1
|
Amalina F, Krishnan S, Zularisam AW, Nasrullah M. Pristine and modified biochar applications as multifunctional component towards sustainable future: Recent advances and new insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169608. [PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
Collapse
Affiliation(s)
- Farah Amalina
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
2
|
Meena R AA, J M, Banu J R, Bhatia SK, Kumar V, Piechota G, Kumar G. A review on the pollution assessment of hazardous materials and the resultant biorefinery products in Palm oil mill effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121525. [PMID: 37062401 DOI: 10.1016/j.envpol.2023.121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/18/2023] [Accepted: 03/26/2023] [Indexed: 05/09/2023]
Abstract
The voluminous nature of palm oil mill effluent (POME) is directly associated with environmental hazards and could be turned into biorefinery products. The POME, rich in BOD, COD, and oil and grease, with few hazardous materials such as siloxanes, fatty acid methyl ester, and phenolic compounds that may significantly increase the risk of violating the effluent quality standards. Recently, the application of chemical and biological risk assessment that can use electrochemical sensors and microalgae-like species has gained paramount attention towards its remediation. This review describes the existing risk assessment for POME and recommends a novel assessment approach using fish species including invasive ones as suitable for identifying the toxicants. Various physico-chemical and biological treatments such as adsorption, coagulation-flocculation, photo-oxidation, solar-assisted extraction, anaerobic digestion, integrated anaerobic-aerobic, and microalgae cultivation has been investigated. This paper offers an overview of anaerobic technologies, with particular emphasis on advanced bioreactors and their prospects for industrial-level applications. To illustrate, palmitic acid and oleic acid, the precursors of fatty acid methyl ester found in POME pave the way to produce biodiesel with 91.45%. Although there are some challenges in attaining production at an economic scale, this review offers some opportunities that could help in overcoming these challenges.
Collapse
Affiliation(s)
- Anu Alias Meena R
- Department of Environmental Sciences, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Merrylin J
- Department of Nutrition and Dietetics, Sadakathullah Appa College, Tirunelveli, 627011, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamilnadu, Neelakudi, Thiruvarur, 610005, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, MK43 0AL, Cranfield, United Kingdom
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100, Toruń, Poland
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, 4036, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
3
|
Thermoeconomic Analysis of Biomethane Production Plants: A Dynamic Approach. SUSTAINABILITY 2022. [DOI: 10.3390/su14105744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This work analyses the two most diffused technologies for biogas upgrading, namely water scrubbing and membrane separation. In order to carry out such analysis, these two technologies are coupled with photovoltaic panels and an electric energy storage system. The optimal water scrubbing renewable plant achieves a primary energy saving of 5.22 GWh/year and an operating cost saving of 488 k€/year, resulting in the best plant. It was compared to a reference system based on a cogenerator unit, directly supplied by biogas, producing thermal and electric energy, and delivered to the district heating network and to the electric grid. The profitability of both plants depends on the electric energy and biomethane exporting price. The proposed bigas upgrading plant achieves a payback period lower than 10 years with a biomethane selling price greater than 0.55 €/Sm3 and a primary energy saving index around 25–30% with a null share of thermal energy exported by the cogeneration plant.
Collapse
|
4
|
Mohamad Z, Razak AA, Krishnan S, Singh L, Zularisam A, Nasrullah M. Treatment of palm oil mill effluent using electrocoagulation powered by direct photovoltaic solar system. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Simulation and Optimisation of Integrated Anaerobic-Aerobic Bioreactor (IAAB) for the Treatment of Palm Oil Mill Effluent. Processes (Basel) 2021. [DOI: 10.3390/pr9071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study highlights an innovative piece of hybrid technology, whereby the combination of anaerobic and aerobic processes into a single reactor, namely, the integrated anaerobic–aerobic bioreactor (IAAB) can surpass the limits of conventional methods treating palm oil mill effluent (POME). Optimisation of IAAB using SuperPro Designer V9 simulator for maximum biogas yield while addressing its economic and environmental trade-offs was conducted for the first time. Parameters such as hydraulic retention time (HRT) and organic loading rate (OLR) were optimised in the anaerobic compartment from 10 days and 6.2 g COD/L day to 9 days and 6.9 g COD/L day, respectively. Furthermore, sludge recycle ratio was optimised from 20% to 50% in the aerobic compartment. The optimisation was successful where the biogas yield increased from 0.24 to 0.29 L CH4/g CODremoved with excellent Chemical Oxygen Demand (COD), and Biological Oxygen Demand (BOD) removal efficiencies up to 99% with 5.8% lower net expenditure. This simulation results were comparable against the pre-commercialized IAAB with 11.4% increase in methane yield after optimisation. Economic analysis had proven the optimised process to be feasible, resulting in return on investment (ROI), payback time, and internal rate of return (IRR) of 24.5%, 4.1 years, and 17.9%, respectively.
Collapse
|
6
|
Mahmudul HM, Rasul MG, Akbar D, Narayanan R, Mofijur M. A comprehensive review of the recent development and challenges of a solar-assisted biodigester system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141920. [PMID: 32889316 DOI: 10.1016/j.scitotenv.2020.141920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The extensive use of fossil fuels and the environmental effect of their combustion products have attracted researchers to look into renewable energy sources. In addition, global mass production of waste has motivated communities to recycle and reuse the waste in a sustainable way to lower landfill waste and associated problems. The development of waste to energy (WtE) technology including the production of bioenergy, e.g. biogas produced from various waste through Anaerobic Digestion (AD), is considered one of the potential measures to achieve the sustainable development goals of the United Nations (UN). Therefore, this study reviews the most recent studies from relevant academic literature on WtE technology (particularly AD technology) for biogas production and the application of a solar-assisted biodigester (SAB) system aimed at improving performance. In addition, socio-economic factors, challenges, and perspectives have been reported. From the analysis of different technologies, further work on effective low-cost technologies is recommended, especially using SAB system upgrading and leveraging the opportunities of this system. The study found that the performance of the AD system is affected by a variety of factors and that different approaches can be applied to improve performance. It has also been found that solar energy systems efficiently raise the biogas digester temperature and through this, they maximize the biogas yield under optimum conditions. The study revealed that the solar-assisted AD system produces less pollution and improves performance compared to the conventional AD system.
Collapse
Affiliation(s)
- H M Mahmudul
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia.
| | - M G Rasul
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia
| | - D Akbar
- School of Business and Law, Central Queensland University, QLD 4701, Australia
| | - R Narayanan
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia
| | - M Mofijur
- School of Information, Systems and Modelling, University of Technology Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| |
Collapse
|
7
|
Shamsuddin R, Singh G, Kok HY, Hakimi Rosli M, Dawi Cahyono NA, Lam MK, Lim JW, Low A. Palm Oil Industry—Processes, By-Product Treatment and Value Addition. SUSTAINABLE BIOCONVERSION OF WASTE TO VALUE ADDED PRODUCTS 2021. [DOI: 10.1007/978-3-030-61837-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|