1
|
Elehinafe FB, Aondoakaa EA, Akinyemi AF, Agboola O, Okedere OB. Separation processes for the treatment of industrial flue gases - Effective methods for global industrial air pollution control. Heliyon 2024; 10:e32428. [PMID: 38933980 PMCID: PMC11200353 DOI: 10.1016/j.heliyon.2024.e32428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The treatment of flue gases has become a crucial area of interest with the increasing air emissions into the atmosphere from industries involved in combustion of fossil fuels in their operations. In essence, there is a critical need for effective methods of treatment more than ever. Treatment and separation are now a demand for the overall industrial operations to control the rate of flue gas emissions. The major culprit in this wise is power generating industry. The major associated air pollutants are carbon dioxide, sulfur oxides, trace metals, volatile organic compounds, particulate matters, and nitrogen oxides. However, the choice of technologies to be utilized requires more than just knowledge of the separation process, but also a good understanding of the properties of the pollutants. This review explored and evaluated the various separation processes and technologies for the treatment of industrial flue gases for the control of the associated air pollutants. It also analyzed the performance with references to cost and efficiency, the advantages and disadvantages, principles for selection, research direction, and/or potential opportunities in existing separation processes and technologies.
Collapse
Affiliation(s)
- Francis B. Elehinafe
- Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria
| | - Ephraim A. Aondoakaa
- Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria
| | - Akinnike F. Akinyemi
- Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria
| | - Oluranti Agboola
- Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria
| | - Oyetunji B. Okedere
- Department of Chemical Engineering, Faculty of Engineering, Osun State University, Osogbo, Ogun State, Nigeria
| |
Collapse
|
2
|
Wu X, Yang Y, Gong Y, Deng Z, Wang Y, Wu W, Zheng C, Zhang Y. Advances in air pollution control for key industries in China during the 13th five-year plan. J Environ Sci (China) 2023; 123:446-459. [PMID: 36522005 DOI: 10.1016/j.jes.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 06/17/2023]
Abstract
Industrial development is an essential foundation of the national economy, but the industry is also the largest source of air pollution, of which power plants, iron and steel, building materials, and other industries emit large amounts of pollutants. Therefore, the Chinese government has promulgated a series of stringent emission regulations, and it is against this backdrop that research into air pollution control technologies for key industrial sectors is in full swing. In particular, during the 13th Five-Year Plan, breakthroughs have been made in pollution control technology for key industrial sectors. A multi-pollutant treatment technology system of desulfurization, denitrification, and dust collection, which applies to key industries such as power plants, steel, and building materials, has been developed. High-performance materials for the treatment of different pollutants, such as denitrification catalysts and desulfurization absorbers, were developed. At the same time, multi-pollutant synergistic removal technologies for flue gas in various industries have also become a hot research topic, with important breakthroughs in the synergistic removal of NOx, SOx, and Hg. Due to the increasingly stringent emission standards and regulations in China, there is still a need to work on the development of multi-pollutant synergistic technologies and further research and development of synergistic abatement technologies for CO2 to meet the requirements of ultra-low emissions in industrial sectors.
Collapse
Affiliation(s)
- Xuecheng Wu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China
| | - Yanping Yang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Gong
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiwen Deng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Wang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weihong Wu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China
| | - Chenghang Zheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China
| | - Yongxin Zhang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China.
| |
Collapse
|
3
|
Chen H, Lu Z, Chen Y, Wu S, Zheng J, Qian Z. Advanced Oxidant Process with Fe(II)-Catalyzed Alkaline H 2O 2 Systems for Highly Efficient Concurrent Scavenging of NO and SO 2 in High Gravitational Fields. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hongyu Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
- Weiqiao-UCAS Research Institute, Huanghe 8th Road, Bingzhou256600, Shangdong, China
| | - Zhicheng Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yang Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Shao Wu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jianzhong Zheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhi Qian
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
- Weiqiao-UCAS Research Institute, Huanghe 8th Road, Bingzhou256600, Shangdong, China
| |
Collapse
|
4
|
|
5
|
Liu Y, Liu L, Wang Y. A Critical Review on Removal of Gaseous Pollutants Using Sulfate Radical-based Advanced Oxidation Technologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9691-9710. [PMID: 34191483 DOI: 10.1021/acs.est.1c01531] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excessive emissions of gaseous pollutants such as SO2, NOx, heavy metals (Hg, As, etc.), H2S, VOCs, etc. have triggered a series of environmental pollution incidents. Sulfate radical (SO4•-)-based advanced oxidation technologies (AOTs) are one of the most promising gaseous pollutants removal technologies because they can not only produce active free radicals with strong oxidation ability to simultaneously degrade most of gaseous pollutants, but also their reaction processes are environmentally friendly. However, so far, the special review focusing on gaseous pollutants removal using SO4•--based AOTs is not reported. This review reports the latest advances in removal of gaseous pollutants (e.g., SO2, NOx, Hg, As, H2S, and VOCs) using SO4•--based AOTs. The performance, mechanism, active species identification and advantages/disadvantages of these removal technologies using SO4•--based AOTs are reviewed. The existing challenges and further research suggestions are also commented. Results show that SO4•--based AOTs possess good development potential in gaseous pollutant control field due to simple reagent transportation and storage, low product post-treatment requirements and strong degradation ability of refractory pollutants. Each SO4•--based AOT possesses its own advantages and disadvantages in terms of removal performance, cost, reliability, and product post-treatment. Low free radical yield, poor removal capacity, unclear removal mechanism/contribution of active species, unreliable technology and high cost are still the main problems in this field. The combined use of multiactivation technologies is one of the promising strategies to overcome these defects since it may make up for the shortcomings of independent technology. In order to improve free radical yield and pollutant removal capacity, enhancement of mass transfer and optimization design of reactor are critical issues. Comprehensive consideration of catalytic materials, removal chemistry, mass transfer and reactor is the promising route to solve these problems. In order to clarify removal mechanism, it is essential to select suitable free radical sacrificial agents, probes and spin trapping agents, which possess high selectivity for target specie, high solubility in water, and little effect on activity of catalyst itself and mass transfer/diffusion parameters. In order to further reduce investment and operating costs, it is necessary to carry out the related studies on simultaneous removal of more gaseous pollutants.
Collapse
Affiliation(s)
- Yangxian Liu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Liu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yan Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
6
|
Hao R, Luo Y, Qian Z, Ma Z, Ding Y, Gong Y, Wang Z, Zhao Y. Simultaneous removal of SO 2, NO and Hg 0 using an enhanced gas phase UV-AOP method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139266. [PMID: 32464380 DOI: 10.1016/j.scitotenv.2020.139266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 05/26/2023]
Abstract
The core for simultaneous removal of SO2, NO and Hg0 is the oxidation of NO and Hg0. Radical induced oxidation of NO and Hg0 is considered to be the most efficient method. We develop a novel gas phase advanced oxidation process (AOP) of UV-Heat/H2O2-NaClO2 to simultaneously remove SO2, NO and Hg0 due to a great synergism between H2O2 and NaClO2 under thermal and ultraviolet (UV) co-catalysis. The results indicated that the SO2 removal was always good, while the removal of NO and Hg0 was affected by NaClO2 and UV. Higher catalytic temperature and longer flue gas residence time favored the removal of NO and Hg0. The presence of SO2 and NO facilitated Hg0 removal. Kinetics analyses were conducted to provide the reaction rate of removal of NO and Hg0 under different conditions. X-ray photoelectron spectroscopy (XPS) revealed the product composition as Cl-, Hg2+, NO3- and SO42-. Electron spin resonance (ESR) tests confirmed the generation of HO. Cost analyses demonstrated the better cost performance of the proposed method compared to SCR-ACI combined method. HO and ClO2 were proved to be the main oxidant. The reaction mechanism for removal of NO and Hg0 by using UV-Heat/H2O2-NaClO2 were proposed finally.
Collapse
Affiliation(s)
- Runlong Hao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Yichen Luo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Zhen Qian
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Zhao Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Yuqiao Ding
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Yaping Gong
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Zheng Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Yi Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|