1
|
Cao X, Dong Q, Mao L, Yang X, Wang X, Zou Q. Enhanced Phytoextraction Technologies for the Sustainable Remediation of Cadmium-Contaminated Soil Based on Hyperaccumulators-A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:115. [PMID: 39795375 PMCID: PMC11723276 DOI: 10.3390/plants14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Heavy metal pollution in soil is a significant challenge around the world, particularly cadmium (Cd) contamination. In situ phytoextraction and remediation technology, particularly focusing on Cd hyperaccumulator plants, has proven to be an effective method for cleaning Cd-contaminated agricultural lands. However, this strategy is often hindered by a long remediation cycle and low efficiency. To address these limitations, assisted phytoextraction has been proposed as a remediation strategy based on the modification of certain traits of plants or the use of different materials to enhance plant growth and increase metal absorption or bioavailability, ultimately aiming to improve the remediation efficiency of Cd hyperaccumulators. To thoroughly understand the progress of Cd hyperaccumulators in remediating Cd-polluted soils, this review article discusses the germplasm resources and assisted phytoextraction strategies for these plants, including microbial, agronomic measure, chelate, nanotechnology, and CO2-assisted phytoextraction, as well as integrated approaches. This review paper critically evaluates and analyzes the numerous approaches and the remediation potential of Cd hyperaccumulators and highlights current challenges and future research directions in this field. The goal is to provide a theoretical framework for the further development and application of Cd pollution remediation technologies in agricultural soils.
Collapse
Affiliation(s)
- Xuerui Cao
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China; (X.C.)
| | - Qing Dong
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China; (X.C.)
| | - Lihui Mao
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China; (X.C.)
| | - Xiaoe Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education (MOE), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaozi Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education (MOE), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingcheng Zou
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China; (X.C.)
| |
Collapse
|
2
|
Verhoest L, Drouet T, Noret N. Use of phytoextraction with Noccaea caerulescens to limit the transfer of cadmium and zinc to subsequent rocket crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175238. [PMID: 39098423 DOI: 10.1016/j.scitotenv.2024.175238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Soil trace metal (TM) contamination is a worldwide issue and threatens food production and security. Remediation of cadmium (Cd) and zinc (Zn) contaminated soils by phytoextraction with the Zn/Cd hyperaccumulator Noccaea caerulescens is widely studied but few studies have investigated the efficiency of this technique to reduce Cd and Zn soil-to-crop transfers to subsequent vegetable crops. The vegetable biomonitor rocket Diplotaxis tenuifolia was grown in pots on 13 moderately contaminated soils that had previously been cropped with N. caerulescens. Using mixed-effects models, we show the drivers of rocket biomass, Cd and Zn concentrations. Our models show, for our study soils, the benefit of previous N. caerulescens uptake of Cd and Zn in decreasing Cd and Zn concentrations in a subsequent rocket crop. We also show a slight positive impact of N. caerulescens biomass (and therefore uptake) on rocket growth. Our data show that exchangeable soil concentrations are major drivers of Cd and Zn rocket concentrations. Other soil variables negatively driving rocket Cd and Zn concentrations are NO3- content, organic matter content, cation exchange capacity, and soil manganese which stimulate rocket biomass and/or influence TM bioavailability. Rocket D. tenuifolia seems to be a good biomonitor for contaminated soils as it is tolerant to relatively high TM soil concentrations. We demonstrate that 40 % of rockets grown on soils below 2 mg total Cd kg-1 dry soil have foliar Cd concentrations above the European maximum allowed level confirming the need to review soil legal thresholds to protect consumers' health. In conclusion, our study suggests promising use of N. caerulescens phytoextraction for bioavailable contaminant stripping which is all the more interesting given the increasing demand for urban growing spaces.
Collapse
Affiliation(s)
- Louise Verhoest
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université libre de Bruxelles, 50 av. F. D. Roosevelt, 1050 Brussels, Belgium.
| | - Thomas Drouet
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université libre de Bruxelles, 50 av. F. D. Roosevelt, 1050 Brussels, Belgium
| | - Nausicaa Noret
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université libre de Bruxelles, 50 av. F. D. Roosevelt, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Lu Y, Li T, Li R, Zhang P, Li X, Bai Z, Wu J. Role of SbNRT1.1B in cadmium accumulation is attributed to nitrate uptake and glutathione-dependent phytochelatins biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135655. [PMID: 39217923 DOI: 10.1016/j.jhazmat.2024.135655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Phytoremediation of cadmium (Cd)-polluted soil by using sweet sorghum displays a tremendous potential as it is a fast-growing, high biomass and Cd tolerant energy plant. Previous study has demonstrated SbNRT1.1B expression change is in accordance with enhanced Cd accumulation by external nitrate supply in sweet sorghum. Nevertheless, underlying mechanism of SbNRT1.1B response to Cd stress is still elusive. SbNRT1.1B exhibited a positive response to Cd stress in sweet sorghum. Overexpressing SbNRT1.1B increased primary root length, shoot fresh weight, nitrate and chlorophyll concentrations compared with Col-0 under Cd stress, while complementary SbNRT1.1B rescued these decreased values in mutant chl1-5. Cd concentrations in overexpressing SbNRT1.1B, complementary SbNRT1.1B and Col-0 lines were 3.2-4.1, 2.5-3.1 and 1.2-2.1 folds of that in chl1-5. Consistent with Cd concentrations, non-protein thiol (NPT), reduced glutathione (GSH) and phytochelatins (PCs) concentrations as well as the related genes expression levels showed the same trends under Cd stress. GSH biosynthesis inhibitor failed to reverse the patterns of GSH-dependent PCs concentrations changes in different lines, suggesting that SbNRT1.1B plays an upstream role in GSH-dependent PCs biosynthesis under Cd treatment. Altogether, SbNRT1.1B enhances nitrate concentrations contributing to increased chlorophyll concentrations and GSH-dependent PCs metabolites biosynthesis, thereby improving growth and Cd concentrations in plants.
Collapse
Affiliation(s)
- Yuan Lu
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Ting Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Ruijuan Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Pan Zhang
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - XiaoXiao Li
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhenqing Bai
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Jiawen Wu
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China.
| |
Collapse
|
4
|
Deka D, Patwa D, Nair AM, Ravi K. Influence of biochar amendment on removal of heavy metal from soils using phytoremediation by Catharanthus roseus L. and Chrysopogon zizanioides L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53552-53569. [PMID: 39196321 DOI: 10.1007/s11356-024-34734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Advances in sustainable toxic heavy metal treatment technologies are crucial to meet our needs for safer land to develop an urban resilient future. The heavy metals bioaccumulate in the food chain due to their persistence in the soil, which poses a serious challenge to its removal and control. Utilisation of hyperaccumulators to reduce the mobility, accumulation and toxic impact of heavy metals is a promising and ecologically safe technique. Amendments such as biochar and chelates have been shown to enhance the phytoremediation efficiency. However, the potential soil improvement is influenced by the properties of the amendment, plant and metal heterogeneities. In this study, an organic sugarcane bagasse biochar amendment for the 60-day pot experiment using Catharanthus roseus L. (NT) and Chrysopogon zizanioides L. (VT) in a heavy metal-contaminated soil was applied. The influence of biochar on the phytoremediation of lead (Pb), zinc (Zn) and cadmium (Cd) from the soil was explored. The plant survival rate enhanced to 100% with biochar amendment, and the biomass increased from 5.83 to 15 g in Zn-contaminated samples. Nutrients such as potassium concentration are directly correlated to the amendment rates, whereas phosphate decreases beyond the 2% biochar amendment rate in both plants. High heavy metal accumulation capacities with improved growth with biochar indicate the sustainability of the process. The translocation factor (TF) > 1 for Zn in NT represents the phytoextraction efficiencies whereas VT indicates high BCF values in the range of 0.5-3.53 for the amended Zn-contaminated soils. The findings indicate that the amendment rate of 2% improves nutrient cycling, plant biomass and heavy metal removal efficiencies. The insights from this study establish that the synergy between biochar amendment and the selected medicinal plants improved the phytoremediation efficiency.
Collapse
Affiliation(s)
- Dhritilekha Deka
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Deepak Patwa
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Archana M Nair
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Karangat Ravi
- Department of Civil Engineering, Indian Institute of Technology, Guwahati, 781039, India.
| |
Collapse
|
5
|
Wang JC, Zhao JR, Huang QX, Yang LJ, Yu G, Xu YF, Liu LH. Effect of iron-loaded sludge biochar amendments on phytoremediation potential of Cr-contaminated soils by Leersia hexandra swartz. CHEMOSPHERE 2023; 337:139355. [PMID: 37385485 DOI: 10.1016/j.chemosphere.2023.139355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
In this study, the effect of iron-loaded sludge biochar (ISBC) with different amendment dosages (mass ratio of biochar to soil equal to 0, 0.01, 0.025 and 0.05) on the phytoremediation potential of Leersia hexandra swartz (L. hexandra) to Cr-contaminated soil was investigated. With increasing ISBC dosage from 0 to 0.05, plant height, aerial tissue biomass and root biomass increased from 15.70 cm, 0.152 g pot-1 and 0.058 g pot-1 to 24.33 cm, 0.304 g pot-1 and 0.125 g pot-1, respectively. Simultaneously, the Cr contents in aerial tissues and roots increased from 1039.68 mg kg-1 to 2427.87 mg kg-1 to 1526.57 mg kg-1 and 3242.62 mg kg-1, respectively. Thus, the corresponding bioenrichment factor (BCF), bioaccumulation factor (BAF), total phytoextraction (TPE) and translocation factor (TF) values were also increased from 10.52, 6.20, 0.158 mg pot-1 (aerial tissue)/0.140 mg pot-1 (roots) and 0.428 to 15.15, 9.42, 0.464 mg pot-1 (aerial tissue)/0.405 mg pot-1 (roots) and 0.471, respectively. The significant positive effect of ISBC amendment was primarily attributed to the following three aspects: 1) the root resistance index (RRI), tolerance index (TI) and growth toxicity index (GTI) of L. hexandra to Cr were increased from 100%, 100% and 0%-216.88%, 155.02% and 42.18%, respectively; 2) the bio-available Cr content in the soil was decreased from 1.89 mg L-1 to 1.48 mg L-1, while the corresponding TU (toxicity units) value was declined from 0.303 to 0.217; 3) the activities of urease, sucrase and alkaline phosphatase in soil were increased from 0.186 mg g-1, 1.40 mg g-1 and 0.156 mg g-1 to 0.242 mg g-1, 1.86 mg g-1 and 0.287 mg g-1, respectively. In summary, ISBC amendment was able to significantly improve the phytoremediation of Cr-contaminated soils by L. hexandra.
Collapse
Affiliation(s)
- Jin-Chao Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Ji-Rong Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; School of Civil and Hydraulic Engineering, Xichang University, Xichang, 615000, China
| | - Qing-Xia Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Li-Jiao Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Yu-Feng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Li-Heng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
6
|
Saran A, Much D, Vangronsveld J, Merini L. Phytomanagement of trace element polluted fields with aromatic plants: supporting circular bio-economies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:169-177. [PMID: 37486171 DOI: 10.1080/15226514.2023.2231554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Trace elements pollution of soils became a global concern because of their persistence in the environment which can lead to accumulation in food chains up to toxic levels. At the same time, there is a shortage of arable land for growing food, fodder and industrial crops, which highlights the need for remediation/use of polluted land. Restoration of degraded lands has been included as a vital component of UN Sustainable Development Goals (SDGs). We summarize various sources of entry of important trace elements in the environment, available biological reclamation and management strategies and their limitations. Recent advances in phytomanagement approaches using aromatic crops to obtain economically valuable products such as essential oils and revalorize such polluted areas are reviewed. The worldwide application of this strategy in the last 10 years is illustrated through a choropleth map. Finally, the emerging concept of phytomanagement as a restorative and regenerative circular bio-economy is also discussed.
Collapse
Affiliation(s)
- Anabel Saran
- CONICET, Agency of Scientific Investigation, La Pampa, Argentina
| | - Diego Much
- CONICET, Agency of Scientific Investigation, La Pampa, Argentina
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie Sklodowska University, Lublin, Poland
| | - Luciano Merini
- CONICET, Agency of Scientific Investigation, La Pampa, Argentina
| |
Collapse
|
7
|
Santa-Cruz J, Robinson B, Krutyakov YA, Shapoval OA, Peñaloza P, Yáñez C, Neaman A. An Assessment of the Feasibility of Phytoextraction for the Stripping of Bioavailable Metals from Contaminated Soils. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:558-565. [PMID: 36582151 DOI: 10.1002/etc.5554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Phytoextraction has been proposed in many papers as a low-cost method for remediating contaminated soil. However, if national regulation is based on total metal(loid) concentrations in soil, phytoextraction is generally infeasible because of the long time required for remediation. Assessing phytoextraction requires determination of the dynamic rate of metal removal from soil. Phytoextraction may be feasible if the main goal is to reduce the soluble fraction of the metal(loid) with the goal of reducing bioavailability. However, it has been reported that there is a large mass balance mismatch between the reduction of the soluble metal fraction in contaminated soil and metal uptake by plants. Several studies report that the decrease of soluble fraction of metals in soil is higher than can be accounted for by plant uptake. In other words, studies generally overestimate the feasibility of bioavailable contaminant stripping. Therefore, a more rigorous approach is advisable to ensure that papers on bioavailable contaminant stripping include relevant information on mass balances. Furthermore, to implement the concept of bioavailable contaminant stripping, regulations must distinguish between the bioavailable fraction and the total metal concentration in soil. Environ Toxicol Chem 2023;42:558-565. © 2022 SETAC.
Collapse
Affiliation(s)
- Javier Santa-Cruz
- Escuela de Ciencias Agrícolas y Veterinarias, Universidad Viña del Mar, Viña del Mar, Chile
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Yurii A Krutyakov
- Department of Chemistry, Laboratory of Functional Materials for Agriculture, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Shapoval
- Pryanishnikov All-Russian Scientific Research Institute of Agrochemistry, Moscow, Russian Federation
| | - Patricia Peñaloza
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Carolina Yáñez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alexander Neaman
- Departamento de Recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
8
|
Chen X, Lin Q, Xiao H, Muhammad R. Manganese-modified biochar promotes Cd accumulation in Sedum alfredii in an intercropping system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120525. [PMID: 36368551 DOI: 10.1016/j.envpol.2022.120525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Intercropping of crops with hyperaccumulators is a sustainable method to remediate contaminated soil without impeding agro-production. However, the function of engineered biochar in intercropping systems and its possible influence on cadmium (Cd) accumulation in hyperaccumulators remain unknown. A root box experiment on celery and Sedum alfredii with and without root separation was conducted in this study. Pristine and KMnO4-modified biochar (BCMn) were used to investigate the effects of different biochars on plant growth and Cd uptake in an intercropping system, as well as the influence of engineered biochar on Cd accumulation in hyperaccumulators. The results demonstrated that soil pH did not significantly vary with biochar application in the root separation treatment. However, BCMn significantly increased soil pH and thus reduced available Cd when the plant roots were not separated. Intercropping (no separation treatment) led to a 34% higher and 24% lower aboveground biomass of celery and S. alfredii, respectively, regardless of biochar addition. Compared with aboveground plant parts, plant roots exhibited more significant responses to biochar. Interestingly, intercropping may favour the phytoextraction of Cd by S. alfredii. In particular, the Cd uptake by S. alfredii roots substantially increased (118-187%), whereas that of celery roots decreased (51-71%) with BCMn addition, compared with other treatments. Moreover, after BCMn addition the accumulation of Cd in aboveground S. alfredii in the no separation treatment was 136% higher than that in the separation treatment. This was possibly related to the interaction of manganese (Mn) with Cd as well as the roots of S. alfredii. These findings provide new insights into the application of engineered biochar for phytoextraction, which is important for the efficient remediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Xuejiao Chen
- School of Food Science and Bioengineering, Xihua University, Chengdu, 610039, China; College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qimei Lin
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Agricultural Resources and Environmental Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Hongyang Xiao
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Rizwan Muhammad
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Department of Environmental Sciences, Faculty of Life Sciences, University of Okara, Okara, 56130, Pakistan
| |
Collapse
|
9
|
Shaheen SM, Mosa A, Natasha, Arockiam Jeyasundar PGS, Hassan NEE, Yang X, Antoniadis V, Li R, Wang J, Zhang T, Niazi NK, Shahid M, Sharma G, Alessi DS, Vithanage M, Hseu ZY, Sarmah AK, Sarkar B, Zhang Z, Hou D, Gao B, Wang H, Bolan N, Rinklebe J. Pros and Cons of Biochar to Soil Potentially Toxic Element Mobilization and Phytoavailability: Environmental Implications. EARTH SYSTEMS AND ENVIRONMENT 2023; 7:321-345. [DOI: 10.1007/s41748-022-00336-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 08/20/2023]
Abstract
AbstractWhile the potential of biochar (BC) to immobilize potentially toxic elements (PTEs) in contaminated soils has been studied and reviewed, no review has focused on the potential use of BC for enhancing the phytoremediation efficacy of PTE-contaminated soils. Consequently, the overarching purpose in this study is to critically review the effects of BC on the mobilization, phytoextraction, phytostabilization, and bioremediation of PTEs in contaminated soils. Potential mechanisms of the interactions between BC and PTEs in soils are also reviewed in detail. We discuss the promises and challenges of various approaches, including potential environmental implications, of BC application to PTE-contaminated soils. The properties of BC (e.g., surface functional groups, mineral content, ionic content, and π-electrons) govern its impact on the (im)mobilization of PTEs, which is complex and highly element-specific. This review demonstrates the contrary effects of BC on PTE mobilization and highlights possible opportunities for using BC as a mobilizing agent for enhancing phytoremediation of PTEs-contaminated soils.
Collapse
|
10
|
Yung L, Sirguey C, Azou-Barré A, Blaudez D. Natural Fungal Endophytes From Noccaea caerulescens Mediate Neutral to Positive Effects on Plant Biomass, Mineral Nutrition and Zn Phytoextraction. Front Microbiol 2021; 12:689367. [PMID: 34295322 PMCID: PMC8290495 DOI: 10.3389/fmicb.2021.689367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/14/2022] Open
Abstract
Phytoextraction using hyperaccumulating plants is a method for the remediation of soils contaminated with trace elements (TEs). As a strategy for improvement, the concept of fungal-assisted phytoextraction has emerged in the last decade. However, the role played by fungal endophytes of hyperaccumulating plants in phytoextraction is poorly studied. Here, fungal endophytes isolated from calamine or non-metalliferous populations of the Cd/Zn hyperaccumulator Noccaea caerulescens were tested for their growth promotion abilities affecting the host plant. Plants were inoculated with seven different isolates and grown for 2 months in trace element (TE)-contaminated soil. The outcomes of the interactions between N. caerulescens and its native strains ranged from neutral to beneficial. Among the strains, Alternaria thlaspis and Metapochonia rubescens, respectively, isolated from the roots of a non-metallicolous and a calamine population of N. caerulescens, respectively, exhibited the most promising abilities to enhance the Zn phytoextraction potential of N. caerulescens related to a significant increase of the plant biomass. These strains significantly increased the root elemental composition, particularly in the case of K, P, and S, suggesting an improvement of the plant nutrition. Results obtained in this study provide new insights into the relevance of microbial-assisted phytoextraction approaches in the case of hyperaccumulating plants.
Collapse
Affiliation(s)
- Loïc Yung
- Université de Lorraine, CNRS, LIEC, Nancy, France
| | | | - Antonin Azou-Barré
- Université de Lorraine, CNRS, LIEC, Nancy, France
- Université de Lorraine, INRAE, LSE, Nancy, France
| | | |
Collapse
|
11
|
Yung L, Blaudez D, Maurice N, Azou-Barré A, Sirguey C. Dark septate endophytes isolated from non-hyperaccumulator plants can increase phytoextraction of Cd and Zn by the hyperaccumulator Noccaea caerulescens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16544-16557. [PMID: 33387325 DOI: 10.1007/s11356-020-11793-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Dark septate endophytes (DSEs) can improve plant stress tolerance by promoting growth and affecting element accumulation. Due to its ability to accumulate high Cd, Zn, and Ni concentrations in its shoots, Noccaea caerulescens is considered a promising candidate for phytoextraction in the field. However, the ability of DSEs to improve trace element (TE) phytoextraction with N. caerulescens has not yet been studied. The aim of this study was therefore to determine the ability of five DSE strains, previously isolated from poplar roots collected at different TE-contaminated sites, to improve plant development, mineral nutrient status, and metal accumulation by N. caerulescens during a pot experiment using two soils differing in their level of TE contamination. Microscopic observations revealed that the tested DSE strains effectively colonised the roots of N. caerulescens. In the highly contaminated (HC) soil, a threefold increase in root biomass was found in plants inoculated with the Leptodontidium sp. Pr30 strain compared to that in the non-inoculated condition; however, the plant nutrient status was not affected. In contrast, the two strains Phialophora mustea Pr27 and Leptodontidium sp. Me07 had positive effects on the mineral nutrient status of plants without significantly modifying their biomass. Compared to non-inoculated plants cultivated on HC soil, Pr27- and Pr30-inoculated plants extracted more Zn (+ 30%) and Cd (+ 90%), respectively. In conclusion, we demonstrated that the responses of N. caerulescens to DSE inoculation ranged from neutral to beneficial and we identified two strains (i.e. Leptodontidium sp. (Pr30) and Phialophora mustea (Pr27)) isolated from poplar that appeared promising as they increased the amounts of Zn and Cd extracted by improving plant growth and/or TE accumulation by N. caerulescens. These results generate interest in further characterising the DSEs that naturally colonise N. caerulescens and testing their ability to improve phytoextraction.
Collapse
Affiliation(s)
- Loïc Yung
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Nicolas Maurice
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Antonin Azou-Barré
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | | |
Collapse
|
12
|
Bai ZQ, Zhu L, Chang HX, Wu JW. Enhancement of cadmium accumulation in sweet sorghum as affected by nitrate. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:66-73. [PMID: 32989911 DOI: 10.1111/plb.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/20/2020] [Indexed: 05/22/2023]
Abstract
The Cadmium (Cd)-polluted soils are is an increasing concern worldwide. Phytoextraction of Cd pollutants by high biomass plants, such as sweet sorghum, is considered an environmentally-friendly, cost-effective and sustainable strategy for remediating this problem. Nitrogen (N) is a macronutrient essential for plant growth, development and stress resistance. Nevertheless, how nitrate, as an important form of N, affects Cd uptake, translocation and accumulation in sweet sorghum is still unclear. In the present study, a series of nitrate levels (N1, 0.5 mm; N2, 2 mm; N3, 4 mm; N4, 8 mm and N5, 16 mm) with or without added 5 μm CdCl2 treatment in sweet sorghum was investigated hydroponically. The results indicate that Cd accumulation in the aboveground parts of sweet sorghum was enhanced by optimum nitrate supply, resulting from both increased dry weight and Cd concentration. Although root-to-shoot Cd translocation was not enhanced by increased nitrate, some Cd was transferred from cell walls to vacuoles in leaves. Intriguingly, expression levels of Cd uptake and transport genes, SbNramp1, SbNramp5 and SbHMA3, were not closely related to increased Cd as affected by nitrate supply. The expression of SbNRT1.1B in relation to nitrate transport showed an inverted 'U' shape with increasing nitrate levels under Cd stress, which was in agreement with trends in Cd concentration changes in aboveground tissues. Based on the aforementioned results, nitrate might regulate Cd uptake and accumulation through expression of SbNRT1.1B rather than SbNramp1, SbNramp5 or SbHMA3, the well-documented genes related to Cd uptake and transport in sweet sorghum.
Collapse
Affiliation(s)
- Z Q Bai
- Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, China
- College of Life Sciences, Yan'an University, Yan'an, China
| | - L Zhu
- College of Life Sciences, Yan'an University, Yan'an, China
| | - H X Chang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - J W Wu
- Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, China
- College of Life Sciences, Yan'an University, Yan'an, China
| |
Collapse
|
13
|
Yang H, Zhang G, Fu P, Li Z, Ma W. The evaluation of in-site remediation feasibility of Cd-contaminated soils with the addition of typical silicate wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114865. [PMID: 32505961 DOI: 10.1016/j.envpol.2020.114865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
In-site remediation is a relatively promising and socially acceptable technique for heavy metal contaminated soils. But the key task is to select cost-effective and environment-friendly amendents for the consideration of practical application. Based on the property of four typical silicate wastes such as straw ash (SA), coal fly ash (CFA), ferronickel slag (FNS) and blast-furnace slag (BFS), effects of four wastes on available Cd content and Cd chemical speciation in amended soils, and physicochemical properties of the amended soils were carried out in the study. The results showed that four wastes were dominately composed of the amorphous phases with OH- ions readily released. When the weight ratio of silicate wastes to artificial Cd-contaminated soils reached 10%, the available Cd contents decreased from 4.12 mg/kg in untreated soils to 1.94, 1.92, 1.45 and 1.53 mg/kg in amended soils by adding SA, CFA, FNS and BFS respectively, after the soils were amended for 30 days. The residual fraction of Cd (R) was 2.54, 2.48, 2.77 and 2.58 times higher in amended soil than that in untreated soil when SA, CFA, FNS and BFS was added, respentively. The soil pH and CEC were improved. The amended soils by adding SA and FNS were looser than those by adding CFA and BFS, and air permeability of the amended soils by SA was better than that by FNS.
Collapse
Affiliation(s)
- Huifen Yang
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing, 100083, China.
| | - Ge Zhang
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Peng Fu
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Zhen Li
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Wenkai Ma
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| |
Collapse
|