reciprocal effect between DEP and Cd2+ was also a crucial factor influencing their sorption/desorption by biochar. Therefore, PB and WB, especially PB, can be used for metal/DEP immobilization due to enhanced sorption. This approach is applicable for future remediation of soils contaminated by PTEs and PAEs.
Collapse
Affiliation(s)
- Hanbo Chen
- Agronomy College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Peng Qin
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xing Yang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Song Xu
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Lei Che
- School of Engineering, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
14
|
Wang H, Ren T, Müller K, Van Zwieten L, Wang H, Feng H, Xu C, Yun F, Ji X, Yin Q, Shi H, Liu G. Soil type regulates carbon and nitrogen stoichiometry and mineralization following biochar or nitrogen addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141645. [PMID: 33207475 DOI: 10.1016/j.scitotenv.2020.141645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Most studies on the effects of biochar and fertilizer on soil carbon (C) and nitrogen (N) mineralization, and microbial C and N content, are restricted to a single soil type, limiting our understanding of the interactions between these factors and microbial functions. To address this paucity in knowledge, we undertook a 3-year experiment using four contrasting soils to assess the role of peanut shell biochar and fertilizer on C and N mineralization, microbial C and N, and N stoichiometry. Across all four soils, biochar significantly (P < 0.05) increased soil carbon mineralization (Cmin) and nitrogen mineralization (Nmin) over three years compared to fertilizer and the control. Biochar also increased total C (Csoil) across the four soils in year 1, with the Fluvisol recording greater total C in year 2 and Phaeozem having greater total C in year 3. Biochar resulted in a higher microbial biomass C (Cmic), total N (Nsoil) and microbial biomass N (Nmic); the degree of change was closely related to Csoil and Nsoil. There was a positive correlation between Cmic:Nmic and Csoil:Nsoil; while Csoil and Cmic increased following amendment with biochar, which reduced the soil C and N stoichiometric imbalance (Nimb) caused by the increase in the C to N ratio. However, fertilizer exacerbated the imbalance of soil C and N stoichiometry. Fertilizer also reduced the Csoil:Nsoil and Cmic:Nmic ratios. Soil pH had a positive correlation with Csoil, Cmic, Nmic, Cmin, Nmin, Csoil:Nsoil, Cmic:Nmic, and biochar increases this correlation. The soil pH was negatively correlated with Cimb:Nimb and Nsoil. Fertilizer was positively correlated Cimb:Nimb and Nsoil. In contrast, fertilizer N application lowered microbial biomass C:N. We conclude that biochar reduces the imbalance of soil C and N stoichiometry, whereas fertilizer increased this imbalance. Biochar had a greater impact on C and N in soils with a lower pH.
Collapse
Affiliation(s)
- Huanhuan Wang
- Henan Agricultural University, Zhengzhou 450002, China; Henan Biochar Engineering Technology Research Center, 450002, China
| | - Tianbao Ren
- Henan Agricultural University, Zhengzhou 450002, China; Henan Biochar Engineering Technology Research Center, 450002, China; Henan Biochar Technology Engineering Laboratory, 450002, China.
| | - Karin Müller
- Plant & Food Research, Ruakura Research Centre, Hamilton 3240, New Zealand
| | - Lukas Van Zwieten
- NSW Department of Primary Industries, Wollongbar, NSW 2477, Australia; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Huilin Feng
- Henan Agricultural University, Zhengzhou 450002, China
| | - Chensheng Xu
- Nanping Branch, Fujian Tobacco Sciences Research Institute, Nanping 353000, China
| | - Fei Yun
- Henan Agricultural University, Zhengzhou 450002, China; Henan Biochar Engineering Technology Research Center, 450002, China
| | - Xiaoming Ji
- Henan Agricultural University, Zhengzhou 450002, China; Henan Biochar Engineering Technology Research Center, 450002, China
| | - Quanyu Yin
- Henan Agricultural University, Zhengzhou 450002, China; Henan Biochar Engineering Technology Research Center, 450002, China
| | - Hongzhi Shi
- Henan Agricultural University, Zhengzhou 450002, China
| | - Guoshun Liu
- Henan Agricultural University, Zhengzhou 450002, China; Henan Biochar Engineering Technology Research Center, 450002, China; Henan Biochar Technology Engineering Laboratory, 450002, China
| |
Collapse
|
15
|
Xu Y, Song Z, Chang X, Guo Z, Gao M. Effects of Fe-Mn oxide-modified biochar composite applications on phthalate esters (PAEs) accumulation in wheat grains and grain quality under PAEs-polluted brown soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111624. [PMID: 33396144 DOI: 10.1016/j.ecoenv.2020.111624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Phthalate esters (PAEs), such as dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), are used extensively as additives and plasticizers, and have become ubiquitous in the environment. PAEs in the soil could have adverse effects on crop plants as well as humans via accumulations in food chain. Thus, it is important to explore strategies to reduce the bioavailability of phthalate esters. We investigated the effects of Fe-Mn oxide-modified biochar composite (FMBC) applications on the quality of wheat grown in DBP- and DEHP-polluted brown soil. The application of FMBC and biochar (BC) increased the wheat grain biomass by 9.71-223.01% and 5.40-120.15% in the DBP-polluted soil, and 10.52-186.21% and 4.50-99.53% in the DEHP-spiked soil in comparison to the controls. All FMBC treatments were better than the BC treatments, in terms of decreasing DBP and DEHP bioavailability for the wheat grains. The activities of the glutamine synthetase and glutamic-pyruvic transaminase in the flag leaves at the filling stage and of granule-bound starch synthase, soluble starch synthase, and adenosine diphosphate-glucose pyrophosphorylase in the grains at maturity increased significantly with increases in either the BC or FMBC applications. This, in turn, increased the starch, protein, and amino acid content in the wheat grains. Compared with the BC treatment, the FMBC amendment induced only slight increases in the aforementioned factors. This study offers novel insights into potential strategies for decreasing PAEs bioavailability in soil, with potential positive implications for crop quality and environmental health improvements.
Collapse
Affiliation(s)
- Yalei Xu
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province, 515063, China
| | - Xipeng Chang
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Zeyang Guo
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province, 515063, China.
| |
Collapse
|
16
|
Li B, Gong J, Fang J, Zheng Z, Fan W. Cysteine chemical modification for surface regulation of biochar and its application for polymetallic adsorption from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1061-1071. [PMID: 32827120 DOI: 10.1007/s11356-020-10558-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Biochar (BC) has been widely used to remove heavy metals from wastewater. However, due to the hydrophobicity of BC and the lack of its surface functional groups, the effect of metal ions adsorption onto BC is limited. In order to improve the adsorption efficiency, L-cysteine was used to modify biochar derived from pomelo peel (PP) to regulate surface structure. The characteristics of BC and cysteine/biochar composite (cys/BC) were analyzed by various characterization methods. Results showed that the hydrophilicity of biochar was enhanced, and the number of surface functional groups was increased, resulting to strong adsorption ability of Ag(I) (618.9 mg/g), Pb(II) (274.5 mg/g), and As(V) (34.7 mg/g) for cys/BC, which increased approximately by 15%, 35%, and 29% compared with that of BC, respectively. The adsorption process of Pb(II) onto cys/BC was fitted better by the Freundlich isotherm model and for Ag(I) and As(V) by the Langmuir isotherm model. Moreover, the adsorption kinetics followed pseudo-second-order equation and the adsorption process was controlled by the intraparticle diffusion for Ag(I), Pb(II), and As(V) adsorption onto cys/BC. In addition, the adsorption capacities of cys/BC for Ag(I), Pb(II), and As(V) decreased slightly after five adsorption/desorption cycles. Finally, the multiple adsorption mechanisms including functional groups, pore adsorption, surface complexation, and cations-π were analyzed. The paper demonstrated that the cys/BC composite could be reused as effective adsorbents for removing contaminants in the environment.
Collapse
Affiliation(s)
- Baoqing Li
- School of Environment, South China Normal University, Guangzhou, 510006, China.
- Guangdong Engineering and Technology Research Center of Solid Waste Resource Recovery and Heavy Metal Pollution Control, Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China.
| | - Jiaxin Gong
- Guangdong Engineering and Technology Research Center of Solid Waste Resource Recovery and Heavy Metal Pollution Control, Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China
| | - Jianzhang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
- Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou, 510006, China.
| | - Zhiran Zheng
- Guangdong Engineering and Technology Research Center of Solid Waste Resource Recovery and Heavy Metal Pollution Control, Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China
| | - Wei Fan
- Guangdong Engineering and Technology Research Center of Solid Waste Resource Recovery and Heavy Metal Pollution Control, Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China
| |
Collapse
|
17
|
Li W, Shan R, Fan Y, Sun X. Effects of tall fescue biochar on the adsorption and desorption of atrazine in different types of soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4503-4514. [PMID: 32939657 DOI: 10.1007/s11356-020-10821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The excessive application of atrazine in agriculture has resulted in serious environmental contamination. The addition of biochar could reduce the bioavailability and mobility of atrazine in soil through adsorption-desorption processes. In this study, tall fescue biochar was prepared at 500 °C, and its effect on the adsorption-desorption behavior of atrazine in red soil, brown soil, and black soil was investigated. The tall fescue biochar with the pH value of 9.64 had a developed porous structure and large specific area that contained abundant surface functional groups. The element composition of the tall fescue biochar was C (50.46%), O (15.01%), N (4.54%), H (2.56%), and S (1.47%). The adsorption process of atrazine in the three soil types with and without biochar addition was divided into a fast stage, slow stage, and equilibrium stage. A pseudo second-order kinetic model was suitable for fitting the adsorption process of atrazine, and the determination coefficient (R2) ranged from 0.985 to 0.999. The adsorption-desorption processes of atrazine were described accurately by the Freundlich model (R2 of 0.967-0.999). The adsorption capacity of the three soil types for atrazine increased significantly with the addition of biochar, whereby the equilibrium adsorption amount increased from an initial range of 3.968 to 5.902 μg g-1 to a final range of 21.397 to 21.968 μg g-1. The desorption of atrazine was also inhibited as the hysteresis coefficient (HI) increased from an initial range of 0.451 to 0.586 to a final range of 0.916 to 0.941. The adsorption capacity of the red soil improved more than did the brown soil or black soil. Moreover, spontaneous adsorption of atrazine by the biochar-soil system occurred more easily at 35 °C than at 15 °C and 25 °C. Overall, tall fescue biochar was a prospective soil amendment material.
Collapse
Affiliation(s)
- Wanting Li
- Key Laboratory of Nansihu Lake Wetland Ecological Conservation & Environmental Protection (Shandong Province), College of Geography and Tourism, Qufu Normal University, Rizhao, 276826, People's Republic of China
- Rizhao Key Laboratory of Territory Spatial Planning and Ecological Construction, Rizhao, 276826, People's Republic of China
| | - Ruifeng Shan
- Key Laboratory of Nansihu Lake Wetland Ecological Conservation & Environmental Protection (Shandong Province), College of Geography and Tourism, Qufu Normal University, Rizhao, 276826, People's Republic of China.
- Rizhao Key Laboratory of Territory Spatial Planning and Ecological Construction, Rizhao, 276826, People's Republic of China.
| | - Yuna Fan
- Key Laboratory of Nansihu Lake Wetland Ecological Conservation & Environmental Protection (Shandong Province), College of Geography and Tourism, Qufu Normal University, Rizhao, 276826, People's Republic of China
- Rizhao Key Laboratory of Territory Spatial Planning and Ecological Construction, Rizhao, 276826, People's Republic of China
| | - Xiaoyin Sun
- Key Laboratory of Nansihu Lake Wetland Ecological Conservation & Environmental Protection (Shandong Province), College of Geography and Tourism, Qufu Normal University, Rizhao, 276826, People's Republic of China
- Rizhao Key Laboratory of Territory Spatial Planning and Ecological Construction, Rizhao, 276826, People's Republic of China
| |
Collapse
|
18
|
Zeng LJ, Huang YH, Chen XT, Chen XH, Mo CH, Feng YX, Lü H, Xiang L, Li YW, Li H, Cai QY, Wong MH. Prevalent phthalates in air-soil-vegetable systems of plastic greenhouses in a subtropical city and health risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140755. [PMID: 32758841 DOI: 10.1016/j.scitotenv.2020.140755] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Wide use of plastic greenhouses for vegetable production increases human exposure to phthalate (PAEs) through vegetable intake. However, little information is available about distribution of PAEs in air-soil-vegetable systems of plastic greenhouses and PAE estrogenic effects. This study was designed to investigate PAE distributions and corresponding health risk in plastic greenhouses in Guangzhou, a subtropical city in South China. PAEs were prevalent in plastic greenhouses, with sum concentrations of 16 PAE compounds (∑16PAEs) up to 5.76 mg/kg in soils, 5.27 mg/kg in vegetables and 4393 ng/m3 in air. Di (2-ethylhexyl) phthalate, di-isobutyl phthalate, and dibutyl phthalate were predominant compounds. Average concentrations and bioconcentration factor of ∑16PAEs and the predominant PAE compounds in vegetables of greenhouses were higher than those of open fields. Plastic greenhouses exhibited significantly higher air PAE levels than those of open fields due to higher indoor temperature, which enhanced PAE accumulation by vegetables. Both carcinogenic and non-carcinogenic risks of PAEs via dietary and non-dietary exposures for farmers decreased with an order of vegetable > air > soil. Consumption of vegetables from greenhouses resulted in significantly higher estrogenic effects compared to those from open field cultivation. This study emphasizes highly potential health risks of PAEs in air-soil-vegetable systems of plastic greenhouses.
Collapse
Affiliation(s)
- Li-Juan Zeng
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Ting Chen
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Xi Feng
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
19
|
Xiang L, Chen XT, Yu PF, Li XH, Zhao HM, Feng NX, Li YW, Li H, Cai QY, Mo CH, Li QX. Oxalic Acid in Root Exudates Enhances Accumulation of Perfluorooctanoic Acid in Lettuce. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13046-13055. [PMID: 33030897 DOI: 10.1021/acs.est.0c04124] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Perfluorooctanoic acid (PFOA) is bioaccumulative in crops. PFOA bioaccumulation potential varies largely among crop varieties. Root exudates are found to be associated with such variations. Concentrations of low-molecular-weight organic acids (LMWOAs) in root exudates from a PFOA-high-accumulation lettuce variety are observed significantly higher than those from PFOA-low-accumulation lettuce variety (p < 0.05). Root exudates and their LMWOAs components exert great influences on the linear sorption-desorption isotherms of PFOA in soils, thus activating PFOA and enhancing its bioavailability. Among root exudate components, oxalic acid is identified to play a key role in activating PFOA uptake, with >80% attribution. Oxalic acid at rhizospheric concentrations (0.02-0.5 mM) can effectively inhibit PFOA sorption to soils by decreasing hydrophobic force, electrostatic attraction, ligand exchange, and cation-bridge effect. Oxalic acid enhances dissolution of metallic ions, iron/aluminum oxides, and organic matters from soils and forms oxalate-metal complexes, based on nuclear magnetic resonance spectra, ultraviolet spectra, and analyses of metal ions, iron/aluminum organometallic complexes, and dissolved organic carbon. The findings not only reveal the activation process of PFOA in soils by root exudates, particularly oxalic acid at rhizospheric concentrations, but also give an insight into the mechanism of enhancing PFOA accumulation in lettuce varieties.
Collapse
Affiliation(s)
- Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Xiao-Ting Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin-Hong Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
20
|
Wang W, Zhao L, Cao X. The microorganism and biochar-augmented bioreactive top-layer soil for degradation removal of 2,4-dichlorophenol from surface runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139244. [PMID: 32442876 DOI: 10.1016/j.scitotenv.2020.139244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/19/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Surface runoff is one of the major pollution sources impacting the quality of the surrounding waterbody. In this study, a highly-bioreactive top-layer soil incorporated with microorganism (BO) and peanut shell (PS) biochar or dairy manure (DM) biochar was proposed for removal of 2,4-dichlorophenol (2,4-DCP) from contaminated surface runoff. Both batch test and sandbox experiment consistently revealed that PS coupled with BO amendment (PS + BO) was most effective for sorption and degradation of 2,4-DCP, compared to BO and DM alone or in combination. About 77% of 6000 μg∙L-1 2,4-DCP was absorbed within 36 h in the original low permeability bioreactive PS + BO soil layer (15 cm long×15 cm wide×4.5 cm deep) with the 0.33 L∙day-1 processing capacity of surface runoff. Increasing the addition of quartz sand into the bioreactor soil layer by threefold the original bioreactor improved the processing capacity to 17.5 L∙day-1. However, this permeability-optimized bioreactive layer was still not large enough to remove 2,4-DCP completely. The optimized scale by the multi-process coupling model of the convection, dispersion, adsorption, and degradation was 60 cm long × 60 cm wide × 18 cm deep where the processing capacity of 280 L·day-1reached and 97.3% of 2,4-DCP was removed, correspondingly the 2,4-DCP concentration could meet the standard limit. In addition, the obtained model parameters showed that the biochar or microorganism significantly decreased the dispersion coefficient D of 2,4-DCP in the bioreactive layer. The 2,4-DCP distribution coefficient Kd, and first-order reaction rate λ in the PS+BO system significantly greater than that in the control, BO, and PS systems. Results from this study indicated that the top-layer soil incorporated with microorganisms and biochar is a feasible and effective approach for the surface runoff treatment.
Collapse
Affiliation(s)
- Wenbing Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|