1
|
Pan D, Zhang C, Wang CS, Zhang P, Jiao XY, Ma QR, Wang LT, Li DJ, Li LP. Unravelling hidden threats of water disinfection: Toxicity evaluation and toxic products identification during diclofenac degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123424. [PMID: 38278408 DOI: 10.1016/j.envpol.2024.123424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Diclofenac (DCF) is a widely-used nonsteroidal anti-inflammatory drug that is routinely found in surface water bodies. While ozonation and ultraviolet (UV) radiation are commonly employed as disinfection methods in water treatment processes, the degradation of DCF in these processes occurs due to the strong oxidizing activity of the reactive oxygen species produced during both ozonation and UV radiation. Despite extensive studies reporting the removal and transformation of DCF through ozone and UV treatments, the potential hidden hazards of toxicity arising from these processes as well as the identification of the toxic transformation products have often been overlooked. In this study, various toxicities including microtoxicity, genotoxicity and antiestrogenicity were evaluated using multiple in-vitro bioassays. The transformation products were identified via ultra-performance liquid chromatography equipped with mass spectrometry (UPLC-MS). Correlation analysis was employed to gain deeper insight into the contributions of degradation products to overall toxicity. The results revealed that DCF possessed significant genotoxic and antiestrogenic effects, but displayed minimal microtoxicity. Microtoxic products such as those containing carbazole were generated during DCF degradation with ozone, UVA and UVC. Antiestrogenic products with dichloroaniline structures were observed in DCF ozonation but not in photodegradation by UVA and UVC. These findings highlighted the hidden risks associated with the disinfection of water containing micropollutants such as DCF.
Collapse
Affiliation(s)
- Ding Pan
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Cheng Zhang
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, 519087, China
| | - Cai-Shan Wang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Peng Zhang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yi Jiao
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Qian-Ru Ma
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Li-Ting Wang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Dai-Jun Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Li-Ping Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Xu T, Tang X, Qiu M, Lv X, Shi Y, Zhou Y, Xie Y, Naushad M, Lam SS, Ng HS, Sonne C, Ge S. Degradation of levofloxacin from antibiotic wastewater by pulse electrochemical oxidation with BDD electrode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118718. [PMID: 37541001 DOI: 10.1016/j.jenvman.2023.118718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Antibiotic-containing wastewater is a typical biochemical refractory organic wastewater and general treatment methods cannot effectively and quickly degrade the antibiotic molecules. In this study, a novel boron-doped diamond (BDD) pulse electrochemical oxidation (PEO) technology was proposed for the efficient removal of levofloxacin (LFXN) from wastewater. The effects of current density (j), initial pH (pH0), frequency (f), electrolyte types and initial concentration (c0(LFXN)) on the degradation of LFXN were systematically investigated. The degradation kinetics under four different processes have also been studied. The possible degradation mechanism of LFXN was proposed by Density functional theory calculation and analysis of degradation intermediates. The results showed that under the optimal parameters, the COD removal efficiency (η(COD)) was 94.4% and the energy consumption (EEC) was 81.43 kWh·m-3 at t = 120 min. The degradation of LFXN at pH = 2.8/c(H2O2) followed pseudo-first-order kinetics. The apparent rate constant was 1.33 × 10-2 min-1, which was much higher than other processes. The degradation rate of LFXN was as follows: pH = 2.8/c(H2O2) > pH = 2.8 > pH = 7/c(H2O2) > pH = 7. Ten aromatic intermediates were formed during the degradation of LFXN, which were further degraded to F-, NH4+, NO3-, CO2 and H2O. This study provides a promising approach for efficiently treating LFXN antibiotic wastewater by pulsed electrochemical oxidation with a BDD electrode without adding H2O2.
Collapse
Affiliation(s)
- Tao Xu
- College of Science, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiting Tang
- School of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Meiting Qiu
- School of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoliu Lv
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Shi
- Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yihui Zhou
- College of Science, Central South University of Forestry and Technology, Changsha, 410004, China; Aerospace Kaitian Environmental Technology Co., Ltd., Changsha, 410100, China.
| | - Yanfei Xie
- People's Hospital of Ningxiang City, Ningxiang, Hunan, 410600, China
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Shengbo Ge
- Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Aerospace Kaitian Environmental Technology Co., Ltd., Changsha, 410100, China.
| |
Collapse
|
3
|
Yang C, Zhang S, Li X, Zhang X, Zhao Q, Li Y, Li H. Impacts of properties of dissolved organic matters on indirect photodegradation of genistein. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161448. [PMID: 36623661 DOI: 10.1016/j.scitotenv.2023.161448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Excited triplet states of dissolved organic matters (3DOM*) are one of the most important photochemically-produced reactive intermediates leading to transformation of organic contaminants. However, relationships of photodegradation kinetics of different dissociation states of phenolic organic contaminants with chemical components or properties of 3DOM* are largely unknown. In this study, roles of 3DOM* in photodegradation of polyhydroxy phenolic genistein (Gs) at pH 5, 8 and 12 were investigated taking five kinds of DOM from different sources as examples. Relationships between photodegradation kinetics constants and DOM properties were built. Results showed that the contributions of direct 3DOM*-induced reactions to the total indirect photodegradation of Gs and second-order reaction rate constants (kDOM,Gs) of Gs with 3DOM* increased with pH increases. This was mainly attributed to decreases in vertical ionization energy of Gs at higher pH, endowing Gs with stronger electron donating capacities. kDOM,Gs was found to positively correlate with the specific ultraviolet absorbance at 254 nm, reflecting aromaticity of DOM, and negatively correlate with the absorbance ratio at 254 and 365 nm and contents of dissociated acidic functional groups of DOM, representing molecular weights of DOM, antioxidants and the repulsive forces between 3DOM* and Gs. This study provided a new insight into relationship between DOM properties and indirect photodegradation kinetics of phenolic contaminants in aquatic environments.
Collapse
Affiliation(s)
- Chen Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Siyu Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China.
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| |
Collapse
|
4
|
Li T, Zuo X, Zhang S, Kong Q. Inactivation of antibiotic resistant bacteria from stormwater runoff using UVA/LED and its potential risks. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2963-2973. [PMID: 36515199 DOI: 10.2166/wst.2022.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, increasing attention has been paid to antibiotic resistance in stormwater runoff. However, there is no available literature about the control of antibiotic resistant bacteria (ARB) through 365 nm ultraviolet light-emitting diode (UVA/LED). In this study, batch experiments were conducted to investigate ARB inactivation kinetics, effects of light intensity and water matrix (including suspended solid (SS) concentration, initial pH and bacteria concentration), and potential transmission risks after UVA/LED irradiation. Results showed that ARB inactivation efficiencies reached 6.31 log reduction at 8 mW/cm2 (86 J/cm2) of UVA/LED for 180 min. ARB inactivation efficiencies increased with the increase of light intensity, and showed a linear relationship. ARB inactivation decreased with increasing SS levels, and the largest inactivation efficiencies was 3.56 log reduction at 50 mg/L of SS. Initial pH had slight effect on ARB inactivation through UVA/LED irradiation. A low initial bacteria concentration (105 CFU/mL) was not necessarily associated with good ARB inactivation (3.59 log reduction). After UVA/LED irradiation, ARB was hardly detected during 12 hr of dark repair, and the transfer frequency of kanamycin resistance gene was increased to 5.43 × 10-4. These suggested that the application of UVA/LED to inactivate ARB in stormwater runoff was feasible and desirable in this study.
Collapse
Affiliation(s)
- Ting Li
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| | - SongHu Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| | - QingGang Kong
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
5
|
Yang C, Jin X, Guo K, Diao Y, Jin P. Simultaneous removal of organics and ammonia using a novel composite magnetic anode in the electro-hybrid ozonation-coagulation (E-HOC) process toward leachate treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129664. [PMID: 36104898 DOI: 10.1016/j.jhazmat.2022.129664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
To achieve simultaneous organics and ammonia (NH4+-N) removal toward leachate treatment, this study designed a composite anode (CA+), in which iron powders were attracted to RuO2-IrO2/Ti tube surface by an inserted magnet and utilized in electro-hybrid ozonation-coagulation (E-HOC). The E-HOC (CA+) resulted in higher chemical oxygen demand (COD) and NH4+-N removal with most content of CO2/H2O and gaseous N in product compared with E-HOC (Fe+), electrolysis ozonation and single ozonation. Reactive chlorine species (RCS) and coagulants were co-produced by compositing RuO2-IrO2/Ti and Fe powders, resulting in multiple reactions including electrocoagulation, ozone oxidation, synergistic between ozone and coagulants (SOC), electrolytic chloride and synergistic oxidation between active chlorine and ozone (SCO) occurred. Hydroxyl radical (•OH) generated through SOC reaction was promoted due the RCS generation in E-HOC. The interaction between •OH and Cl-/ClO- also contributed to enhanced Cl•/ClO• production. Consequently, synergy of chlorine, coagulants and ozone enhanced reactive species generation which contributed to favorable organics and NH4+-N removal. Enhanced •OH and RCS are also attributed to conversion of bio-refractory organics like polyphenol, polycyclic aromatics and S-containing to biodegradable ones, e.g., aliphatic compounds and CHO. This study provides an easily operating strategy for leachate treatment with high content organics and NH4+-N.
Collapse
Affiliation(s)
- Chao Yang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Kun Guo
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Yue Diao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China.
| |
Collapse
|
6
|
Wang J, Wang K, Zhang L, Guo Y, Guo Z, Sun W, Ye Z, Niu J. Mechanism of bicarbonate enhancing the photodegradation of β-blockers in natural waters. WATER RESEARCH 2021; 197:117078. [PMID: 33819659 DOI: 10.1016/j.watres.2021.117078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The impact of HCO3- on the photodegradation of β-blockers was investigated under simulated sunlight irradiation. The results show that in the presence of HCO3-, the photodegradation rates increase significantly for sotalol (SOT), whereas no effects on the degradation of carvedilol and arotinolol are observed. Using quenching experiments, electron paramagnetic resonance spectra and degradation product determination, we demonstrate that carbonate radical (CO3•-) is formed by direct oxidation of HCO3- by triplet-excited SOT (3SOT*) and plays a significant role in SOT photodegradation. Competition kinetics experiments show that the three β-blockers all have high second-order rate constants (107-108 M-1 s-1) for the reaction with CO3•-. However, only 3SOT* has a higher reduction potential that can oxidize HCO3- to produce CO3•-. Thus, enhanced SOT removal rates in the presence of HCO3- were observed. In addition, the results show that seawater DOM could increase HCO3--induced photodegradation of SOT, whereas SRNOM mainly behaves as a CO3•- quencher and decreases the removal rate of SOT. The results underscore the role of HCO3- in limiting the persistence of organic pollutants like SOT in sunlit natural waters, and especially in marine and coastal waters.
Collapse
Affiliation(s)
- Jieqiong Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Kai Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuchen Guo
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Wei Sun
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zimi Ye
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|