1
|
Sun Z, Chen X, Zhu P, Zhang Y, Ren Y, Wang L, Li L. Unveiling the role of saltmarshes as coastal potassium sinks: A perspective from porewater-derived potassium exchange. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178535. [PMID: 39827629 DOI: 10.1016/j.scitotenv.2025.178535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/15/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Saltmarshes serve as repositories for various metal species, primarily due to vegetation removal and mineralization processes. However, the significance of potassium (K), one of the three major nutrients (nitrogen, phosphorus, and K) essential for plant growth, has often been overlooked, particularly in the context of saltmarshes where the mechanisms of K transport via porewater exchange remain poorly understood. To address this knowledge gap, we conducted field observations and laboratory analysis, and developed a 222Rn mass balance model to quantify K fluxes via porewater exchange under physical, biological, and anthropogenic drivers. Our findings revealed that saltmarshes function as highly effective K sinks, with porewater exchange rates ranging from 12.2 to 44.5 cm d-1 and related K fluxes spanning -122 to -1260 mmol m-2 d-1. Interestingly, wet season K fluxes were found to be ∼4.3 times higher than those observed during the dry season. Moreover, we observed that wet season K fluxes peaked during the neap tide, while dry season K fluxes reached their maximum during the spring tide. This suggests that K transport via porewater exchange is influenced by both crab burrow bioturbation and spring-neap exchange mechanisms. In addition, anthropogenic activities, such as biomass burning, also impact K dynamics in addition to physical and biological drivers. Overall, our study highlights the pivotal role of porewater exchange in driving the K cycle within saltmarshes. This exchange mechanism not only facilitates plant growth but also contributes to important mineralogical processes, including cation exchange and reverse weathering, occurring within the saltmarsh ecosystems. By shedding light on the K cycle in saltmarshes, our research contributes to a better understanding of the functioning of coastal wetlands and their implications for the oceanic K budget.
Collapse
Affiliation(s)
- Zhengtao Sun
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Xiaogang Chen
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China.
| | - Peiyuan Zhu
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Yan Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Yijun Ren
- Dafeng Milu National Nature Reserve, Yancheng, Jiangsu 224136, China
| | - Libo Wang
- Dafeng Milu National Nature Reserve, Yancheng, Jiangsu 224136, China
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China.
| |
Collapse
|
2
|
Muller CT, Cera A, Palacio S, Moore MJ, Tejero P, Mota JF, Drenovsky RE. Nutritional convergence in plants growing on gypsum soils in two distinct climatic regions. ANNALS OF BOTANY 2024; 134:1003-1012. [PMID: 39115944 PMCID: PMC11687619 DOI: 10.1093/aob/mcae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND AND AIMS Soil endemics have long fascinated botanists owing to the insights they can provide about plant ecology and evolution. Often, these species have unique foliar nutrient composition patterns that reflect potential physiological adaptations to these harsh soil types. However, understanding global nutritional patterns to unique soil types can be complicated by the influence of recent and ancient evolutionary events. Our goal was to understand whether plant specialization to unique soils is a stronger determinant of nutrient composition of plants than climate or evolutionary constraints. METHODS We worked on gypsum soils. We analysed whole-plant nutrient composition (leaves, stems, coarse roots and fine roots) of 36 native species of gypsophilous lineages from the Chihuahuan Desert (North America) and the Iberian Peninsula (Europe) regions, including widely distributed gypsum endemics, as specialists, and narrowly distributed endemics and non-endemics, as non-specialists. We evaluated the impact of evolutionary events and soil composition on the whole-plant composition, comparing the three categories of gypsum plants. KEY RESULTS Our findings reveal nutritional convergence of widely distributed gypsum endemics. These taxa displayed higher foliar sulphur and higher whole-plant magnesium than their non-endemic relatives, irrespective of geographical location or phylogenetic history. Sulphur and magnesium concentrations were mainly explained by non-phylogenetic variation among species related to gypsum specialization. Other nutrient concentrations were determined by more ancient evolutionary events. For example, Caryophyllales usually displayed high foliar calcium, whereas Poaceae did not. In contrast, plant concentrations of phosphorus were mainly explained by species-specific physiology not related to gypsum specialization or evolutionary constraints. CONCLUSIONS Plant specialization to a unique soil can strongly influence plant nutritional strategies, as we described for gypsophilous lineages. Taking a whole-plant perspective (all organs) within a phylogenetic framework has enabled us to gain a better understanding of plant adaptation to unique soils when studying taxa from distinct regions.
Collapse
Affiliation(s)
- Clare T Muller
- Biology Department, John Carroll University, University Heights, OH, USA
| | - Andreu Cera
- UMR 950 EVA, INRAE, Université de Caen-Normandie, Caen, France
| | - Sara Palacio
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Jaca, Spain
| | | | - Pablo Tejero
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Jaca, Spain
| | - Juan F Mota
- Departamento de Biología y Geología, Universidad de Almería, Almería, Spain
| | | |
Collapse
|
3
|
Sánchez-Thomas R, Hernández-Garnica M, Granados-Rivas JC, Saavedra E, Peñalosa-Castro I, Rodríguez-Enríquez S, Moreno-Sánchez R. Intertwining of Cellular Osmotic Stress Handling Mechanisms and Heavy Metal Accumulation. Mol Biotechnol 2024:10.1007/s12033-024-01351-y. [PMID: 39690277 DOI: 10.1007/s12033-024-01351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Osmoregulation mechanisms are engaged in the detoxification and accumulation of heavy metals in plants, microalgae and other microorganisms. The present review paper analyzes osmotic resistance organisms and their heavy metal accumulation mechanisms closely related to osmoregulation. In prokaryotic and eukaryotic microorganisms, such as the green algae-like protist Euglena, osmotic and heavy metal stresses share similar cell responses and mechanisms. Likewise, some plants have developed specific mechanisms associated to water stress induced by salinity, flooding, or drought, which are also activated under heavy metal stress. Thus, synthesis of osmo-metabolites and strategies to maintain stable the intracellular water content under heavy metal exposure induce a state of apparent drought by blocking the water maintenance systems. Heavy metals affect the cellular redox state, triggering signaling pathways for intracellular water maintenance, which are mediated by the concentration of reactive oxygen species. Hence, cellular responses and mechanisms associated with osmotic stress, once fully elucidated, represent new opportunities to improve mechanistic strategies for bioremediation of heavy metal-polluted sites.
Collapse
Affiliation(s)
- Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080, Mexico City, Mexico
| | | | - Juan Carlos Granados-Rivas
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080, Mexico City, Mexico
| | - Ignacio Peñalosa-Castro
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico
| | - Sara Rodríguez-Enríquez
- Carrera de Medico Cirujano, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico.
| | - Rafael Moreno-Sánchez
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico.
| |
Collapse
|
4
|
Rasmussen JA, Bennett WW, Melvin SD, Sievers M, McAneney CA, Leaning A, Connolly RM. Stuck in the mangrove mud: The risk of trace element exposure to shore crabs in restored urban mangroves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177064. [PMID: 39437910 DOI: 10.1016/j.scitotenv.2024.177064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The restoration of mangroves in urban environments can increase the risk of contaminant exposure and subsequent health effects to resident biota, yet this risk is rarely considered in mangrove restoration programs. Here we assessed the influence of sediment chemistry on contaminant bioaccumulation in shore crabs from restored and natural mangroves in urban environments compared to a reference site. The concentrations of some trace elements were several-fold higher in the sediment and crab tissues of the urban restored site compared to the natural reference site (Cd = 6×, Co = 7×, Cr = 4×, Mn = 30×, and Ni = 18× greater in sediments, while Cd = 4×, Co = 2×, Cr = 2×, Mn = 6×, and Ni = 3× greater in crab tissues). NMR-based metabolomics on crabs revealed higher abundances of proline and glutamate at urban sites, which may be indicative of physiological stress from trace element contamination. Choice experiments were used to test habitat selectivity by crabs from each population, and showed that crabs avoided sediments from the contaminated urban sites. Our results suggest that restoring mangroves in contaminated environments could create ecological sinks, where animals take residence in the new habitat but are exposed to sediment-based contaminants, with potential implications for organism and population health.
Collapse
Affiliation(s)
- Jasmine A Rasmussen
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Gold Coast 4222, Queensland, Australia.
| | - William W Bennett
- Coastal and Marine Research Centre, Cities Research Institute, Griffith University, Gold Coast 4222, Queensland, Australia
| | - Steve D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast 4222, Queensland, Australia
| | - Michael Sievers
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Gold Coast 4222, Queensland, Australia
| | - Charlotte A McAneney
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Gold Coast 4222, Queensland, Australia
| | - Ainsley Leaning
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Gold Coast 4222, Queensland, Australia
| | - Rod M Connolly
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Gold Coast 4222, Queensland, Australia
| |
Collapse
|
5
|
Voigt RAL, MacFarlane GR. Sub-lethal effects of metal(loid) contamination on the halophyte Sarcocornia quinqueflora with links to plant photosynthetic performance and biomass - A field study. MARINE POLLUTION BULLETIN 2024; 205:116569. [PMID: 38889664 DOI: 10.1016/j.marpolbul.2024.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Two saltmarsh locations within Lake Macquarie, NSW, Australia were selected to investigate the uptake and partitioning of metal(loid)s Cu, Zn, As, Se, Cd and Pb in the Australian saltmarsh halophyte, Sarcocornia quinqueflora and the associated sub-lethal effects of metal(loid)s on plant health, including photosynthetic performance, biomass, and productivity. Metal(loid)s primarily accumulated to roots (BCF > 1). Barriers to transport were observed at the root to non-photosynthetic stem transition (TF < 1) for all metal(loid)s, suggesting this species is suitable for phytostabilisation. Sediment and plant tissue metal(loid) concentrations were significantly correlated with photosynthetic performance and plant biomass. As such, the action of sediment and tissue metal(loid)s on photosynthetic performance and the subsequent effect on biomass of S.quinqueflora appear to be suitable targets for molecular analyses to further elucidate mechanisms responsible for the observed adverse effects and the development of adverse outcome pathways.
Collapse
Affiliation(s)
- Rebecca A L Voigt
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia.
| |
Collapse
|
6
|
Gul B, Hameed A, Ahmed MZ, Hussain T, Rasool SG, Nielsen BL. Thriving under Salinity: Growth, Ecophysiology and Proteomic Insights into the Tolerance Mechanisms of Obligate Halophyte Suaeda fruticosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1529. [PMID: 38891337 PMCID: PMC11174735 DOI: 10.3390/plants13111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Studies on obligate halophytes combining eco-physiological techniques and proteomic analysis are crucial for understanding salinity tolerance mechanisms but are limited. We thus examined growth, water relations, ion homeostasis, photosynthesis, oxidative stress mitigation and proteomic responses of an obligate halophyte Suaeda fruticosa to increasing salinity under semi-hydroponic culture. Most biomass parameters increased under moderate (300 mmol L-1 of NaCl) salinity, while high (900 mmol L-1 of NaCl) salinity caused some reduction in biomass parameters. Under moderate salinity, plants showed effective osmotic adjustment with concomitant accumulation of Na+ in both roots and leaves. Accumulation of Na+ did not accompany nutrient deficiency, damage to photosynthetic machinery and oxidative damage in plants treated with 300 mmol L-1 of NaCl. Under high salinity, plants showed further decline in sap osmotic potential with higher Na+ accumulation that did not coincide with a decline in relative water content, Fv/Fm, and oxidative damage markers (H2O2 and MDA). There were 22, 54 and 7 proteins in optimal salinity and 29, 46 and 8 proteins in high salinity treatment that were up-regulated, down-regulated or exhibited no change, respectively, as compared to control plants. These data indicate that biomass reduction in S. fruticosa at high salinity might result primarily from increased energetic cost rather than ionic toxicity.
Collapse
Affiliation(s)
- Bilquees Gul
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (S.G.R.)
| | - Abdul Hameed
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (S.G.R.)
| | - Muhammad Zaheer Ahmed
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (S.G.R.)
| | - Tabassum Hussain
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (S.G.R.)
| | - Sarwat Ghulam Rasool
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (S.G.R.)
| | - Brent L. Nielsen
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| |
Collapse
|
7
|
Voigt RAL, MacFarlane GR. Tolerance of the Australian halophyte, beaded samphire, Sarcocornia quinqueflora, to Pb and Zn under glasshouse conditions: Evaluating metal uptake and partitioning, photosynthetic performance, biomass, and growth. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106887. [PMID: 38461756 DOI: 10.1016/j.aquatox.2024.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Saltmarsh sediments are susceptible to accumulation of excessive concentrations of anthropogenically elevated metals such as lead (Pb) and zinc (Zn). The resident salt tolerant plants of saltmarsh ecosystems form the basal underpinning of these ecosystems. As such, metal-associated adverse impacts on their physiology can have detrimental flow-on effects at individual, population, and community levels. The present study assessed the accumulation and partitioning of ecologically relevant concentrations of Pb, Zn, and their combination in a dominant Australian saltmarsh species, Sarcocornia quinqueflora. Plants were hydroponically maintained under glasshouse conditions for 16 weeks exposure to either Pb (20 µg l-1), Zn (100 µg l-1), or their mixture. We evaluated the chronic toxicological effects of single and mixed metal treatments with reference to metal uptake and partitioning, photosynthetic performance, photosynthetic pigment concentration, biomass and growth. Lead was more toxic than Zn, and Zn appeared to have an antagonistic effect on the toxicological effects of Pb in S.quinqueflora in terms of metal uptake, photosynthetic performance, photosynthetic pigment concentrations, and growth. Indeed, the tolerance index was 55 % in plants treated with Pb compared to 77 % in Zn treated plants and 73 % in Pb+Zn treated plants. Finally, Sarcocornia quinqueflora primarily accumulated both Pb and Zn in roots at concentrations exceeding unity whilst translocation of these metals to above ground tissues was restricted regardless of treatment. This suggests that S. quinqueflora may be suitable for phytostabilisation of Zn, and of Pb particularly in the presence of Zn.
Collapse
Affiliation(s)
- Rebecca A L Voigt
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia.
| |
Collapse
|
8
|
Voigt RAL, Alam MR, Stein TJ, Rahman MM, Megharaj M, MacFarlane GR. Uptake and distribution of metal(loid)s in two rare species of saltmarsh, blackseed samphire, Tecticornia pergranulata, and narrow-leafed wilsonia, Wilsonia backhousei, in New South Wales, Australia. MARINE POLLUTION BULLETIN 2024; 200:116058. [PMID: 38278015 DOI: 10.1016/j.marpolbul.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
The uptake and distribution of copper, zinc, arsenic, and lead was examined in two rare Australian saltmarsh species, Tecticornia pergranulata and Wilsonia backhousei. The bioconcentration factors and translocation factors were generally much lower than one, except for the Zn translocation factors for T. pergranulata. When compared to other Australian saltmarsh taxa, these species generally accumulated the lowest levels observed among taxa, especially in terms of their BCFs. Essential metals tended to be regulated, while non-essential metals increased in concentration with dose during transport among compartments, a pattern not previously observed in Australian saltmarsh taxa. The uptake of metals into roots was mainly explained by total sediment metal loads as well as more acidic pH, increased soil organic matter, and decreased salinity. The low uptake and limited translocation observed in these rare taxa may offer a competitive advantage for their establishment and survival in the last urbanised populations, where legacy metal contamination acts as a selective pressure.
Collapse
Affiliation(s)
- Rebecca A L Voigt
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Taylor J Stein
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
9
|
Tran TKA, Raju S, Singh A, Senathirajah K, Bhagwat-Russell G, Daggubati L, Kandaiah R, Palanisami T. Occurrence and distribution of microplastics in long-term biosolid-applied rehabilitation land: An overlooked pathway for microplastic entry into terrestrial ecosystems in Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122464. [PMID: 37634566 DOI: 10.1016/j.envpol.2023.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Wastewater treatment plants (WWTPs) efficiently eliminate over 98% of microplastics (MPs) from wastewater discharge, subsequently accumulating them in sludge. This sludge is frequently employed as fertilizer in agricultural practices or land rehabilitation. While there is significant research on biosolid application in agriculture, the discussion regarding its application in rehabilitating industrial zones and MPs contamination is limited. The current study investigates the abundance, distribution, and composition of MPs in rehabilitation land with long-term biosolid-application in Australia. Three minesite fields (designated 1-3), each with distinct biosolid application histories since 2011, 2012, and 2017, and a control field without any biosolid application history, were chosen for this study. The abundances of MPs in biosolid-applied fields 1-3 (6.04 ± 1.92 x 102 MP kg-1; 4.94 ± 0.73 x 102 MP kg-1; 2.48 ± 0.70 x 102 MP kg-1) were considerably higher compared to non-biosolid-applied field (0.70 ± 0.63 x 102 MP kg -1). This indicates that the application of biosolids significantly contributes to the presence of MPs in the soil. Moreover, the results suggest that with each successive application, the abundance of MPs increases. The abundance and size of MPs in both biosolid and non-biosolid soils decreased as the soil depth increased. Microbeads were dominant in soils where biosolids were applied (up to 61.9%), while fibres were dominant in non-biosolid soils (accounting for 85.7%). The distribution of plastic polymer types varied among fields and soil depths. Most MPs were microbeads of polyamide (PA), fragments of polyethylene (PE), foam of polystyrene (PS), and fibres of rayon. This research presents evidence that the extended utilization of biosolids results in elevated MP pollution in minesite rehabilitation land, highlighting a frequently overlooked origin of MP contamination in terrestrial settings. Additional evaluations needed to understand ecological risks of MPs in soil ecosystems affected by biosolid application.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Subash Raju
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Arjun Singh
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia; ICAR Central Soil Salinity Research Institute RRS Lucknow, India
| | - Kala Senathirajah
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Geetika Bhagwat-Russell
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lakshmi Daggubati
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Raji Kandaiah
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
10
|
Cera A, Verdugo-Escamilla C, Marín JA, Palacio S. Calcium sulphate biomineralisation: Artefact of sample preparation? PHYSIOLOGIA PLANTARUM 2023; 175:e14017. [PMID: 37882257 DOI: 10.1111/ppl.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 10/27/2023]
Abstract
Calcium biomineralisation is widely documented in plants. However, crystallisation of Ca-sulphate-containing minerals is closely related to water content, and sample processing, such as drying, alters the water balance of plant tissues. We hypothesised that common sample processing practices may favour the formation of crystals, leading to spurious crystallisation not observed in unaltered plant tissues. We selected three species (Ononis tridentata, Helianthemum squamatum and Gypsophila struthium) with reported gypsum biomineralisation. We used x-ray diffractometry on fresh intact or sliced leaves, and on the same leaves processed by subsequent drying, to address whether sample processing alters crystal formation. Ca-sulphate crystals were detected in dry samples of all species but not in fresh intact samples. Ca-sulphate crystallisation occurred in some cut fresh samples, although the accumulation greatly increased after drying. In addition, G. struthium exhibited Ca-oxalate crystals in both fresh and dry treatments, with a tendency for greater accumulation in dry treatments. Our results demonstrate that the Ca-sulphate crystals observed by x-ray diffractometry in these species are artefacts caused by common sample processing practices, such as excessive drying and slicing samples. We encourage future studies on the biomineral potential of plants to avoid the use of procedures that alter the water balance of tissues.
Collapse
Affiliation(s)
- Andreu Cera
- Centro de Ecologia Aplicada Prof. Baeta Neves (CEABN-InBIO), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Jaca, Spain
| | - Cristóbal Verdugo-Escamilla
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Armilla, Spain
| | - Juan A Marín
- Departamento de Pomologia, Estación Experimental de Aula Dei CSIC, Zaragoza, Spain
| | - Sara Palacio
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Jaca, Spain
| |
Collapse
|
11
|
Cera A, Montserrat-Martí G, Palacio S. Nutritional strategy underlying plant specialization to gypsum soils. AOB PLANTS 2023; 15:plad041. [PMID: 37448861 PMCID: PMC10337853 DOI: 10.1093/aobpla/plad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Gypsum soils are amongst the most widespread extreme substrates of the world, occurring in 112 countries. This type of hypercalcic substrate has a suite of extreme physical and chemical properties that make it stressful for plant establishment and growth. Extreme chemical properties include low plant-available nitrogen and phosphorus and high plant-available sulphur and calcium, which impose strong nutritional imbalances on plants. In spite of these edaphic barriers, gypsum soils harbour rich endemic floras that have evolved independently on five continents, with highly specialized species. Plants that only grow on gypsum are considered soil specialists, and they have a foliar elemental composition similar to the elemental availability of gypsum soils, with high calcium, sulphur and magnesium accumulation. However, the physiological and ecological role of the unique foliar elemental composition of gypsum specialists remains poorly understood, and it is unknown whether it provides an ecological advantage over other generalist species on gypsum soils. This article reviews available literature on the impact of gypsum soil features on plant life and the mechanisms underlying plant adaptation to gypsum environments. We conclude with a hypothesis on the potential role of the nutritional strategy underlying plant specialization to gypsum soils: Gypsum specialists primarily use SO42- as a counter anion to tolerate high Ca2+ concentrations in cells and avoid phosphorus depletion, which is one of the most limiting nutrients in gypsum soils.
Collapse
Affiliation(s)
| | - Gabriel Montserrat-Martí
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Avenida de Montañana 1005, Zaragoza, 50059, Spain
| | - Sara Palacio
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Avenida Nuestra Señora de la Victoria 16, Jaca, 22700, Spain
| |
Collapse
|
12
|
Alam MR, Rahman MM, Kit Yu RM, MacFarlane GR. Offspring of metal contaminated saltmarsh (Juncus acutus) exhibit tolerance to the essential metal Zn but not the nonessential metal Pb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121333. [PMID: 36822307 DOI: 10.1016/j.envpol.2023.121333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/08/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Halophytes residing in metal-contaminated saltmarsh habitats may employ strategies to enhance fitness of the next generation. We aimed to test the hypothesis that Juncus acutus individuals inhabiting metal-contaminated locations would experience elevated tolerance of offspring to metals compared to plants residing in locations with no metal contamination history. J. acutus seeds (F1 generation) were collected from F0 parent plants residing at eight locations of a contemporary sediment metal gradient (contaminated to uncontaminated) across the coast of NSW, Australia (Hunter river, Lake Macquarie and Georges River). Seeds were exposed in the laboratory to incremental Zn (0.0-1.6 mM) and Pb (0.0-0.50 mM) for nine (9) days, and % germination, germination rate, root elongation and vigour index were assessed for the determination of tolerance. Greater root accumulation (BCF = 1.01) of Zn and subsequent translocation to aerial parts (culm BCF = 0.58 and capsule BCF = 0.85) were exhibited in parents plants, whereas Pb was excluded from roots (BCF = 0.60) and very little translocation to aerial portions of the plant was observed (culm BCF = 0.02 and capsule BCF = 0.05). F1 offspring exhibited tolerance to Zn with EC50 (% germination) significantly correlated with their parents' culm (R2 = 0.93, p = 0.00) and capsule (R2 = 0.57; p = 0.03) Zn. No correlations were observed between offspring Pb tolerance and Pb in parents' plant tissues. Enhanced tolerance to the essential metal Zn may be because Zn is very mobile in the parent plant and seeds experience greater Zn load as a significant portion of sediment Zn reaches capsules (85%). Thus, Zn tolerance in J. acutus seeds is likely attributable to acclimation via maternal transfer of Zn; however, further manipulative experiments are required to disentangle potential acclimation, adaptation or epigenetic effects in explaining the tolerance observed.
Collapse
Affiliation(s)
- Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
13
|
Tisarum R, Chaitachawong N, Takabe T, Singh HP, Samphumphuang T, Cha-um S. Physio-morphological and biochemical responses of dixie grass (Sporobolus virginicus) to NaCl or Na2SO4 stress. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Cera A, Montserrat-Martí G, Luzuriaga AL, Pueyo Y, Palacio S. When disturbances favour species adapted to stressful soils: grazing may benefit soil specialists in gypsum plant communities. PeerJ 2022. [DOI: 10.7717/peerj.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background
Herbivory and extreme soils are drivers of plant evolution. Adaptation to extreme soils often implies substrate-specific traits, and resistance to herbivory involves tolerance or avoidance mechanisms. However, little research has been done on the effect of grazing on plant communities rich in edaphic endemics growing on extreme soils. A widespread study case is gypsum drylands, where livestock grazing often prevails. Despite their limiting conditions, gypsum soils host a unique and highly specialised flora, identified as a conservation priority.
Methods
We evaluated the effect of different grazing intensities on the assembly of perennial plant communities growing on gypsum soils. We considered the contribution of species gypsum affinity and key functional traits of species such as traits related to gypsum specialisation (leaf S accumulation) or traits related to plant tolerance to herbivory such as leaf C and N concentrations. The effect of grazing intensity on plant community indices (i.e., richness, diversity, community weighted-means (CWM) and functional diversity (FD) indices for each trait) were modelled using Generalised Linear Mixed Models (GLMM). We analysed the relative contribution of interspecific trait variation and intraspecific trait variation (ITV) in shifts of community index values.
Results
Livestock grazing may benefit gypsum plant specialists during community assembly, as species with high gypsum affinity, and high leaf S contents, were more likely to assemble in the most grazed plots. Grazing also promoted species with traits related to herbivory tolerance, as species with a rapid-growth strategy (high leaf N, low leaf C) were promoted under high grazing conditions. Species that ultimately formed gypsum plant communities had sufficient functional variability among individuals to cope with different grazing intensities, as intraspecific variability was the main component of species assembly for CWM values.
Conclusions
The positive effects of grazing on plant communities in gypsum soils indicate that livestock may be a key tool for the conservation of these edaphic endemics.
Collapse
Affiliation(s)
- Andreu Cera
- Departamento Biodiversidad y Restauración/Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Jaca, Huesca, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Barcelona, Spain
| | - Gabriel Montserrat-Martí
- Departamento de Biodiversidad y Restauración/Instituto Pirenaico de Ecologia, Consejo Superior de Investigaciones Científicas, Zaragoza, Zaragoza, Spain
| | - Arantzazu L. Luzuriaga
- Departamento de Biología y Geología, Física y Química inorgánica, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain
| | - Yolanda Pueyo
- Departamento de Biodiversidad y Restauración/Instituto Pirenaico de Ecologia, Consejo Superior de Investigaciones Científicas, Zaragoza, Zaragoza, Spain
| | - Sara Palacio
- Departamento Biodiversidad y Restauración/Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Jaca, Huesca, Spain
| |
Collapse
|
15
|
Roe RAL, MacFarlane GR. The potential of saltmarsh halophytes for phytoremediation of metals and persistent organic pollutants: An Australian perspective. MARINE POLLUTION BULLETIN 2022; 180:113811. [PMID: 35667258 DOI: 10.1016/j.marpolbul.2022.113811] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 05/22/2023]
Abstract
Persistent organic and inorganic pollutants are among the most concerning pollutants in Australian estuaries due to their persistent, ubiquitous, and potentially toxic nature. Traditional methods of soil remediation often fall short of practical implementation due to high monetary investment, environmental disturbance, and potential for re-contamination. Phytoremediation is gaining traction as an alternative, or synergistic mechanism of contaminated soil remediation. Phytoremediation utilises plants and associated rhizospheric microorganisms to stabilise, degrade, transform, or remove xenobiotics from contaminated mediums. Due to their apparent cross-tolerance to salt, metals, and organic contaminants, halophytes have shown promise as phytoremediation species. This review examines the potential of 93 species of Australian saltmarsh halophytes for xenobiotic phytoremediation. Considerations for the practical application of phytoremediation in Australia are discussed, including mechanisms of enhancement, and methods of harvesting and disposal. Knowledge gaps for the implementation of phytoremediation in Australian saline environments are identified, and areas for future research are suggested.
Collapse
Affiliation(s)
- Rebecca A L Roe
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
16
|
Cera A, Montserrat‐Martí G, Drenovsky RE, Ourry A, Brunel‐Muguet S, Palacio S. Gypsum endemics accumulate excess nutrients in leaves as a potential constitutive strategy to grow in grazed extreme soils. PHYSIOLOGIA PLANTARUM 2022; 174:e13738. [PMID: 35765177 PMCID: PMC9546198 DOI: 10.1111/ppl.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Extreme soils often have mineral nutrient imbalances compared to plant nutritional requirements and co-occur in open areas where grazers thrive. Thus, plants must respond to both constraints, which can affect nutrient concentrations in all plant organs. Gypsum soil provides an excellent model system to study adaptations to extreme soils under current grazing practices as it harbours two groups of plant species that differ in their tolerance to gypsum soils and foliar composition. However, nutrient concentrations in organs other than leaves, and their individual responses to simulated herbivory, are still unknown in gypsum plants. We studied plant biomass, root mass ratio and nutrient partitioning among different organs (leaves, stems, coarse roots, fine roots) in five gypsum endemics and five generalists cultivated in gypsum and calcareous soils and subjected to different levels of simulated browsing. Gypsum endemics tended to have higher elemental concentration in leaves, stems and coarse roots than generalist species in both soil types, whereas both groups tended to show similar high concentrations in fine roots. This behaviour was especially clear with sulphur (S), which is found in excess in gypsum soils, and which endemics accumulated in leaves as sulphate (>50% of S). Moreover, plants subjected to clipping, regardless of their affinity to gypsum, were unable to compensate for biomass losses and showed similar elemental composition to unclipped plants. The accumulation of excess mineral nutrients by endemic species in aboveground organs may be a constitutive nutritional strategy in extreme soils and is potentially playing an anti-herbivore role in grazed gypsum outcrops.
Collapse
Affiliation(s)
- Andreu Cera
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de EcologíaConsejo Superior de Investigaciones CientíficasJacaSpain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Secció de Botànica i Micologia, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Gabriel Montserrat‐Martí
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de EcologíaConsejo Superior de Investigaciones CientíficasZaragozaSpain
| | | | - Alain Ourry
- Agronomie et Nutritions N, C, S, SFR Normandie Végétal (FED 4277), UNICAEN, INRAE, UMR 950 Ecophysiologie VégétaleNormandie UniversitéCaenFrance
| | - Sophie Brunel‐Muguet
- Agronomie et Nutritions N, C, S, SFR Normandie Végétal (FED 4277), UNICAEN, INRAE, UMR 950 Ecophysiologie VégétaleNormandie UniversitéCaenFrance
| | - Sara Palacio
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de EcologíaConsejo Superior de Investigaciones CientíficasJacaSpain
| |
Collapse
|
17
|
Aziz I, Mujeeb A. Halophytes for phytoremediation of hazardous metal(loid)s: A terse review on metal tolerance, bio-indication and hyperaccumulation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127309. [PMID: 34600383 DOI: 10.1016/j.jhazmat.2021.127309] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is a cost-effective and environment friendly method for cleaning metal(loid)s from contaminated soils. Species with exceptionally higher shoot metal concentrations (hyperaccumulators) seem ideal for phytoremediation, though some metal tolerant species with 'above normal' values with higher translocation factor (TF) may also serve the purpose. Halophytes not only remove salts and metalloids from soils but may also be cultivated as non-conventional crops. Nurturing halophytes requires precise understanding of their nature and efficient management for sustainable use. Species with low metal concentrations in their edible parts (especially leaves) may be grown as forage and fodder, but those with metal hyperaccumulation could prove fatal due to their serious health hazards. Like other metallophytes, redundant use of the term 'metal hyperaccumulation' among halophytes needs to be revisited for its ambiguity and potential pitfalls. Similarly, understanding of metal tolerance and shoot accumulation nature of halophytes is needed prior to their use. This review is an attempt to compare halophytes with potential of metal bioindication, phytostabilization and hyperaccumulation (as per definition) as well as their 'obligate' and 'facultative' nature for appropriate uses.
Collapse
Affiliation(s)
- Irfan Aziz
- Dr M Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan.
| | - Amtul Mujeeb
- Dr M Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
18
|
Alam MR, Rahman MM, Tam NFY, Yu RMK, MacFarlane GR. The accumulation and distribution of arsenic species and selected metals in the saltmarsh halophyte, spiny rush (Juncus acutus). MARINE POLLUTION BULLETIN 2022; 175:113373. [PMID: 35093784 DOI: 10.1016/j.marpolbul.2022.113373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
This study examined the accumulation of As species, Se, Cu, Zn, Cd and Pb in the halophyte Juncus acutus, collected from three anthropogenically impacted estuaries in NSW, Australia. As concentration ranged from 4 to 22 μg/g at Georges River, 2-16 μg/g at Lake Macquarie and 6 μg/g at Hunter Estuary. Inorganic As was accumulated mainly in roots with low translocation to culm with a greater abundance of AsV. However, AsIII (TF = 0.32) showed greater mobility from the roots to shoots than AsV (TF = 0.04), indicating a higher quantity of AsIII specific transporter assemblages in the plasmalemma of the endodermis or cytoplasmic reduction of AsV to AsIII in culms. Metal(loid)s, including As (90%), were predominantly in root tissues and very limited translocation to culm, indicating the species is a useful phytostabiliser. As and all other metal(loid)s in roots were correlated with sediment loads (p < 0.05, R2 = 0.10-0.52), indicating the species would be an accumulative bioindicator.
Collapse
Affiliation(s)
- Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nora Fung-Yee Tam
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
19
|
Stein TJ, Alam MR, Tran TKA, MacFarlane GR. Metal(loid) uptake and partitioning within the saltmarsh halophyte, Juncus kraussii. MARINE POLLUTION BULLETIN 2021; 170:112690. [PMID: 34229150 DOI: 10.1016/j.marpolbul.2021.112690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
An investigation was conducted over three estuaries in SE Australia with a gradient in metal(loid) contamination to assess metal(loid) (Cu, Zn, As, Se, Cd and Pb) accumulation and transport within the halophytic saltmarsh rush, Juncus kraussii. Sydney Olympic Park exhibited the most elevated metal(loid) contamination, followed by Hunter Wetlands and Lake Macquarie. J. kraussii exhibited a strong ability to restrict metal(loid) movement into the root system, with the exception of cadmium (BCFs < 1.0) and unrestricted flow from root to culm excepting Se, Cd (TFs < 1). Pb and Zn exhibited elevated translocation between roots and culms (TF 4.4 and 7.3, respectively). Despite barriers for uptake into the below-ground tissues, most metal(loid)s were accumulated to the roots with environmental dose (except for Cu and Cd) and linear relationships were present between the root and culm (for As and Se) and the sediment and culm (for As, Se, Cd, and Pb).
Collapse
Affiliation(s)
- Taylor J Stein
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Global Innovation Center for Advanced Nanomaterials, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
20
|
Alam MR, Tran TKA, Stein TJ, Rahman MM, Griffin AS, Yu RMK, MacFarlane GR. Accumulation and distribution of metal(loid)s in the halophytic saltmarsh shrub, Austral seablite, Suaeda australis in New South Wales, Australia. MARINE POLLUTION BULLETIN 2021; 169:112475. [PMID: 34022559 DOI: 10.1016/j.marpolbul.2021.112475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
We examined the patterns of uptake and partitioning of metal(loid)s in Suaeda australis from three highly urbanised estuaries (Sydney Olympic Park, Hunter Wetlands and Lake Macquarie) in NSW, Australia. Of these, Sydney Olympic Park was found to be the most contaminated estuary in terms of combined sediment metal(loid) load, followed by Hunter Wetlands and lowest in Lake Macquarie (via PERMANOVA). Uptake in roots was greater for the essential metals Cu and Zn along with the non-essential metal Cd and the metalloid Se (root BCFs >1) and lower for Pb and As (root BCFs <1). Substantial barriers for translocation from roots to stems were identified for all metal(loid)s (stem TFs; 0.07-0.68). Conversely, unrestricted flow from stems to leaves was observed for all metal(loid)s at unity or higher (leaf TFs ≥ 1). Strong linear relationships between sediment and root for Zn and Pb were observed, indicating roots as a useful bioindicator.
Collapse
Affiliation(s)
- Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; School of Agriculture and Resources, Vinh University, Viet Nam
| | - Taylor J Stein
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrea S Griffin
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; School of Psychology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
21
|
Alam MR, Islam R, Anh Tran TK, Van DL, Rahman MM, Griffin AS, Yu RMK, MacFarlane GR. Global patterns of accumulation and partitioning of metals in halophytic saltmarsh taxa: A phylogenetic comparative approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125515. [PMID: 33662792 DOI: 10.1016/j.jhazmat.2021.125515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The current study represents the first attempt to analyse quantitatively, within a phylogenetic framework, uptake and partitioning patterns of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in extant saltmarsh taxa globally, and to assess associations of these patterns with various plant traits indicative of their halophytic adaptations. Despite saltmarsh being diverse taxonomically, most saltmarsh taxa accumulate metals to roots at, or above, unity (> 1). Further, there is significant translocation from roots to shoot for Cu, Zn and Cd (≤ 1), however, Pb is less mobile (TF = 0.65). Patterns of accumulation were similar among families, except greater Cd accumulation to roots in members of Juncaceae. Patterns of uptake to roots and translocation to leaves were broadly similar among plant type, plant form, habitat and photosynthetic mode. Zinc is lower in the leaves of salt-secreting species for some closely related taxa, suggesting some species co-excrete sodium (Na+) and Zn2+ through glands in leaf tissue. Salinity tolerance has no relationship to metal uptake and translocation. Translocation of Zn is greater at lower Zn sediment exposures, reflecting its active uptake and essentiality, but such bias does not affect outcomes of analyses when included as a covariate.
Collapse
Affiliation(s)
- Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; School of Agriculture and Resources, Vinh University, Viet Nam
| | - Diep Le Van
- School of Biochemical Technology-Environment, Vinh University, Viet Nam
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrea S Griffin
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; School of Psychology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
22
|
Bhagwat G, Carbery M, Anh Tran TK, Grainge I, O'Connor W, Palanisami T. Fingerprinting Plastic-Associated Inorganic and Organic Matter on Plastic Aged in the Marine Environment for a Decade. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7407-7417. [PMID: 34009962 DOI: 10.1021/acs.est.1c00262] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The long-term aging of plastic leads to weathering and biofouling that can influence the behavior and fate of plastic in the marine environment. This is the first study to fingerprint the contaminant profiles and bacterial communities present in plastic-associated inorganic and organic matter (PIOM) isolated from 10 year-aged plastic. Plastic sleeves were sampled from an oyster aquaculture farm and the PIOM was isolated from the intertidal, subtidal, and sediment-buried segments to investigate the levels of metal(loid)s, polyaromatic hydrocarbons (PAHs), per-fluoroalkyl substances (PFAS) and explore the microbial community composition. Results indicated that the PIOM present on long-term aged high-density polyethylene plastic harbored high concentrations of metal(loid)s, PAHs, and PFAS. Metagenomic analysis revealed that the bacterial composition in the PIOM differed by habitat type, which consisted of potentially pathogenic taxa including Vibrio, Shewanella, and Psychrobacter. This study provides new insights into PIOM as a potential sink for hazardous environmental contaminants and its role in enhancing the vector potential of plastic. Therefore, we recommend the inclusion of PIOM analysis in current biomonitoring regimes and that plastics be used with caution in aquaculture settings to safeguard valuable food resources, particularly in areas of point-source contamination.
Collapse
Affiliation(s)
- Geetika Bhagwat
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Maddison Carbery
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Thi Kim Anh Tran
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Wayne O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, Taylors Beach 2316, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|