1
|
Wang Z, Deng Y, Kang Y, Wang Y, Bao D, Tan Y, An K, Su J. Impacts of climate change and human activities on three Glires pests of the Qinghai-Tibet Plateau. PEST MANAGEMENT SCIENCE 2024; 80:5233-5243. [PMID: 38899513 DOI: 10.1002/ps.8250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The range of Glires is influenced by human activities and climate change. However, the extent to which human activities and environmental changes have contributed to this relationship remains unclear. We examined alterations in the distribution changes and driving factors of the Himalayan marmot, plateau pika, and plateau zokor on the Qinghai-Tibet Plateau (QTP) using the maximum entropy (MaxEnt) model and a geographical detector (Geodetector). RESULTS The MaxEnt model showed that the contribution rates of the human footprint index (HFI) to the distribution patterns of the three types of Glires were 46.70%, 58.70%, and 59.50%, respectively. The Geodetector results showed that the distribution pattern of the Himalayan marmot on the QTP was influenced by altitude and the normalized difference vegetation index (NDVI). The distribution patterns for plateau pikas and plateau zokors were driven by HFI and NDVI. Climate has played a substantial role in shaping suitable habitats for these three Glires on the QTP. Their suitable area is expected to decrease over the next 30-50 years, along with their niche breadth and overlap. Future suitable habitats for the three Glires tended to shift toward higher latitudes on the QTP. CONCLUSION These findings underscore the impacts of environmental and human factors on the distribution of the three Glires on the QTP. They have enhanced our understanding of the intricate relationships between Glires niches and environments. This can aid in identifying necessary interventions for developing effective early warning systems and prevention strategies to mitigate Glires infestations and plague epidemics on the QTP. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yanan Deng
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yan Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Duanhong Bao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
- Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei, China
| |
Collapse
|
2
|
Deng Y, Wang Y, Liu Y, Yang X, Zhang H, Xue X, Wan Y. Akkermansia muciniphila isolated from forest musk deer ameliorates diarrhea in mice via modification of gut microbiota. Animal Model Exp Med 2024. [PMID: 38828754 DOI: 10.1002/ame2.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The forest musk deer, a rare fauna species found in China, is famous for its musk secretion which is used in selected Traditional Chinese medicines. However, over-hunting has led to musk deer becoming an endangered species, and their survival is also greatly challenged by various high incidence and high mortality respiratory and intestinal diseases such as septic pneumonia and enteritis. Accumulating evidence has demonstrated that Akkermannia muciniphila (AKK) is a promising probiotic, and we wondered whether AKK could be used as a food additive in animal breeding programmes to help prevent intestinal diseases. METHODS We isolated one AKK strain from musk deer feces (AKK-D) using an improved enrichment medium combined with real-time PCR. After confirmation by 16S rRNA gene sequencing, a series of in vitro tests was conducted to evaluate the probiotic effects of AKK-D by assessing its reproductive capability, simulated gastrointestinal fluid tolerance, acid and bile salt resistance, self-aggregation ability, hydrophobicity, antibiotic sensitivity, hemolysis, harmful metabolite production, biofilm formation ability, and bacterial adhesion to gastrointestinal mucosa. RESULTS The AKK-D strain has a probiotic function similar to that of the standard strain in humans (AKK-H). An in vivo study found that AKK-D significantly ameliorated symptoms in the enterotoxigenic Escherichia coli (ETEC)-induced murine diarrhea model. AKK-D improved organ damage, inhibited inflammatory responses, and improved intestinal barrier permeability. Additionally, AKK-D promoted the reconstitution and maintenance of the homeostasis of gut microflora, as indicated by the fact that AKK-D-treated mice showed a decrease in Bacteroidetes and an increase in the proportion of other beneficial bacteria like Muribaculaceae, Muribaculum, and unclassified f_Lachnospiaceae compared with the diarrhea model mice. CONCLUSION Taken together, our data show that this novel AKK-D strain might be a potential probiotic for use in musk deer breeding, although further extensive systematic research is still needed.
Collapse
Affiliation(s)
- Yan Deng
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yan Wang
- Shaanxi Institute of Microbiology, Xi'an, China
| | - Ying Liu
- Shaanxi Institute of Microbiology, Xi'an, China
| | - Xiaoli Yang
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shaanxi Institute for Food and Drug Control, Xi'an, China
| | - Hai Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaochang Xue
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yi Wan
- Shaanxi Institute of Microbiology, Xi'an, China
| |
Collapse
|
3
|
Yang L, Ling J, Lu L, Zang D, Zhu Y, Zhang S, Zhou Y, Yi P, Li E, Pan T, Wu X. Identification of suitable habitats and priority conservation areas under climate change scenarios for the Chinese alligator ( Alligator sinensis). Ecol Evol 2024; 14:e11477. [PMID: 38826170 PMCID: PMC11137492 DOI: 10.1002/ece3.11477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
Amphibians and reptiles, especially the critically endangered Chinese alligators, are vulnerable to climate change. Historically, the decline in suitable habitats and fragmentation has restricted the distribution of Chinese alligators to a small area in southeast Anhui Province in China. However, the effects of climate change on range-restricted Chinese alligator habitats are largely unknown. We aimed to predict current and future (2050s and 2070s) Chinese alligator distribution and identify priority conservation areas under climate change. We employed species distribution models, barycenter migration analyses, and the Marxian model to assess current and future Chinese alligator distribution and identify priority conservation areas under climate change. The results showed that the lowest temperature and rainfall seasonality in the coldest month were the two most important factors affecting the distribution of Chinese alligators. Future predictions indicate a reduction (3.39%-98.41%) in suitable habitats and a westward shift in their distribution. Further, the study emphasizes that suitable habitats for Chinese alligators are threatened by climate change. Despite the impact of the Anhui Chinese Alligator National Nature Reserve, protection gaps persist, with 78.27% of the area lacking priority protected area. Our study provides crucial data for Chinese alligator adaptation to climate change and underscores the need for improved conservation strategies. Future research should refine conservation efforts, consider individual plasticity, and address identified limitations to enhance the resilience of Chinese alligator populations in the face of ongoing climate change.
Collapse
Affiliation(s)
- Liuyang Yang
- Life SciencesAnhui Normal UniversityWuhuAnhuiChina
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinAnhui Normal UniversityWuhuAnhuiChina
| | - Jiangnan Ling
- Life SciencesAnhui Normal UniversityWuhuAnhuiChina
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinAnhui Normal UniversityWuhuAnhuiChina
| | - Lilei Lu
- Life SciencesAnhui Normal UniversityWuhuAnhuiChina
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinAnhui Normal UniversityWuhuAnhuiChina
| | - Dongsheng Zang
- Life SciencesAnhui Normal UniversityWuhuAnhuiChina
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinAnhui Normal UniversityWuhuAnhuiChina
| | - Yunzhen Zhu
- Life SciencesAnhui Normal UniversityWuhuAnhuiChina
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinAnhui Normal UniversityWuhuAnhuiChina
| | - Song Zhang
- National Long‐term Scientific Research Base for Chinese Alligator Artificial Breeding and Protection in AnhuiAnhui Research Center for Chinese Alligator ReproductionXuanchengAnhuiChina
| | - Yongkang Zhou
- National Long‐term Scientific Research Base for Chinese Alligator Artificial Breeding and Protection in AnhuiAnhui Research Center for Chinese Alligator ReproductionXuanchengAnhuiChina
| | - Pingsi Yi
- National Long‐term Scientific Research Base for Chinese Alligator Artificial Breeding and Protection in AnhuiAnhui Research Center for Chinese Alligator ReproductionXuanchengAnhuiChina
| | - En Li
- Life SciencesAnhui Normal UniversityWuhuAnhuiChina
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinAnhui Normal UniversityWuhuAnhuiChina
| | - Tao Pan
- Life SciencesAnhui Normal UniversityWuhuAnhuiChina
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinAnhui Normal UniversityWuhuAnhuiChina
| | - Xiaobing Wu
- Life SciencesAnhui Normal UniversityWuhuAnhuiChina
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River BasinAnhui Normal UniversityWuhuAnhuiChina
| |
Collapse
|
4
|
Zhang C, Lu Z, Zhuang H, Zhou J, Zhang Y, Lv X, Chen M, Krzton A, Xia W. Identification of potential suitable areas and conservation priority areas for representative wild animals in the Greater and Lesser Khingan Mountains. Ecol Evol 2024; 14:e11600. [PMID: 38903147 PMCID: PMC11187939 DOI: 10.1002/ece3.11600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Species geographic distribution and conservation priority areas are important bases for in situ biodiversity conservation and conservation decision-making. In view of the urgency of endangered species protection, eight representative endangered species in the typical forest ecosystem of the Greater and Lesser Khingan Mountains were studied. Based on 1127 occurrence points and environmental data collected from 2016 to 2021, used BIOMOD2 and Zonation to reconstruct the potential distribution area and identify conservation priority areas of eight species (Tetrao parvirostris, T. tetrix, Gulo gulo, Alces alces, Martes zibellina, Moschus moschiferus, Lynx lynx, Lutra lutra). The results showed potential distribution areas for almost all species concentrated in the northern part of the Greater Khingan Mountains (GKM) and the central part of the Lesser Khingan Mountains (LKM). The potential distribution areas of each species were as follows: black-billed capercaillie, 102,623 km2; black grouse, 162,678 km2; wolverine, 63,410 km2; moose, 140,287 km2; sable, 112,254 km2; Siberian musk deer, 104,787 km2; lynx, 139,912 km2; and Eurasian otter, 49,386 km2. Conservation priority areas (CPAs) clustered in the north GKM and central LKM and totaled 220,801 km2, and only 16.94% of the CPAs were currently protected by nature reserves. We suggest that the Chinese government accelerate the integration of existing protected areas in the northern GKM and establish a larger GKM National Park based on cost-effective multi-species protection.
Collapse
Affiliation(s)
- Chao Zhang
- National Park (Protected Area) Development Center, National Forestry and Grassland AdministrationBeijingChina
| | - Zhongwei Lu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| | - Hongfei Zhuang
- First Institute of OceanographyMinistry of Natural ResourcesQingdaoChina
| | - Jiajie Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| | - Yuan Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| | - Xinyu Lv
- Baimaxueshan National Nature ReserveDiqingChina
| | - Minhao Chen
- Institute of eco‐Environmental ResearchGuangxi Academy of SciencesNanningChina
| | - Ali Krzton
- Auburn University LibrariesAuburn UniversityAuburnUSA
| | - Wancai Xia
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| |
Collapse
|
5
|
Vásquez-Aguilar AA, Hernández-Rodríguez D, Martínez-Mota R. Predicting future climate change impacts on the potential distribution of the black howler monkey (Alouatta pigra): an endangered arboreal primate. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:392. [PMID: 38520558 DOI: 10.1007/s10661-024-12543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Climate change is one of the main factors affecting biodiversity worldwide at an alarming rate. In addition to increases in global extreme weather events, melting of polar ice caps, and subsequent sea level rise, climate change might shift the geographic distribution of species. In recent years, interest in understanding the effects of climate change on species distribution has increased, including species which depend greatly on forest cover for survival, such as strictly arboreal primates. Here, we generate a series of species distribution models (SDMs) to evaluate future projections under different climate change scenarios on the distribution of the black howler monkey (Alouatta pigra), an endemic endangered primate species. Using SDMs, we assessed current and future projections of their potential distribution for three Social Economic Paths (SSPs) for the years 2030, 2050, 2070, and 2090. Specifically, we found that precipitation seasonality (BIO15, 30.8%), isothermality (BIO3, 25.4%), and mean diurnal range (BIO2, 19.7.%) are the main factors affecting A. pigra distribution. The future climate change models suggested a decrease in the potential distribution of A. pigra by projected scenarios (from - 1.23 to - 12.66%). The highly suitable area was the most affected above all in the more pessimist scenario most likely related to habitat fragmentation. Our study provides new insights into the potential future distribution and suitable habitats of Alouatta pigra. Such information could be used by local communities, governments, and non-governmental organizations for conservation planning of this primate species.
Collapse
Affiliation(s)
| | | | - Rodolfo Martínez-Mota
- Centro de Investigaciones Tropicales (CITRO), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
6
|
Dhami B, Chhetri NB, Neupane B, Adhikari B, Bashyal B, Maraseni T, Thapamagar T, Dhakal Y, Tripathi A, Koju NP. Predicting the current habitat refugia of Himalayan Musk deer ( Moschus chrysogaster) across Nepal. Ecol Evol 2024; 14:e10949. [PMID: 38371859 PMCID: PMC10870248 DOI: 10.1002/ece3.10949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/20/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
Himalayan Musk deer, Moschus chrysogaster is widely distributed but one of the least studied species in Nepal. In this study, we compiled a total of 429 current presence points of direct observation of the species, pellets droppings, and hoofmarks based on field-based surveys during 2018-2021 and periodic data held by the Department of National Park and Wildlife Conservation. We developed the species distribution model using an ensemble modeling approach. We used a combination of bioclimatic, anthropogenic, topographic, and vegetation-related variables to predict the current suitable habitat for Himalayan Musk deer in Nepal. A total of 16 predictor variables were used for habitat suitability modeling after the multicollinearity test. The study shows that the 6973.76 km2 (5%) area of Nepal is highly suitable and 8387.11 km2 (6%) is moderately suitable for HMD. The distribution of HMD shows mainly by precipitation seasonality, precipitation of the warmest quarter, temperature ranges, distance to water bodies, anthropogenic variables, and land use and land cover change (LULC). The probability of occurrence is less in habitats with low forest cover. The response curves indicate that the probability of occurrence of HMD decreases with an increase in precipitation seasonality and remains constant with an increase in precipitation of the warmest quarter. Thus, the fortune of the species distribution will be limited by anthropogenic factors like poaching, hunting, habitat fragmentation and habitat degradation, and long-term forces of climate change.
Collapse
Affiliation(s)
- Bijaya Dhami
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- IUCN/SSC Deer Specialist GroupGlandSwitzerland
| | | | - Bijaya Neupane
- Institute of Forestry, Pokhara CampusTribhuvan UniversityPokharaNepal
- Department of Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
| | - Binaya Adhikari
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Bijay Bashyal
- IUCN/SSC Deer Specialist GroupGlandSwitzerland
- Central Department of Environmental ScienceTribhuvan UniversityKathmanduNepal
| | - Tek Maraseni
- University of Southern QueenslandToowoombaQueenslandAustralia
| | | | | | | | - Narayan Prasad Koju
- Center for Post Graduate Studies, Nepal Engineering CollegePokhara UniversityBhaktapurNepal
| |
Collapse
|
7
|
Liu H, Pan S, Cheng Y, Luo L, Zhou L, Fan S, Wang L, Jiang S, Zhou Z, Liu H, Zhang S, Ren Z, Ma X, Cao S, Shen L, Wang Y, Cai D, Gou L, Geng Y, Peng G, Yan Q, Luo Y, Zhong Z. Distribution and associations for antimicrobial resistance and antibiotic resistance genes of Escherichia coli from musk deer (Moschus berezovskii) in Sichuan, China. PLoS One 2023; 18:e0289028. [PMID: 38011149 PMCID: PMC10681177 DOI: 10.1371/journal.pone.0289028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/08/2023] [Indexed: 11/29/2023] Open
Abstract
This study aimed to investigate the antimicrobial resistance (AMR), antibiotic resistance genes (ARGs) and integrons in 157 Escherichia coli (E. coli) strains isolated from feces of captive musk deer from 2 farms (Dujiang Yan and Barkam) in Sichuan province. Result showed that 91.72% (144/157) strains were resistant to at least one antimicrobial and 24.20% (38/157) strains were multi-drug resistant (MDR). The antibiotics that most E. coli strains were resistant to was sulfamethoxazole (85.99%), followed by ampicillin (26.11%) and tetracycline (24.84%). We further detected 13 ARGs in the 157 E. coli strains, of which blaTEM had the highest occurrence (91.72%), followed by aac(3')-Iid (60.51%) and blaCTX-M (16.56%). Doxycycline, chloramphenicol, and ceftriaxone resistance were strongly correlated with the presence of tetB, floR and blaCTX-M, respectively. The strongest positive association among AMR phenotypes was ampicillin/cefuroxime sodium (OR, 828.000). The strongest positive association among 16 pairs of ARGs was sul1/floR (OR, 21.667). Nine pairs positive associations were observed between AMR phenotypes and corresponding resistance genes and the strongest association was observed for CHL/floR (OR, 301.167). Investigation of integrons revealed intl1 and intl2 genes were detected in 10.19% (16/157) and 1.27% (2/157) E. coli strains, respectively. Only one type of gene cassettes (drA17-aadA5) was detected in class 1 integron positive strains. Our data implied musk deer is a reservoir of ARGs and positive associations were common observed among E. coli strains carrying AMRs and ARGs.
Collapse
Affiliation(s)
- Hang Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shulei Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yuehong Cheng
- Sichuan Wolong National Natural Reserve Administration Bureau, Wenchuan, Sichuan, China
| | - Lijun Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Lei Zhou
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, China
| | - Siping Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Shaoqi Jiang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Dongjie Cai
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| |
Collapse
|
8
|
Isinkaralar O, Isinkaralar K. Projection of bioclimatic patterns via CMIP6 in the Southeast Region of Türkiye: A guidance for adaptation strategies for climate policy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1448. [PMID: 37945787 DOI: 10.1007/s10661-023-11999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
Over the past three decades, global urbanization and climate change have caused significant differences in climate conditions between urban and rural environments. The effects of global warming affect the climatic values in the urban area. The bioclimatic comfort in an area effectively chooses a site regarding the urban quality of life and activities. This study aims to predict the temporal and spatial changes of the bioclimatic comfort zones of Gaziantep province in terms of climate comfort in the context of long-term global scenarios. The future climate simulation maps were produced and analyzed comparing comfort conditions according to Shared Socioeconomic Pathways (SSPs) 245 and 585 scenarios of the Intergovernmental Panel on Climate Change's (IPCC) Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6). Spatio-temporal changes in temperature, humidity, and bioclimatic comfort areas were analyzed to inform these efforts according to Thom's discomfort index (DI) and effective temperature-taking wind velocity (ETv). The current situation of bioclimatic comfort areas to examine their synergy under extreme hot weather throughout the province and their possible concerns in 2040, 2060, 2080, and 2100 were modeled using ArcGIS 10.8 software. SSP585/2100 will create hot (84%) areas, according to DI, and warm (29%) areas, according to ETv. The spatial results of the research are discussed, and some strategies are produced in terms of urban planning, design, and engineering.
Collapse
Affiliation(s)
- Oznur Isinkaralar
- Department of Landscape Architecture, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| |
Collapse
|
9
|
Wang Z, Kang Y, Wang Y, Tan Y, Yao B, An K, Su J. Himalayan Marmot ( Marmota himalayana) Redistribution to High Latitudes under Climate Change. Animals (Basel) 2023; 13:2736. [PMID: 37684999 PMCID: PMC10486415 DOI: 10.3390/ani13172736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Climate warming and human activities impact the expansion and contraction of species distribution. The Himalayan marmot (Marmota himalayana) is a unique mammal and an ecosystem engineer in the Qinghai-Tibet Plateau (QTP). This pest aggravates grassland degradation and is a carrier and transmitter of plagues. Therefore, exploring the future distribution of Himalayan marmots based on climate change and human activities is crucial for ecosystem management, biodiversity conservation, and public health safety. Here, a maximum entropy model was explored to forecast changes in the distribution and centroid migration of the Himalayan marmot in the 2050s and 2070s. The results implied that the human footprint index (72.80%) and altitude (16.40%) were the crucial environmental factors affecting the potential distribution of Himalayan marmots, with moderately covered grassland being the preferred habitat of the Himalayan marmot. Over the next 30-50 years, the area of suitable habitat for the Himalayan marmot will increase slightly and the distribution center will shift towards higher latitudes in the northeastern part of the plateau. These results demonstrate the influence of climate change on Himalayan marmots and provide a theoretical reference for ecological management and plague monitoring.
Collapse
Affiliation(s)
- Zhicheng Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yukun Kang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuchen Tan
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Kang An
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.W.); (K.A.)
- Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Jiang F, Song P, Liu D, Zhang J, Qin W, Wang H, Liang C, Gao H, Zhang T. Marked variations in gut microbial diversity, functions, and disease risk between wild and captive alpine musk deer. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12675-1. [PMID: 37421471 PMCID: PMC10390370 DOI: 10.1007/s00253-023-12675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Maintaining a healthy status is crucial for the successful captive breeding of endangered alpine musk deer (Moschus chrysogaster, AMD), and captive breeding programs are beneficial to the ex-situ conservation and wild population recovery of this species. Meanwhile, the gut microbiota is essential for host health, survival, and environmental adaptation. However, changes in feeding environment and food can affect the composition and function of gut microbiota in musk deer, ultimately impacting their health and adaptation. Therefore, regulating the health status of wild and captive AMD through a non-invasive method that targets gut microbiota is a promising approach. Here, 16S rRNA gene sequencing was employed to reveal the composition and functional variations between wild (N = 23) and captive (N = 25) AMD populations. The results indicated that the gut microbiota of wild AMD exhibited significantly higher alpha diversity (P < 0.001) and greater abundance of the phylum Firmicutes, as well as several dominant genera, including UCG-005, Christensenellaceae R7 group, Monoglobus, Ruminococcus, and Roseburia (P < 0.05), compared to captive AMD. These findings suggest that the wild AMD may possess more effective nutrient absorption and utilization, a more stable intestinal microecology, and better adaption to the complex natural environment. The captive individuals displayed higher metabolic functions with an increased abundance of the phylum Bacteroidetes and certain dominant genera, including Bacteroides, Rikenellaceae RC9 gut group, NK4A214 group, and Alistipes (P < 0.05), which contributed to the metabolic activities of various nutrients. Furthermore, captive AMD showed a higher level of 11 potential opportunistic pathogens and a greater enrichment of disease-related functions compared to wild AMD, indicating that wild musk deer have a lower risk of intestinal diseases and more stable intestinal structure in comparison to captive populations. These findings can serve as a valuable theoretical foundation for promoting the healthy breeding of musk deer and as a guide for evaluating the health of wild-released and reintroduced musk deer in the future. KEY POINTS: • Wild and captive AMD exhibit contrasting gut microbial diversity and certain functions. • With higher diversity, certain bacteria aid wild AMD's adaptation to complex habitats. • Higher potential pathogens and functions increase disease risk in captive AMD.
Collapse
Affiliation(s)
- Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoxin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjie Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Qin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Haijing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengbo Liang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Rd, Chengxi District, Qinghai, 810001, Xining, China.
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810001, Qinghai, China.
| |
Collapse
|
11
|
Feng H, Wang L, Cao F, Ma J, Tang J, Feng C, Su Z. Forest musk deer (Moschus berezovskii) in China: research and protection. JOURNAL OF VERTEBRATE BIOLOGY 2023. [DOI: 10.25225/jvb.22067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Hui Feng
- Shaanxi Institute of Zoology, Xi'an, China; e-mail: , , , Tangjie:, Fengchengli:
| | - Lu Wang
- Shaanxi Institute of Zoology, Xi'an, China; e-mail: , , , Tangjie:, Fengchengli:
| | - Fangjun Cao
- Shaanxi Institute of Zoology, Xi'an, China; e-mail: , , , Tangjie:, Fengchengli:
| | - Ji Ma
- Xi'an Center, China Geological Survey, Xi'an, China; e-mail:
| | - Jie Tang
- Shaanxi Institute of Zoology, Xi'an, China; e-mail: , , , Tangjie:, Fengchengli:
| | - Chengli Feng
- Shaanxi Institute of Zoology, Xi'an, China; e-mail: , , , Tangjie:, Fengchengli:
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China; e-mail:
| |
Collapse
|
12
|
Zhang Z, Ding M, Sun Y, Khattak RH, Chen J, Teng L, Liu Z. Different living environments drive deterministic microbial community assemblages in the gut of Alpine musk deer ( Moschus chrysogaster). Front Microbiol 2023; 13:1108405. [PMID: 36713154 PMCID: PMC9880224 DOI: 10.3389/fmicb.2022.1108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Substantial variation in the environment directly causes remodeling of the colonized gut microbiota, controlling community diversity, and functions in the host to tune-up their adaptive states. However, the mechanisms of microbial community assembly in response to environmental changes remain unclear, especially in endangered ruminants. In this study, we analyzed the microbial communities of 37 fecal samples collected from captive and wild Alpine musk deer (Moschus chrysogaster) to characterize the complexity and assembly processes using 16S rRNA gene sequencing. We found significantly different diversities and compositions of gut microbiota among both groups associated with different living environments. Heterogeneous selection was the predominant factor regulating the gut microbiota community under similar climatic conditions, indicating that microbial community assembly was largely driven by deterministic mechanisms. The species co-occurrence network showed complex and tight connections with a higher positive correlation in the wild environment. Moreover, the captive group exhibited significant differences in chemoheterotrophy and fermentation compared with the wild group, but the opposite was observed in animal parasites or symbionts, which might be closely related to diet, energy supply, and healthcare of animals. This study provides a framework basis and new insights into understanding gut microbiota in different environments.
Collapse
Affiliation(s)
- Zhirong Zhang
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
| | - Mengqi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Yujiao Sun
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Romaan Hayat Khattak
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
| | - Junda Chen
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
| | - Liwei Teng
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| | - Zhensheng Liu
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| |
Collapse
|
13
|
Han F, Ling H, Yan J, Deng M, Deng X, Gong Y, Wang W. Shift in the migration trajectory of the green biomass loss barycenter in Central Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157656. [PMID: 35907538 DOI: 10.1016/j.scitotenv.2022.157656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Revealing the vegetation response law under drought stress has become a hot issue in global climate change research. Against the background of human beings actively responding to climate change, quantitatively revealing the change and migration laws of green biomass loss (GBL) caused by drought in historical and future periods is insufficient. In this regard, we innovatively constructed a joint kNDVI-SPEI (kernel normalized difference vegetation index and standardized precipitation evapotranspiration index) distribution based on copula theory to accurately capture GBL dynamic under various drought scenarios unlike previous studies conducted in a deterministic way. Taking the drought-sensitive and ecologically vulnerable Central Asia (CA) as a typical region, we verified that an average 94.4 % of region showed greater vegetation vulnerability in times of water shortage from May to October, which exhibited the greatest probability of GBL under different drought scenarios, mainly in Kazakhstan and Uzbekistan. Significantly intensified drought due to high emissions will cause an 18.16 percentage-point increase in GBL probability in the far future (FFP, 2061-2100) compared to the near future (NFP, 2019-2060), which is much higher than in the lower-emission (0.38 %) and moderate-emission scenarios (9.82 %). In the NFP, the GBL barycenter will shift from Kazakhstan to Xinjiang, China; in the FFP, it will shift back to Kazakhstan due to the measures taken by the Chinese government to conserve energy and reduce emissions. Results illustrate that against the background of worsening drought, active climate change coping strategies can reverse the migration trajectory of the GBL barycenter caused by drought, which provides a new idea for vegetation protection research in response to global climate change.
Collapse
Affiliation(s)
- Feifei Han
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Hongbo Ling
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China.
| | - Junjie Yan
- Institute of Resources and Ecology, Yili Normal University, Yining 835000, China
| | - Mingjiang Deng
- Engineering Research Center of Water Resources and Ecological Water Conservancy in Cold and Arid Area of Xinjiang, Urumqi 830011, China
| | - Xiaoya Deng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yanming Gong
- CAS Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China
| | - Wenqi Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhang L, Sun Z, An B, Zhang D, Chen L. Alpine Musk Deer ( Moschus chrysogaster) Adjusts to a Human-Dominated Semi-Arid Mountain Ecosystem. Animals (Basel) 2022; 12:3061. [PMID: 36359183 PMCID: PMC9658949 DOI: 10.3390/ani12213061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/06/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Comprehension of whether human and livestock presence affects wildlife activity is a prerequisite for the planning and management of humans and livestock in protected areas. Xinglong Mountain Nature Reserve (XMNNR) in northwest China, as a green island in a semi-arid mountain ecosystem, is one of the scattered and isolated areas for Alpine musk deer (AMD), an endangered species. AMD cohabits their latent habitat area with foraging livestock and humans. Hence, habitat management within and outside the distribution areas is crucial for the effective conservation of AMD. We applied camera traps to a dataset of 2 years (September 2018-August 2020) to explore seasonal activity patterns and habitat use and assess the impacts of AMD habits in XMNNR. We investigated AMD responses to livestock grazing and human activities and provided effective strategies for AMD conservation. We applied MaxENT modeling to predict the distribution size under current conditions. The activity patterns of the AMD vary among seasons. The optimum habitat average distance to cultivated land ranges of AMD (150~3300 m during grass period/100~3200 m during withered grass period), distances to the residential area ranges (500~5700 m during the grass period/1000~5300 m during the withered grass period), elevation ranges (2350~3400 m during the grass period/2360~3170 m during the withered grass period), aspect ranges (0~50° and 270~360°), normalized vegetation index ranges (0.64~0.72 during the grass period/0.14~0.60 during the withered grass period), and land cover types (forest, shrub, and grassland). Results present that the predicted distributions of AMD were not confined to the areas reported but also covered other potential areas. The results provide evidence of strong spatial-temporal avoidance of AMD in livestock, but gradually adjusting to human activities. These camera trap datasets may open new opportunities for species conservation in much wider tracts, such as human-dominated landscapes, and may offer guidance and mitigate impacts from livestock, as well as increase artificial forest planting and strengthen the investigation of the potential population resources of AMD.
Collapse
Affiliation(s)
- Lixun Zhang
- College of Ecology, Lanzhou University, No. 222, Tianshui South Road, Lanzhou 730000, China
- Yuzhong Mountain Ecosystems Observation and Research Station, Lanzhou University, Lanzhou 730000, China
| | - Zhangyun Sun
- College of Ecology, Lanzhou University, No. 222, Tianshui South Road, Lanzhou 730000, China
- Yuzhong Mountain Ecosystems Observation and Research Station, Lanzhou University, Lanzhou 730000, China
| | - Bei An
- School of Basic Medicine Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dexi Zhang
- College of Ecology, Lanzhou University, No. 222, Tianshui South Road, Lanzhou 730000, China
- Yuzhong Mountain Ecosystems Observation and Research Station, Lanzhou University, Lanzhou 730000, China
| | - Liuyang Chen
- College of Ecology, Lanzhou University, No. 222, Tianshui South Road, Lanzhou 730000, China
- Yuzhong Mountain Ecosystems Observation and Research Station, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
15
|
Jiang F, Zhang J, Song P, Qin W, Wang H, Cai Z, Gao H, Liu D, Li B, Zhang T. Identifying priority reserves favors the sustainable development of wild ungulates and the construction of Sanjiangyuan National Park. Ecol Evol 2022; 12:e9464. [PMID: 36349253 PMCID: PMC9631328 DOI: 10.1002/ece3.9464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Sanjiangyuan National Park (SNP), the first national park in China, is one of the most important biodiversity conservation areas in the Sanjiangyuan National Nature Reserve (SNNR) and even the world. The threatened ungulates play an irreplaceable role in maintaining the ecosystem diversity and stability in SNNR. Here, based on 1434 occurrence records of six ungulates, the maximum entropy model, with two different strategies, was utilized to determine the priority reserves. The results indicated that the priority reserves in SNNR was mainly located in and around SNP, which were mainly distributed in the middle east, middle west, and southwest of SNNR. Six ungulates shared preference for altitude ranging 4000-5000 m, the average annual temperature below -3.0°C, and average annual precipitation ranging 200-400 mm on meadow, steppe, and unused land. The proportion of high and medium suitable areas for ungulates in SNP was higher than that in SNNR. As the SNP is not contiguously spaced in space, and some core wildlife habitats are not included, it is suggested to optimize the functional areas and adjust the boundary range on the basis of the pilot scope of SNP, so as to enhance the integrity and connectivity of each functional area.
Collapse
Affiliation(s)
- Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningQinghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghaiChina
| | - Jingjie Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningQinghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningQinghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghaiChina
| | - Wen Qin
- State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXiningQinghaiChina
| | - Haijing Wang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningQinghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhenyuan Cai
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningQinghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningQinghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Daoxin Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningQinghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bin Li
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningQinghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghaiChina
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningQinghaiChina
- Qinghai Provincial Key Laboratory of Animal Ecological GenomicsXiningQinghaiChina
| |
Collapse
|
16
|
Wang P, Xia W, Zhou E, Li Y, Hu J. Suitable Habitats of Chrysolophus spp. Need Urgent Protection from Habitat Fragmentation in China: Especially Suitable Habitats in Non-Nature Reserve Areas. Animals (Basel) 2022; 12:ani12162047. [PMID: 36009637 PMCID: PMC9404440 DOI: 10.3390/ani12162047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Wild populations of C. pictus and C. amherstiae have been decreasing due to habitat fragmentation and long-term uncontrolled poaching. To support the Chrysolophus spp.’s conservation, we simulated the potential distribution of the two species in China, calculated the patch fragmentation index of suitable habitats of Chrysolophus spp. in nature reserve areas and non-nature reserve areas, and analyzed the habitat status of C. pictus and C. amherstiae in China. Compared with the previous studies, their habitat areas have been reduced. In addition, most of the suitable habitats were not in nature reserves and were highly fragmented. We offer recommendations for the Chinese government to formulate conservation schemes for the Chrysolophus spp. population in the future. Abstract Over the past few years, the wild population of Chrysolophus spp. has decreased remarkably. Habitat fragmentation is a significant cause for this serious threat to the survival of Chrysolophus spp. population. In order to further understand the distribution of potentially suitable habitats of Chrysolophus spp., we used the maximum entropy model to predict the potentially suitable habitats of C. pictus and C. amherstiae in China based on the known distribution. According to the prediction results of the model, we calculated the landscape pattern index to compare the fragmentation of the two species’ potential suitable habitats in nature reserves and non-nature reserves. The results showed that the potentially suitable habitat for Chrysolophus spp. only accounted for a small area of China. The suitable habitats for C. pictus were mainly in Sichuan, Shaanxi, Hubei, and other provinces, and the model predicts a total area of 359,053.06 km2. In addition, the suitable habitats for C. amherstiae were mainly distributed in the three-parallel-river area, with a potential total area of 215,569.83 km2. The model also showed that there was an overlap of suitable habitats between the two species in the western edge of the Sichuan Basin. Previously, hybrids of the two pheasants have already been found in this same overlapping area predicted by the model. The landscape pattern index showed that in the potentially suitable habitat for Chrysolophus spp., the fragmentation of non-nature reserve areas was higher than that of nature reserve areas. The results revealed the distribution of potentially suitable habitats for Chrysolophus spp. in China and highlighted that the suitable habitats in non-nature reserve areas were in urgent need of conservation, thereby providing a key reference for the conservation of the Chrysolophus spp. population in the future.
Collapse
|
17
|
Li WB, Yang PP, Xia DP, Huffman MA, Li M, Li JH. Ecotourism Disturbance on an Endemic Endangered Primate in the Huangshan Man and the Biosphere Reserve of China: A Way to Move Forward. BIOLOGY 2022; 11:biology11071042. [PMID: 36101421 PMCID: PMC9312286 DOI: 10.3390/biology11071042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary How to realize the sustainability of economic development and animal protection is a significant problem faced by Man and the Biosphere reserves. Although there are many theoretical frameworks, there is still a lack of supportive ecological evidence. This study analyzed aspects of the local human population, economic growth, number of tourists, and ticket income data of Huangshan Man and Biosphere Reserve (HMBR) as well as population and distribution changes in the flagship species (Tibetan macaque) in HMBR over a 30 year period. We found that after 30 years of implementing a sustainable development strategy in HMBR, the local economy and the population of Tibetan macaques have increased simultaneously. With economic growth, more funds for protection have been invested, improving the local environment significantly and expanding the existing distribution of the Tibetan macaque population. This study provides strong evidence for the sustainable development of Man and Biosphere reserves. We propose that economic and wildlife population growth and distribution area measures constitute a critical standard for the evaluation of sustainable development. Abstract The primary purpose of the Man and the Biosphere Program is the sustainable development of both the economy and nature conservation activities. Although the effectiveness of eco-tourism to reach this goal has been proposed, due to the lack of long-term monitoring data and a model species, there has been no obvious mechanism to evaluate the effectiveness of this policy. This study explored the effectiveness of the sustainable development policy of HMBR based on 30 years data of monitoring the Tibetan macaque, local human population, visitors, and annual ecotourism income in Huangshan by estimating species habitat suitability and the impact of ecotourism. The results showed increases in the income for the local human population, the number of visitors, and annual eco-tourism. Simultaneously, the reserve’s Tibetan macaque population size and suitable habitat areas increased. The macaques expanded their habitat to the low-altitude buffer zone (400–800 m), an area with lower eco-tourism disturbance. Scenic spots had a significant negative impact on habitat suitability (the substantially increased contributions of scenic spots from 0.71% to 32.88%). Our results and methods provide a suitable evaluation framework for monitoring the sustainable development and effectiveness of eco-tourism and wildlife conservation in Man and the Biosphere reserves.
Collapse
Affiliation(s)
- Wen-Bo Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, School of Resources and Environmental Engineering, Anhui University, No. 111, Jiulong Road, Hefei 230601, China;
| | - Pei-Pei Yang
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, School of Resources and Environmental Engineering, Anhui University, No. 111, Jiulong Road, Hefei 230601, China;
| | - Dong-Po Xia
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, School of Life Sciences, Anhui University, No. 111, Jiulong Road, Hefei 230601, China;
| | - Michael A. Huffman
- Wildlife Research Center, Inuyama Campus, Kyoto University, Kyoto 606-8501, Japan;
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (M.L.); (J.-H.L.)
| | - Jin-Hua Li
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, School of Resources and Environmental Engineering, Anhui University, No. 111, Jiulong Road, Hefei 230601, China;
- School of Life Sciences, Hefei Normal University, No. 1688, Lianhua Road, Hefei 230601, China
- Correspondence: (M.L.); (J.-H.L.)
| |
Collapse
|
18
|
Chen K, Wang B, Chen C, Zhou G. MaxEnt Modeling to Predict the Current and Future Distribution of Pomatosace filicula under Climate Change Scenarios on the Qinghai-Tibet Plateau. PLANTS (BASEL, SWITZERLAND) 2022; 11:670. [PMID: 35270140 PMCID: PMC8912362 DOI: 10.3390/plants11050670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
As an important Tibetan medicine and a secondary protected plant in China, Pomatosace filicula is endemic to the country and is mainly distributed in the Qinghai-Tibet Plateau (QTP). However, global climate change caused by greenhouse gas emissions might lead to the extinction of P. filicula. To understand the potential spatial distribution of P. filicula in future global warming scenarios, we used the MaxEnt model to simulate changes in its suitable habitat that would occur by 2050 and 2070 using four representative concentration pathway (RCP) scenarios and five global climate models. The results showed that the QTP currently contains a suitable habitat for P. filicula and will continue to do so in the future. Under the RCP2.6 scenario, the suitable habitat area would increase by 2050 but shrink slightly by 2070, with an average reduction of 2.7%. However, under the RCP8.5 scenario, the area of unsuitable habitat would expand by an average of 54.65% and 68.20% by 2050 and 2070, respectively. The changes in the area of suitable habitat under the RCP4.5 and RCP6.0 scenarios were similar, with the unsuitable area increasing by approximately 20% by 2050 and 2070. Under these two moderate RCPs, the total suitable area in 2070 would be greater than that in 2050. The top three environmental factors impacting the habitat distribution were altitude, annual precipitation (BIO12) and annual temperature range (BIO7). The cumulative contribution rate of these three factors was as high as 82.8%, indicating that they were the key factors affecting the distribution and adaptability of P. filicula, P. filicula grows well in damp and cold environments. Due to global warming, the QTP will become warmer and drier; thus, the growing area of P. filicula will move toward higher elevations and areas that are humid and cold. These areas are mainly found near the Three-River Region. Future climate change will aggravate the deterioration of the P. filicula habitat and increase the species' survival risk. This study describes the distribution of P. filicula and provides a basis for the protection of endangered plants in the QTP.
Collapse
Affiliation(s)
- Kaiyang Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (K.C.); (B.W.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (K.C.); (B.W.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (K.C.); (B.W.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoying Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (K.C.); (B.W.); (C.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Analysis of Conservation Gaps and Landscape Connectivity for Snow Leopard in Qilian Mountains of China. SUSTAINABILITY 2022. [DOI: 10.3390/su14031638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Human modification and habitat fragmentation have a substantial influence on large carnivores, which need extensive, contiguous habitats to survive in a landscape. The establishment of protected areas is an effective way to offer protection for carnivore populations by buffering them from anthropogenic impacts. In this study, we used MaxEnt to model habitat suitability and to identify conservation gaps for snow leopard (Panthera uncia) in the Qilian Mountains of China, and then assessed the impact of highways/railways and their corridors on habitat connectivity using a graph-based landscape connectivity model. Our results indicated that the study area had 51,137 km2 of potentially suitable habitat for snow leopards and that there were four protection gaps outside of Qilian Mountain National Park. The findings revealed that the investigated highway and railway resulted in a decrease in connectivity at a regional scale, and that corridor development might enhance regional connectivity, which strengthens the capacity of central habitat patches to act as stepping stones and improve connections between western and eastern habitat patches. This study emphasized the need for assessing the impact of highways and railways, as well as their role in corridor development, on species’ connectivity. Based on our results, we provide some detailed recommendations for designing protection action plans for effectively protecting snow leopard habitat and increasing habitat connectivity.
Collapse
|
20
|
Zhang C, Fan Y, Chen M, Xia W, Wang J, Zhan Z, Wang W, Khan TU, Wu S, Luan X. Identification of Conservation Priority Areas and a Protection Network for the Siberian Musk Deer ( Moschus moschiferus L.) in Northeast China. Animals (Basel) 2022; 12:260. [PMID: 35158586 PMCID: PMC8833384 DOI: 10.3390/ani12030260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Species conservation actions are guided by available information on the biogeography of the protected species. In this study, we integrated the occurrence data of Siberian musk deer (Moschus moschiferus L.) collected from 2019 to 2021 with species distribution models to estimate the species' potential distribution in Northeast China. We then identified conservation priority areas using a core-area zonation algorithm. In addition, we analyzed core patch fragmentation using FRAGSTATS. Lastly, we identified potential connectivity corridors and constructed a potential protection network based on the least-cost path and the circuit theory. The results showed concentrations of M. moschiferus in the northern Greater Khingan Mountains, the southeastern Lesser Khingan Mountains, and the eastern Changbai Mountains, with a potential distribution area of 127,442.14 km2. Conservation priority areas included 41 core patches with an area of 106,306.43 km2. Patch fragmentation mainly occurred in the Changbai Mountains and the Lesser Khingan Mountains. We constructed an ecological network composed of 41 core patches and 69 linkages for M. moschiferus in Northeast China. The results suggest that the Greater Khingan Mountains represent the most suitable area to maintain the stability of M. moschiferus populations in Northeast China. Considering the high habitat quality requirements of M. moschiferus and its endangered status, we propose that the Chinese government accelerates the construction of the Greater Khingan Mountains National Park and the Lesser Khingan Mountains National Park and enlarges the Northeast China Tiger and Leopard National Park to address the fragmentation of protected areas and the habitat of M. moschiferus.
Collapse
Affiliation(s)
- Chao Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.Z.); (Y.F.); (M.C.); (J.W.); (Z.Z.); (W.W.); (T.U.K.)
| | - Yuwei Fan
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.Z.); (Y.F.); (M.C.); (J.W.); (Z.Z.); (W.W.); (T.U.K.)
| | - Minhao Chen
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.Z.); (Y.F.); (M.C.); (J.W.); (Z.Z.); (W.W.); (T.U.K.)
| | - Wancai Xia
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China;
| | - Jiadong Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.Z.); (Y.F.); (M.C.); (J.W.); (Z.Z.); (W.W.); (T.U.K.)
| | - Zhenjie Zhan
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.Z.); (Y.F.); (M.C.); (J.W.); (Z.Z.); (W.W.); (T.U.K.)
| | - Wenlong Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.Z.); (Y.F.); (M.C.); (J.W.); (Z.Z.); (W.W.); (T.U.K.)
| | - Tauheed Ullah Khan
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.Z.); (Y.F.); (M.C.); (J.W.); (Z.Z.); (W.W.); (T.U.K.)
| | - Shuhong Wu
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.Z.); (Y.F.); (M.C.); (J.W.); (Z.Z.); (W.W.); (T.U.K.)
| | - Xiaofeng Luan
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; (C.Z.); (Y.F.); (M.C.); (J.W.); (Z.Z.); (W.W.); (T.U.K.)
| |
Collapse
|
21
|
Comparative analysis of gut microbial composition and potential functions in captive forest and alpine musk deer. Appl Microbiol Biotechnol 2022; 106:1325-1339. [PMID: 35037997 PMCID: PMC8816758 DOI: 10.1007/s00253-022-11775-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
Gut microbiota forms a unique microecosystem and performs various irreplaceable metabolic functions for ruminants. The gut microbiota is important for host health and provides new insight into endangered species conservation. Forest musk deer (FMD) and alpine musk deer (AMD) are typical small ruminants, globally endangered due to excessive hunting and habitat loss. Although nearly 60 years of captive musk deer breeding has reduced the hunting pressure in the wild, fatal gastrointestinal diseases restrict the growth of captive populations. In this study, 16S rRNA high-throughput sequencing revealed the differences in gut microbiota between FMD and AMD based on 166 fecal samples. The alpha diversity was higher in FMD than in AMD, probably helping FMD adapt to different and wider habitats. The ß-diversity was higher between adult FMD and AMD than juveniles and in winter than late spring. The phylum Firmicutes and the genera Christensenellaceae R7 group, Ruminococcus, Prevotellaceae UCG-004, and Monoglobus were significantly higher in abundance in FMD than in AMD. However, the phylum Bacteroidetes and genera Bacteroides, UCG-005, Rikenellaceae RC9 gut group, and Alistipes were significantly higher in AMD than FMD. The expression of metabolic functions was higher in AMD than in FMD, a beneficial pattern for AMD to maintain higher energy and substance metabolism. Captive AMD may be at higher risk of intestinal diseases than FMD, with higher relative abundances of most opportunistic pathogens and the expression of disease-related functions. These results provide valuable data for breeding healthy captive musk deer and assessing their adaptability in the wild. KEY POINTS: • Alpha diversity of gut microbiota was higher in FMD than that in AMD • Expression of metabolic and disease-related functions was higher in AMD than in FMD.
Collapse
|
22
|
Jiang F, Gao H, Qin W, Song P, Wang H, Zhang J, Liu D, Wang D, Zhang T. Marked Seasonal Variation in Structure and Function of Gut Microbiota in Forest and Alpine Musk Deer. Front Microbiol 2021; 12:699797. [PMID: 34552569 PMCID: PMC8450597 DOI: 10.3389/fmicb.2021.699797] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/04/2021] [Indexed: 01/14/2023] Open
Abstract
Musk deer (Moschus spp.) is a globally endangered species due to excessive hunting and habitat fragmentation. Captive breeding of musk deer can efficiently relieve the hunting pressure and contribute to the conservation of the wild population and musk supply. However, its effect on the gut microbiota of musk deer is unclear. Recent studies have indicated that gut microbiota is associated with host health and its environmental adaption, influenced by many factors. Herein, high-throughput sequencing of the 16S rRNA gene was used based on 262 fecal samples from forest musk deer (M. berezovskii) (FMD) and 90 samples from alpine musk deer (M. chrysogaster) (AMD). We sought to determine whether seasonal variation can affect the structure and function of gut microbiota in musk deer. The results demonstrated that FMD and AMD had higher α-diversity of gut microbiota in the cold season than in the warm season, suggesting that season change can affect gut microbiota diversity in musk deer. Principal coordinate analysis (PCoA) also revealed significant seasonal differences in the structure and function of gut microbiota in AMD and FMD. Particularly, phyla Firmicutes and Bacteroidetes significantly dominated the 352 fecal samples from captive FMD and AMD. The relative abundance of Firmicutes and the ratio of Firmicutes to Bacteroidetes were significantly decreased in summer than in spring and substantially increased in winter than in summer. In contrast, the relative abundance of Bacteroidetes showed opposite results. Furthermore, dominant bacterial genera and main metabolic functions of gut microbiota in musk deer showed significant seasonal differences. Overall, the abundance of main gut microbiota metabolic functions in FMD was significantly higher in the cold season. WGCNA analysis indicated that OTU6606, OTU5027, OTU7522, and OTU3787 were at the core of the network and significantly related with the seasonal variation. These results indicated that the structure and function in the gut microbiota of captive musk deer vary with seasons, which is beneficial to the environmental adaptation and the digestion and metabolism of food. This study provides valuable insights into the healthy captive breeding of musk deer and future reintroduction programs to recover wild populations.
Collapse
Affiliation(s)
- Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Wen Qin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haijing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingjie Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Daoxin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Dong Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences (CAS), Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
23
|
Wang S, Shang Y, Liang C, Liu T, Du K, Guo J, Li J, Chang YX. Binary Eluent Based Vortex-Assisted Matrix Solid-Phase Dispersion for the Extraction and Determination of Multicomponent from Musk by Gas Chromatography-Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:9913055. [PMID: 34422434 PMCID: PMC8378966 DOI: 10.1155/2021/9913055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
A green, flexible, and effective strategy was proposed to quantify four target compounds (muscone, ethyl palmitate, ethyl oleate, and ethylparaben) from musk by binary eluent based vortex-assisted matrix solid-phase dispersion (MSPD) extraction coupled with GC/MS. Single-factor tests and orthogonal design were employed to optimize the MSPD parameters. In addition, the binary eluent system, methanol, and ethyl acetate 3 : 7 (v/v) were used to extract the target analytes. Finally, C 18 was applied as the easily available dispersant and the sample powder was ground for 2 min. Thereafter, the mixture was rapidly extracted with the binary eluents under whirling for 3 min. Eventually, the analysis of the samples was completed within 12 min by GC/MS. All correlation coefficients (r) of four targets were more than 0.9991. The recoveries of all target compounds ranged from 92.8% to 101% while their RSDs were less than 6.94%. There was no significant matrix interference for the analysis. Thus, the combination of vortex-assisted MSPD with GC/MS was considered as a novel, rapid, and environmentally friendly quantitative approach for musk samples.
Collapse
Affiliation(s)
- Shanshan Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ye Shang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunze Du
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiading Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan-xu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|