1
|
Dong Y, Gao J, Liu Y, Tao L, Wu J, Zhu P, Huang H, Zheng H, Huang T. Salinization of groundwater in shale gas extraction area in the Sichuan Basin, China: Implications for water protection in shale regions with well-developed faults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170065. [PMID: 38232857 DOI: 10.1016/j.scitotenv.2024.170065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
The expanding growth of shale gas development has sparked global concern over water-related environmental issues. However, research on groundwater contamination in shale gas areas in China remains limited, impeding environmentally friendly industry practices. To address this gap, we investigated the Wufeng-Longmaxi shale region in the Sichuan Basin, encompassing both operational and prospective shale gas extraction sites, to assess the effects of shale gas operations on shallow groundwater quality. We found there was no significant correlation between groundwater quality and the minimum distance from the shale gas well pads, and some groundwater samples located far from shale gas well pads, rather than those close to pads, were salinized. These findings suggest minimal impacts from shale gas drilling and hydraulic fracturing. The salinized groundwater samples are characterized by high salinity levels and ion concentrations, and are located near fault zones. The primary source of shallow groundwater salinization was derived from the Triassic formation brines confirmed through the assessment of the sensitivity and conservative mixing models. Faults in the study area were identified as pathways for the upward migration of Triassic brines, evidenced by the proximity of salinized samples to fault zones. However, further investigation is required to ascertain whether shale gas extraction activities have induced the migration of formation brines. The occurrence and reactivation of faults, induced by microseismic activities, may pose an increased risk of groundwater contamination in tectonically complex fault zones during shale gas extraction. Therefore, it is imperative to enhance extraction strategies and technologies, particularly in shale regions with well-developed faults, such as optimizing well placement regulation, controlling hydraulic fracturing scale, and strengthening environmental monitoring. By shedding light on potential environmental ramifications of shale gas extraction, especially in fault-rich regions, our study informs water protection strategies and the sustainable advancement of the shale gas industry.
Collapse
Affiliation(s)
- Yixin Dong
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
| | - Jinliang Gao
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China.
| | - Yueyang Liu
- CNPC Economics &Technology Research Institute, Beijing 100724, China
| | - Lizhu Tao
- College of Mathematics, Sichuan University, Chengdu 610065, China
| | - Junfeng Wu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China; College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Peng Zhu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
| | - Hanyu Huang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
| | - Haofu Zheng
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Tianming Huang
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
2
|
Ju Q, Hu Y, Liu Q, Chen K, Zhang H, Wu Y. Multiple stable isotopes and geochemical approaches to elucidate groundwater reactive transport paths in mining cities: A case from the northern Anhui, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169706. [PMID: 38159762 DOI: 10.1016/j.scitotenv.2023.169706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Mining cities are ecotone areas where human and natural components interact. Indeed, the negative effects of mining activities on drinking water quality have become a serious public concern worldwide. To elucidate groundwater genesis and reactive transport path controlling the water pollution, a multi-bodies system in the Sunan Mine area in China was considered in this study. The results of the mineral phase characterizations, hydrochemical analysis, and multiple stable isotopes (δ2H/δ18O, δ34S and 87Sr/86Sr) indicated that calcite, dolomite, gypsum, quartz, halite, organic carbon, and gases (O2, CO2 and H2O) were the primary reactants in the aquifer system, accompanied by dissolution and precipitation of minerals, cation exchange, desulfation, and evaporation. An inverse hydrogeochemical model was employed to identify three paths, Path 1 demonstrated that mine water mainly originated from the Quaternary loose aquifer water (QLA), Permian fractured sandstone aquifer water (PFA), and Carbonifer fractured limestone aquifer water (CFA), accompanied by high K++Na+ and HCO3- concentrations due to the carbonate dissolution, halite dissolution, and cation exchange processes. Path 2 showed that the recharge of the CFA and Ordovician fractured limestone aquifer (OFA) occurred from the shallow recharge zone to the deeper OFA water through faults and fractures, mainly involving halite dissolution, carbonate dissolution, and gypsum dissolution. Path 3 demonstrated the interaction between the Hui River, collapsed pond water, and QLA, accompanied by gypsum dissolution, calcite dissolution, and cation exchange. Although the shallow QLA quality met the WHO drinking water standards, the pollution risk from the surface collapse pit water cannot be ignored. Therefore, effective approaches need to be considered in the study area to reduce the connection between the collapse pit water and QLA. The study results can help decision makers to predict water quality of complex water systems in ecotone areas and other similar regions worldwide.
Collapse
Affiliation(s)
- Qiding Ju
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Youbiao Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Coal Industry Engineering Research Center for Comprehensive Prevention and Control of Mine Water Disasters, Huainan 232001, China.
| | - Qimeng Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Coal Industry Engineering Research Center for Comprehensive Prevention and Control of Mine Water Disasters, Huainan 232001, China
| | - Kai Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Haitao Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Youmiao Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
3
|
Bai H, Li Y, Lu P, Li Y, Zhang L, Zhang D, Wang X, Zhou Y. Effect of environmental factors on accumulation of trace metals in a typical shale gas exploitation area: A comprehensive investigation by machine learning and geodetector models. CHEMOSPHERE 2024; 347:140724. [PMID: 37972868 DOI: 10.1016/j.chemosphere.2023.140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Whether a certain relationship is exist between shale gas exploitation and accumulation of trace metals in soil is a controversial issue in recent years. To date, few study clearly reveal the intrinsic contributions of natural and anthropogenic factors to accumulation of trace metals in soil. In this study, machine learning and geodetector models were integrated to investigate to contribution of environmental factors to variations of trace metals concentration. Before modeling, there are 10.33%-25.87% of soil considered as metal pollution, and the value of Pn further suggest that the Ba contribute the most to the comprehensive pollution index of trace metals in soil. The initial prediction of trace metals concentration by machine learning models is less effectively indicating the need for alternative approaches. To address this problem, post-constraints approach was used, and the post-constraint MSLR model demonstrates superior performance (R2 = 0.81) Additionally, through the utilization of geodetector model, the explanatory power (q) of CEC and SOM were identified as dominant natural factors with value of 0.055 and 0.089. respectively. Moreover, distance from working sites and working status were identified as the dominant anthropogenic factors associating to the spatial heterogeneity of trace metals in soil. The interaction between natural and anthropogenic factors showed a siginifacnt nonlinear enhancement effect on accumulation of Cr, Ba and Sr, and the highest value of q was 0.38 for SOM and distance. This study indicated that the potential metal contamination was related to shale gas exploitation and provide reference for controlling soil pollution in shale gas exploitation area and making management strategy.
Collapse
Affiliation(s)
- Hongcheng Bai
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, Sichuan, 610106, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, China.
| | - Yan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China.
| | - Yutong Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Xing Wang
- College of International Studies, Yibin University, Yibin, Sichuan, 644000, China
| | - Yuxiao Zhou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
4
|
Zhong C, Hou D, Liu B, Zhu S, Wei T, Gehman J, Alessi DS, Qian PY. Water footprint of shale gas development in China in the carbon neutral era. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117238. [PMID: 36681031 DOI: 10.1016/j.jenvman.2023.117238] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The production of shale gas in China has repercussions for the global energy landscape and carbon neutrality. However, limited and threatened water resources may hinder the expansion of shale-derived natural gas, one of China's most promising development prospects. Coupling historical trends with policy guidance, we project that baseline water stress will intensify in two-thirds of China's provinces in the next decade. By 2035, annual water use for shale gas hydraulic fracturing activities is likely to increase to 16-35 million m3, with 13.8-23.7 million m3 of wastewater produced annually to extract 38-48 billion m3 of gas from ∼4800 shale gas wells. Analysis suggests that this projection is based on previously underestimated geological constraints (e.g., deep continental facies) in shale gas development in China. Nevertheless, forecasts suggest that the water footprint of shale development will become impossible to ignore, particularly in drought-stricken areas, indicating the potential risk of competition for water among shale development, domestic use, food production, and ecological protection. Meanwhile, the annual wastewater management market will increase to $0.2 billion by 2035. Our study suggests a critical need to direct attention to the (shale) energy-water nexus and develop multi-pronged policies to facilitate China's transition to carbon neutrality.
Collapse
Affiliation(s)
- Cheng Zhong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science, The Hong Kong University of Science and Technology, China.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), Institute for Disaster Management and Reconstruction, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, China
| | - Songbai Zhu
- Kela Oil and Gas Development Department of Tarim Oilfield Branch of CNPC, Korla, Xinjiang, 841000, China
| | - Tong Wei
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science, The Hong Kong University of Science and Technology, China
| | - Joel Gehman
- Department of Strategic Management and Public Policy, George Washington University, Washington, DC, USA
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science, The Hong Kong University of Science and Technology, China.
| |
Collapse
|
5
|
He X, Li P, Shi H, Xiao Y, Guo Y, Zhao H. Identifying strontium sources of flowback fluid and groundwater pollution using 87Sr/ 86Sr and geochemical model in Sulige gasfield, China. CHEMOSPHERE 2022; 306:135594. [PMID: 35803383 DOI: 10.1016/j.chemosphere.2022.135594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Hydraulic fracturing technology has made unconventional oil and gas development economically viable; however, it can lead to potential environmental issues such as groundwater pollution. Strontium isotope (87Sr/86Sr) is considered as a sensitive tracer to indicate potential groundwater contamination. In this study, strontium (Sr) and 87Sr/86Sr sources of hydraulic fracturing flowback fluid are identified with 87 flowback fluid samples and 5 borehole core samples. High Sr concentrations and 87Sr/86Sr values were found in fracturing flowback fluid. The hydrogeochemistry evidence shows high Sr and 87Sr/86Sr in fracturing flowback fluid mainly comes from formation water with high ion concentrations, while Sr and 87Sr/86Sr of formation water develop in diagenesis and long term water-rock interaction (e.g., feldspar dissolution and clay mineral transformations) under the high temperature and pressure. A complete evaluation system was executed to assess the sensitivity of 87Sr/86Sr indicating potential pollution on groundwater. The mixing curves which 87Sr/86Sr combined with Sr and Cl were also established by mixing models to indicate groundwater pollution. The modeling results show mineral dissolution/precipitation and cation exchange have little impact on 87Sr/86Sr in the mixing process between fracturing flowback fluid and groundwater, which 87Sr/86Sr can identify contamination when only 0.89% of fracturing flowback fluid mixes with groundwater. Finally, the potential contamination pathways are discussed. It is highly unlikely fracturing flowback fluid contaminates groundwater and soil through upward migration, whereas leakage is a more prevalent pollution pathway.
Collapse
Affiliation(s)
- Xiaodong He
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Hua Shi
- Oil and Gas Technology Research Institute of Changqing Oilfield Company, PetroChina, Xi'an, 710018, Shaanxi, China
| | - Yuanxiang Xiao
- Oil and Gas Technology Research Institute of Changqing Oilfield Company, PetroChina, Xi'an, 710018, Shaanxi, China
| | - Yanan Guo
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Hanghang Zhao
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
6
|
Zhou S, Li Z, Peng S, Zhang D, Li W, Hong M, Li X, Yang J, Lu P. Combining eDNA and morphological approaches to reveal the impacts of long-term discharges of shale gas wastewaters on receiving waters. WATER RESEARCH 2022; 222:118869. [PMID: 35870390 DOI: 10.1016/j.watres.2022.118869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The potential threats of shale gas wastewater discharges to receiving waters is of great concern. In this study, chemical analyses and biomonitoring were performed three times in a small river that received treated wastewater over a two-year period. The results of chemical analyses showed that the concentrations of chloride, conductivity, barium, and strontium increased at the discharge site, but their concentrations decreased considerably farther downstream (≥500 m). The concentrations of toxic organic compounds (16 US EPA priority polycyclic aromatic hydrocarbons and 6 priority phthalates), trace metals (strontium, arsenic, zinc, copper, chromium, lead, cadmium, nickel, and neodymium), and natural radionuclides (40K, 238U, 226Ra, and 232Th) were comparable to the corresponding background values or did not exhibit obvious accumulation in sediments with continued discharge. Morphological and environmental DNA approaches were used to reveal the potential effects of wastewater discharges on aquatic ecosystems. The results showed that the community structure of benthic invertebrates was not altered by the long-term discharges of shale gas wastewaters. However, the biodiversity indices (richness and Shannon) from the two approaches showed inconsistencies, which were caused by multiple reasons, and that substrates had a strong influence on the morphological biodiversity indices. A multimetric index was proposed to further analyze morphological and environmental DNA data, and the results showed no significant difference between the upstream and downstream sites. Generally, the chemical and biological results both demonstrated that the discharges of shale gas wastewaters had limited impacts on river ecosystems within two years.
Collapse
Affiliation(s)
- Shangbo Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiqiang Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Shuchan Peng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Weichang Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mingyu Hong
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xingquan Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
7
|
Jin B, Han M, Huang C, Arp HPH, Zhang G. Towards improved characterization of the fate and impact of hydraulic fracturing chemicals to better secure regional water quality. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:497-503. [PMID: 35404376 DOI: 10.1039/d2em00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydraulic fracturing (HF) of shale and other permeable rock formations to extract gas and oil is a water-intensive process that returns a significant amount of flowback and produced water (FPW). Due to the complex chemical composition of HF fluids and FPW, this process has led to public concern on the impacts of FPW disposal, spillage and spreading to regional freshwater resources, in particular to shallow groundwater aquifers. To address this, a better understanding of the chemical composition of HF fluid and FPW is needed, as well as the environmental fate properties of the chemical constituents, such as their persistence, mobility and toxicity (PMT) properties. Such research would support risk-based management strategies for the protection of regional water quality, including both the phase-out of problematic chemicals and better hydraulic safeguards against FPW contamination. This article presents recent strategies to advance the assessment and analysis of HF and FPW associated organic chemicals.
Collapse
Affiliation(s)
- Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Min Han
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Chen Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadion, N-0806 Oslo, Norway.
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
8
|
Zhou S, Peng S, Li Z, Zhang D, Zhu Y, Li X, Hong M, Li W, Lu P. Risk assessment of pollutants in flowback and produced waters and sludge in impoundments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152250. [PMID: 34921872 DOI: 10.1016/j.scitotenv.2021.152250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Due to the growing hydraulic fracturing (HF) practices in China, the environmental risks of pollutants in flowback and produced waters (FPW) and sludge in impoundments for FPW reserves have drawn increasing attention. In this context, we first characterized the comparative geochemical characteristics of the FPW and the sludge in impoundments that collected FPW from 75 shale gas wells, and then the risks associated with the pollutants were assessed. The results demonstrated that four organic compounds detected in the FPW, naphthalene, acenaphthene, dibutyl phthalate, and bis(2-ethylhexyl)phthalate, were potential threats to surface waters. The concentrations of trace metals (copper, cadmium, manganese, chromium, nickel, zinc, arsenic, and lead) in the FPW and sludge were low; however, those of iron, barium, and strontium were high. The accumulation of chromium, nickel, zinc, and lead in the sludge became more evident as the depth increased. The environmental risks from heavy metals in the one-year precipitated sludge were comparable to those reported in the environment. However, the radium equivalent activities were 10-41 times higher than the recommended value for human health safety, indicating potential radiation risks. Although hydrophobic organic compounds, such as high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), benzene, ethylbenzene, toluene, and xylene (BTEX), tended to accumulate in the sludge, their environmental risks were within tolerable ranges after proper treatment. Multiple antibiotic resistance genes (ARGs), such as those for macrolide, lincosamide, streptogramin (MLS), tetracycline, and multidrug resistances, were detected in the shale gas wastewaters and sludge. Therefore, the environmental risks of these emerging pollutants upon being discharged or leaked into surface waters require further attention.
Collapse
Affiliation(s)
- Shangbo Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shuchan Peng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Zhiqiang Li
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yantao Zhu
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xingquan Li
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mingyu Hong
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Weichang Li
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
9
|
Chen X, Jiang C, Zheng L, Zhang L, Fu X, Chen S, Chen Y, Hu J. Evaluating the genesis and dominant processes of groundwater salinization by using hydrochemistry and multiple isotopes in a mining city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117381. [PMID: 34034018 DOI: 10.1016/j.envpol.2021.117381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The increasing salinization of groundwater renders it challenging to maintain the water quality. Moreover, knowledge regarding the characteristics and mechanism of groundwater salinization in mining areas remains limited. This study represents the first attempt of combining the hydrochemical, isotope (δD, δ18O, δ37Cl, and 87Sr/86Sr) and multivariate statistical analysis methods to explore the origin, control, and influence of fluoride enrichment in mining cities. The TDS content of groundwater ranged from 275.9 mg/L to 2452.0 mg/L, and 54% of the groundwater samples were classified as class IV water according to China's groundwater quality standards (GB/T 14848-2017), indicating a decline in the water quality of the study area. The results of the groundwater ion ratio and isotope discrimination analysis showed that dissolution and evaporation involving water-rock interactions and halite were the main driving processes for groundwater salinization in the study area. In addition to the hydrogeological and climatic conditions, mine drainage inputs exacerbated the increasing salinity of the groundwater in local areas. The mineral dissolution, cation exchange, and evaporation promoted the F- enrichment, while excessive evaporation and salinity inhibited the F- enrichment. Gangue accumulation and infiltration likely led to considerable F- enrichment in individual groundwater regions. Extensive changes in the groundwater salinity indicated differences in the geochemical processes that controlled the groundwater salinization. Given the particularity of the study area, the enrichment of salinization and fluoride triggered by mining activities cannot be ignored.
Collapse
Affiliation(s)
- Xing Chen
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China.
| | - Liqun Zhang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Xianjie Fu
- Pingan Mining Engineering Technology Research Institute Co., Ltd., Huainan, 232001, Anhui, China
| | - Shigui Chen
- Pingan Mining Engineering Technology Research Institute Co., Ltd., Huainan, 232001, Anhui, China
| | - Yongchun Chen
- National Engineering Laboratory of Coal Mine Ecological Environment Protection, Huainan, 232001, Anhui, China
| | - Jie Hu
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| |
Collapse
|
10
|
Bondu R, Kloppmann W, Naumenko-Dèzes MO, Humez P, Mayer B. Potential Impacts of Shale Gas Development on Inorganic Groundwater Chemistry: Implications for Environmental Baseline Assessment in Shallow Aquifers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9657-9671. [PMID: 34251200 DOI: 10.1021/acs.est.1c01172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The potential contamination of shallow groundwater with inorganic constituents is a major environmental concern associated with shale gas extraction through hydraulic fracturing. However, the impact of shale gas development on groundwater quality is a highly controversial issue. The only way to reliably assess whether groundwater quality has been impacted by shale gas development is to collect pre-development baseline data against which subsequent changes in groundwater quality can be compared. The objective of this paper is to provide a conceptual and methodological framework for establishing a baseline of inorganic groundwater quality in shale gas areas, which is becoming standard practice as a prerequisite for evaluating shale gas development impacts on shallow aquifers. For this purpose, this paper first reviews the potential sources of inorganic contaminants in shallow groundwater from shale gas areas. Then, it reviews the previous baseline studies of groundwater geochemistry in shale gas areas, showing that a comprehensive baseline assessment includes documenting the natural sources of salinity, potential geogenic contamination, and potential anthropogenic influences from legacy contamination and surface land use activities that are not related to shale gas development. Based on this knowledge, best practices are identified in terms of baseline sampling, selection of inorganic baseline parameters, and definition of threshold levels.
Collapse
Affiliation(s)
- Raphaël Bondu
- BRGM (French Geological Survey), 3 Avenue Claude-Guillemin, 45060 Orléans, France
| | - Wolfram Kloppmann
- BRGM (French Geological Survey), 3 Avenue Claude-Guillemin, 45060 Orléans, France
| | | | - Pauline Humez
- Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Bernhard Mayer
- Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Ji Y, Zhang Z, Zhuang Y, Liao R, Zhou Z, Chen S. Molecular-level variation of dissolved organic matter and microbial structure of produced water during its early storage in Fuling shale gas field, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38361-38373. [PMID: 33733405 DOI: 10.1007/s11356-021-13228-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Shale gas-produced water (PW), the waste fluid generated during gas production, contains a large number of organic contaminants and high salinity matrix. Previous studies generally focused on the end-of-pipe treatment of the PW and ignored the early collection process. In this study, the transformation of the molecular composition and microbial community structure of the PW in the transportation and storage process (i.e., from the gas-liquid separator to the storage tank) were investigated. As the PW was transported from the gas-liquid separator to the portable storage tank, the dissolved organic matter (DOM) showed greater saturation, less oxidation, and lower polarity. DOMs with high O/C and low H/C ratios (numbers of oxygen and hydrogen divided by numbers of carbon) were eliminated, which may be due to precipitation or adsorption by the solids suspended in the PW. The values of double-bond equivalent (DBE), DBE/C (DBE divided by the number of carbon), and aromatic index (AI) decreased, likely because of the microbial degradation of aromatic compounds. The PW in the gas-liquid separator presented a lower biodiversity than that in the storage tank. The microbial community in the storage tank showed the coexistence of anaerobes and aerobes. Genera related to biocorrosion and souring were detected in the two facilities, thus indicating the necessity of more efficient anticorrosion strategies. This study helps to enhance the understanding of the environmental behavior of PW during shale gas collection and provides a scientific reference for the design and formulation of efficient transportation and storage strategies to prevent and control the environmental risk of shale gas-derived PW.
Collapse
Affiliation(s)
- Yufei Ji
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoji Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Yiling Zhuang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rugang Liao
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Zejun Zhou
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
12
|
Zhong C, Zolfaghari A, Hou D, Goss GG, Lanoil BD, Gehman J, Tsang DCW, He Y, Alessi DS. Comparison of the Hydraulic Fracturing Water Cycle in China and North America: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7167-7185. [PMID: 33970611 DOI: 10.1021/acs.est.0c06119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
There is considerable debate about the sustainability of the hydraulic fracturing (HF) water cycle in North America. Recently, this debate has expanded to China, where HF activities continue to grow. Here, we provide a critical review of the HF water cycle in China, including water withdrawal practices and flowback and produced water (FPW) management and their environmental impacts, with a comprehensive comparison to the U.S. and Canada (North America). Water stress in arid regions, as well as water management challenges, FPW contamination of aquatic and soil systems, and induced seismicity are all impacts of the HF water cycle in China, the U.S., and Canada. In light of experience gained in North America, standardized practices for analyzing and reporting FPW chemistry and microbiology in China are needed to inform its efficient and safe treatment, discharge and reuse, and identification of potential contaminants. Additionally, conducting ecotoxicological studies is an essential next step to fully reveal the impacts of accidental FPW releases into aquatic and soil ecosystems in China. From a policy perspective, the development of China's unconventional resources lags behind North America's in terms of overall regulation, especially with regard to water withdrawal, FPW management, and routine monitoring. Our study suggests that common environmental risks exist within the world's two largest HF regions, and practices used in North America may help prevent or mitigate adverse effects in China.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
- School of Environment, Tsinghua University, Beijing, China
| | - Ashkan Zolfaghari
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Brian D Lanoil
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Joel Gehman
- Department of Strategy, Entrepreneurship and Management, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Experimental Investigation of the Impacts of Fracturing Fluid on the Evolution of Fluid Composition and Shale Characteristics: A Case Study of the Niutitang Shale in Hunan Province, South China. ENERGIES 2020. [DOI: 10.3390/en13133320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydraulic fracturing is a widely used technique for oil and gas extraction from ultra-low porosity and permeability shale reservoirs. During the hydraulic fracturing process, large amounts of water along with specific chemical additives are injected into the shale reservoirs, causing a series of reactions the influence the fluid composition and shale characteristics. This paper is focused on the investigation of the geochemical reactions between shale and fracturing fluid by conducting comparative experiments on different samples at different time scales. By tracking the temporal changes of fluid composition and shale characteristics, we identify the key geochemical reactions during the experiments. The preliminary results show that the dissolution of the relatively unstable minerals in shale, including feldspar, pyrite and carbonate minerals, occurred quickly. During the process of mineral dissolution, a large number of metal elements, such as U, Pb, Ba, Sr, etc., are released, which makes the fluid highly polluted. The fluid–rock reactions also generate many pores, which are mainly caused by dissolution of feldspar and calcite, and potentially can enhance the extraction of shale gas. However, precipitation of secondary minerals like Fe-(oxy) hydroxides and CaSO4 were also observed in our experiments, which on the one hand can restrict the migration of metal elements by adsorption or co-precipitation and on the other hand can occlude the pores, therefore influencing the recovery of hydrocarbon. The different results between the experiments of different samples revealed that mineralogical texture and composition strongly affect the fluid-rock reactions. Therefore, the identification of the shale mineralogical characteristics is essential to formulate fracturing fluid with the lowest chemical reactivity to avoid the contamination released by flowback waters.
Collapse
|