1
|
Upadhayay HR, Granger SJ, Collins AL. Comparison of sediment biomarker signatures generated using time-integrated and discrete suspended sediment samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22431-22440. [PMID: 38407710 PMCID: PMC10997529 DOI: 10.1007/s11356-024-32533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Sediment source fingerprinting using biomarker properties has led to new insights in our understanding of land use contributions to time-integrated suspended sediment samples at catchment scale. A time-integrated mass-flux sampler (TIMS; also known as the 'Phillips' sampler), a cost-effective approach for suspended sediment collection in situ. Such samplers are widely being used to collect sediment samples for source fingerprinting purposes, including studies using biomarkers as opposed to more conventional tracer properties. Here, we assessed the performance of TIMS for collecting representative sediment samples for biomarkers during high discharge events in a small lowland grassland-dominated catchment. Concentrations of long odd-chain n-alkanes (> C23) and both saturated free and bound fatty acids (C14-C32), as well as compound-specific 13C were compared between sediment collected by both TIMS and autosamplers (ISCO). The results showed that concentrations of alkanes, free fatty acids, and bound fatty acids are consistently comparable between TIMS and ISCO suspended sediment samples. Similarly, compound-specific 13C signals were not found to be significantly different in the suspended sediment samples collected using the different samplers. However, different magnitudes of resemblance in biomarker concentrations and compositions between the samples collected using the two sediment collection methods were confirmed by overlapping index and symmetric coordinates-based correlation analysis. Here, the difference is attributed to the contrasting temporal basis of TIMS (time-integrated) vs. ISCO (discrete) samples, as well as potential differences in the particle sizes collected by these different sediment sampling methods. Nevertheless, our findings suggest that TIMS can be used to generate representative biomarker data for suspended sediment samples collected during high discharge events.
Collapse
Affiliation(s)
- Hari Ram Upadhayay
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, UK.
| | - Steven J Granger
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, UK
| | - Adrian L Collins
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, UK
| |
Collapse
|
2
|
Ren X, Yue FJ, Tang J, Li C, Li SL. Nitrate transformation and source tracking of rivers draining into the Bohai Sea using a multi-tracer approach combined with an optimized Bayesian stable isotope mixing model. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132901. [PMID: 37931340 DOI: 10.1016/j.jhazmat.2023.132901] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Excessive levels of NO3- can result in multiple eco-environmental issues due to potential toxicity, especially in coastal areas. Accurate source tracing is crucial for effective pollutant control and policy development. Bayesian models have been widely employed to trace NO3- sources, while limited studies have utilized optimized Bayesian models for NO3- tracing in the coastal rivers. The Bohai Rim is highly susceptible to ecological disturbances, particularly N pollution, and has emerged as a critical area. Therefore, identification the N fate and understanding their sources contribution is urgent for pollution mitigation efforts. In addition, understanding the influenced key driven factors to source dynamic in the past ten years is also implication to environmental management. In this study, water samples were collected from 36 major river estuaries that drain into the Bohai Sea of North China. The main transformation processes were analyzed and quantified the sources of NO3- using a Bayesian stable isotope mixing model (MixSIAR) with isotopic approach (δ15N-NO3- and δ18O-NO3-). The overall isotopic composition of δ15N-NO3- and δ18O-NO3- in estuary waters ranged from -0.8-19.3‰ (9.3 ± 4.6‰) and from -7.1-10.5‰ (5.0 ± 4.3‰), respectively. The main sources of nitrate in most river estuaries were manure & sewage, and chemical fertilizer, while weak denitrification and mixed processes were observed in Bohai Rim region. A temporal decrease in the nitrogen load entering the Bohai Sea indicates an improvement in water quality in recent years. By incorporating informative priors and utilizing the calculated coefficients, the accuracy of sourcing results was significantly improved. This study highlighted the optimized MixSIAR model enhanced its accuracy for sourcing analysis and providing valuable insights for policy formulation. Future efforts should focus on improving management strategies to reduce nitrogen into the bay.
Collapse
Affiliation(s)
- Xinwei Ren
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| | - Jianhui Tang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Cai Li
- School of Urban and Environment Science, Huaiyin Normal University, Huaian 223300, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
3
|
Sun L, Ouyang M, Liu M, Liu J, Zhao X, Yu Q, Zhang Y. Enrichment, bioaccumulation and human health assessment of organochlorine pesticides in sediments and edible fish of a plateau lake. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9669-9690. [PMID: 37801211 DOI: 10.1007/s10653-023-01762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
The organochlorine pesticides (OCPs) are with features of persistence, high toxicity, bioaccumulation and adverse impact on ecosystems and human beings. Although OCPs pollutions have been observed in the plateau lakes, comprehensive understandings in the distribution characteristics and human health risks of OCPs in these valuable but fragile ecosystems are limited. We here investigated the distribution, bioaccumulation process and health risks of OCPs in the Jianhu lake, a representative plateau lake in China. The endrin ketone, endrin aldehyde and heptachlor were the most dominant species in surface and columnar sediments. Their total contents ranged between 0 ~ 1.92 × 103 ng·g-1. The distribution of OCPs in sediment cores combined with chronology information indicated that the fast accumulation of OCPs happened during the last decades. Combining the distribution features of OCPs in different sources with mixing model results of carbon isotope (δ13C), farming area was identified as the main source (46%), and the OCPs were transported to lake by inflow-rivers (37%). The enrichment of OCPs in sediments caused considerable bioaccumulation of OCPs in local fish (∑OCPs 0-3199.93 ng·g-1, dw) with the bio-sediment accumulation factor (BSAF) ranging from ND to 9.41. Moreover, growing time was another key factor governing the accumulation in specific species (Carassius auratus and Cyprinus carpio). Eventually, the carcinogenic risk index (CRI) and exposure risk index (ERI) of the endrin category and aldrin exceeded the reference value, indicating relatively high health risks through consumption of fish. Overall, this study systematically illustrated the bioaccumulation process and health risks of OCPs in the typical plateau lake, providing theoretical support for the better protection of this kind of lakes.
Collapse
Affiliation(s)
- Lei Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Min Ouyang
- Kunming Institute of Physics, Kunming, 650223, China
| | - Min Liu
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Jianhui Liu
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Xiaohui Zhao
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Qingguo Yu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Yinfeng Zhang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China.
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
4
|
Das A, Remesan R, Collins AL, Gupta AK. The spatio-temporal dynamics of suspended sediment sources based on a novel indexing approach combining Bayesian geochemical fingerprinting with physically-based modelling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118649. [PMID: 37481881 DOI: 10.1016/j.jenvman.2023.118649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Applications of sediment source fingerprinting continue to increase globally as the need for information to support improved management of the sediment problem persists. In our novel research, a Bayesian fingerprinting approach using MixSIAR was used with geochemical signatures, both without and with informative priors based on particle size and slope. The source estimates were compared with a newly proposed Source Sensitivity Index (SSI) and outputs from the INVEST-SDR model. MixSIAR results with informative priors indicated that agricultural and barren lands are the principal sediment sources (contributing ∼5-85% and ∼5-80% respectively during two sampling periods i.e. 2018-2019 and 2021-2022) with forests being less important. The SSI spatial maps (using % clay and slope as informative priors) showed >78% agreement with the spatial map derived using the INVEST-SDR model in terms of sub-catchment prioritization for spatial sediment source contributions. This study demonstrates the benefits of combining geochemical sediment source fingerprinting with SSI indices in larger catchments where the spatial prioritization of soil and water conservation is both challenging but warranted.
Collapse
Affiliation(s)
- Arnab Das
- School of Water Resources, Indian Institute of Technology Kharagpur, India
| | - Renji Remesan
- School of Water Resources, Indian Institute of Technology Kharagpur, India.
| | - Adrian L Collins
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, EX202SB, UK
| | - Ashok Kumar Gupta
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
5
|
Xu Z, Belmont P, Brahney J, Gellis AC. Sediment source fingerprinting as an aid to large-scale landscape conservation and restoration: A review for the Mississippi River Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116260. [PMID: 36179467 DOI: 10.1016/j.jenvman.2022.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Reliable quantitative information on sediment sources to rivers is critical to mitigate contamination and target conservation and restoration actions. However, for large-scale river basins, determination of the relative importance of sediment sources is complicated by spatiotemporal variability in erosional processes and sediment sources, heterogeneity in sediment transport and deposition, and a paucity of sediment monitoring data. Sediment source fingerprinting is an increasingly adopted field-based technique that identifies the nature and relative source contribution of sediment transported in waterways. Notably, sediment source fingerprinting provides information that is independent of other field, modeling, or remotely sensed techniques. However, the diversity in sampling, analytical, and interpretive methods for sediment fingerprinting has been recognized as a problem in terms of developing standardized procedures for its application at the scale of large river basins. Accordingly, this review focuses on sediment source fingerprinting studies conducted within the Mississippi River Basin (MRB), summarizes unique information provided by sediment source fingerprinting that is distinct from traditional monitoring techniques, evaluates consistency and reliability of methodological approaches among MRB studies, and provides prospects for the use of sediment source fingerprinting as an aid to large-scale landscape conservation and restoration under current management frameworks. Most MRB studies reported credible fingerprinting results and found near-channel sources to be the dominant sediment sources in most cases, and yet a lack of standardization in procedural steps makes results difficult to compare. Findings from MRB studies demonstrated that sediment source fingerprinting is a highly valuable and reliable sediment source assessment approach to assist land and water resource management under current management frameworks, but efforts are needed to make this technique applicable in large-scale landscape conservation and restoration efforts. We summarize research needs and discuss sediment fingerprinting use for basin-scale management efforts with the aim of encouraging that this technique is robust and reliable as it moves forward.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Watershed Sciences, Utah State University, Logan, UT, 84322, USA.
| | - Patrick Belmont
- Department of Watershed Sciences, Utah State University, Logan, UT, 84322, USA
| | - Janice Brahney
- Department of Watershed Sciences, Utah State University, Logan, UT, 84322, USA
| | - Allen C Gellis
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, MD, 21228, USA
| |
Collapse
|
6
|
Wang X, Blake WH, Taylor A, Kitch J, Millward G. Evaluating the effectiveness of soil conservation at the basin scale using floodplain sedimentary archives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148414. [PMID: 34146818 DOI: 10.1016/j.scitotenv.2021.148414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Evaluation of the spatial and temporal composition of floodplain sediments and soils is critical in the creation of soil management strategies for impacted riverine catchments. The objective of this study was to determine the distribution, and to identify the sources, of particulate trace elements and fallout radionuclides in the catchment of the River Avon (SW England), where sedimentary processes had been altered by reservoir construction in the 1950s. The catchment was compartmentalized into its main functional units namely, cultivated land, pasture, woodland, wet moorland, and channel bank. Surface soils were collected in each unit, along with four strategically-placed cores, all of which were analyzed for particle size, fallout radionuclides and elemental concentrations. Sediment particle sizes and sediment accumulation rates were affected by the construction of the reservoir, specifically the distributions of silt and clay. The concentrations of fertilizer constituent Cr and P were highly correlated in the mid-catchment but were unrelated downstream due to elevated concentrations of Cr from geological deposits. Copper, As, Pb and Sn had variable down-core distributions, with pulses in concentrations due to mining inputs. The contributions of the end-member sources of particulate elements in the sedimentary mixtures were evaluated, quantitatively, using a Bayesian Mixing Model and the cultivated land was identified as a significant contributor to the mixtures, independent of space and time. The results contribute to advances in soil quality and conservation measures as components of a catchment management plan for the Avon, an approach maybe applicable to other small catchments in the UK and internationally.
Collapse
Affiliation(s)
- Xiaolei Wang
- School of Environmental Sciences, Nanjing Xiaozhuang University, Nanjing 211171, China; School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK; Consolidated Radio-isotope Facility (CORiF), University of Plymouth, PL4 8AA, UK.
| | - William H Blake
- School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK; Consolidated Radio-isotope Facility (CORiF), University of Plymouth, PL4 8AA, UK
| | - Alex Taylor
- School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK; Consolidated Radio-isotope Facility (CORiF), University of Plymouth, PL4 8AA, UK
| | - Jessica Kitch
- School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK; Consolidated Radio-isotope Facility (CORiF), University of Plymouth, PL4 8AA, UK
| | - Geoffrey Millward
- School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK; Consolidated Radio-isotope Facility (CORiF), University of Plymouth, PL4 8AA, UK
| |
Collapse
|
7
|
Lizaga I, Bodé S, Gaspar L, Latorre B, Boeckx P, Navas A. Legacy of historic land cover changes on sediment provenance tracked with isotopic tracers in a Mediterranean agroforestry catchment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112291. [PMID: 33773212 DOI: 10.1016/j.jenvman.2021.112291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A Compound Specific Stable Isotope (CSSI) sediment tracing approach is applied for the first time in a Mediterranean mountain agroforestry catchment subjected to intense land use changes in the past decades. Many Mediterranean mountain environments underwent conversion of rangelands into croplands during the previous centuries to increase agricultural production. Converted land has increased the risk of erosion and in some cases has led to loss of the entire fertile topsoil. After land abandonment the process was gradually reversed during the middle of the 20th century, allowing the recovery of natural land cover and reduction of soil erosion rates. The 13C abundance of long chain fatty acids was used as tracer to assess the contribution of soil under different vegetation covers in complex landscapes subjected to land use changes after land abandonment in a medium-sized Mediterranean catchment. A Bayesian mixing model (MixSIAR) was used for estimating the contribution of different land use types to suspended sediments. To this purpose, composite samples were collected over the four main land covers existing in the study area: cropland, Mediterranean forest, pine forest, scrubland, and two main geomorphic elements: highly disturbed areas such as exposed subsoil and channel banks. Suspended sediment traps were installed at three locations in the catchment to assess the variability of source contributions from the headwaters to the outlet of the catchment. At every sampling point three replicating traps integrated the suspended sediment per climatologic season during a one hydrological year. The fatty acids (FAs) content was significantly higher at the catchment outlet than at the headwaters. The δ13C signatures of the FAs were successful in discriminating between Mediterranean forest, scrubland, pine forest and both geomorphic elements. Overall, the model identified agricultural land as the largest contributing source for most of the sampled seasons. The inclusion of prior information with different informativeness produced variations in the model outputs and could represent an advantage as much as a disadvantage if priors are not used with caution and supported by robust evidence. The results of this study suggest that CSSI tracers are needed to correctly assess land use related sediment sources, while channel bank and subsoil contributions require geochemical tracers. The high agricultural apportionment despite its small coverage (16%) point out to the impact of human activities and the agriculture cycle on soil loss in these mountain agroforestry systems.
Collapse
Affiliation(s)
- Ivan Lizaga
- Estación Experimental de Aula-Dei (EEAD-CSIC), Spanish National Research Council, Avenida Montañana, 1005, 50059, Zaragoza, Spain.
| | - Samuel Bodé
- Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Leticia Gaspar
- Estación Experimental de Aula-Dei (EEAD-CSIC), Spanish National Research Council, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Borja Latorre
- Estación Experimental de Aula-Dei (EEAD-CSIC), Spanish National Research Council, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Ana Navas
- Estación Experimental de Aula-Dei (EEAD-CSIC), Spanish National Research Council, Avenida Montañana, 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
8
|
Pulley S, Collins AL, Laceby JP. The representation of sediment source group tracer distributions in Monte Carlo uncertainty routines for fingerprinting: An analysis of accuracy and precision using data for four contrasting catchments. HYDROLOGICAL PROCESSES 2020; 34:2381-2400. [PMID: 32612321 PMCID: PMC7318149 DOI: 10.1002/hyp.13736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Previous studies comparing sediment fingerprinting un-mixing models report large differences in their accuracy. The representation of tracer concentrations in source groups is perhaps the largest difference between published studies. However, the importance of decisions concerning the representation of tracer distributions has not been explored explicitly. Accordingly, potential sediment sources in four contrasting catchments were intensively sampled. Virtual sample mixtures were formed using between 10 and 100% of the retrieved samples to simulate sediment mobilization and delivery from subsections of each catchment. Source apportionment used models with a transformed multivariate normal distribution, normal distribution, 25th-75th percentile distribution and a distribution replicating the retrieved source samples. The accuracy and precision of model results were quantified and the reasons for differences were investigated. The 25th-75th percentile distribution produced the lowest mean inaccuracy (8.8%) and imprecision (8.5%), with the Sample Based distribution being next best (11.5%; 9.3%). The transformed multivariate (16.9%; 17.3%) and untransformed normal distributions (16.3%; 20.8%) performed poorly. When only a small proportion of the source samples formed the virtual mixtures, accuracy decreased with the 25th-75th percentile and Sample Based distributions so that when <20% of source samples were used, the actual mixture composition infrequently fell outside of the range of uncertainty shown in un-mixing model outputs. Poor performance was due to combined random Monte Carlo numbers generated for all tracers not being viable for the retrieved source samples. Trialling the use of a 25th-75th percentile distribution alongside alternatives may result in significant improvements in both accuracy and precision of fingerprinting estimates, evaluated using virtual mixtures. Caution should be exercised when using a normal type distribution, without exploration of alternatives, as un-mixing model performance may be unacceptably poor.
Collapse
Affiliation(s)
- Simon Pulley
- Sustainable Agriculture SciencesRothamsted ResearchDevonUK
| | | | - J. Patrick Laceby
- Environmental Monitoring and Science Division, Alberta Environment and ParksCalgaryAlbertaCanada
| |
Collapse
|
9
|
Wynants M, Millward G, Patrick A, Taylor A, Munishi L, Mtei K, Brendonck L, Gilvear D, Boeckx P, Ndakidemi P, Blake WH. Determining tributary sources of increased sedimentation in East-African Rift Lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137266. [PMID: 32084693 DOI: 10.1016/j.scitotenv.2020.137266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 05/23/2023]
Abstract
Temporal and spatial sediment dynamics in an East-African Rift Lake (Lake Manyara, Tanzania), and its river inputs, have been evaluated via a combination of sediment tracing and radioactive dating. Changes in sedimentation rates were assessed using radioactive dating of sediment cores in combination with geochemical profile analysis of allogenic and autogenic elements. Geochemical fingerprinting of riverine and lake sediment was integrated within a Bayesian mixing model framework, including spatial factors, to establish which tributary sources were the main contributors to recent lake sedimentation. The novel application of Bayesian source attribution on sediment cores and subsequent integration with sedimentation data permitted the coupling of changes in the rate of lake sedimentation with variations in sediment delivery from the tributaries. These complimentary evidence bases demonstrated that Lake Manyara has experienced an overall upward trajectory in sedimentation rates over the last 120 years with distinct maxima between 0.80 and 0.85 g cm-2 yr-1 in the 1960s and between 0.84 and 1.81 g cm-2 yr-1 in 2010. Increased sedimentation rates are largely a result of a complex interaction between increased upstream sediment delivery following changes in land cover and natural rainfall fluctuations. Modelling results identified two specific tributaries as responsible for elevated sedimentation rates, contributing 58% and 38% of the recently deposited lake sediment. However, the effects of sedimentation were shown to be spatially distinct given the domination of different tributaries in various areas of Lake Manyara. The application of source-tracing techniques constrained sedimentation problems in Lake Manyara to specific tributary sources and established a link between upstream land degradation and downstream ecosystem health. This novel application provides a solid foundation for targeted land and water management strategies to safeguard water security and environmental health in Lake Manyara and has potential application to fill knowledge gaps on sediment dynamics in other East-African Rift Lakes.
Collapse
Affiliation(s)
- Maarten Wynants
- School of Geography, Earth and Environmental sciences, University of Plymouth, PL4 8AA, Portland Square, Drake Circus, Plymouth, UK.
| | - Geoffrey Millward
- School of Geography, Earth and Environmental sciences, University of Plymouth, PL4 8AA, Portland Square, Drake Circus, Plymouth, UK.
| | - Aloyce Patrick
- School of Life Sciences and Bioengineering, Nelson Mandela African Institute of Science and Technology, P.O. BOX 447, Arusha, Tanzania
| | - Alex Taylor
- School of Geography, Earth and Environmental sciences, University of Plymouth, PL4 8AA, Portland Square, Drake Circus, Plymouth, UK.
| | - Linus Munishi
- School of Life Sciences and Bioengineering, Nelson Mandela African Institute of Science and Technology, P.O. BOX 447, Arusha, Tanzania.
| | - Kelvin Mtei
- School of Life Sciences and Bioengineering, Nelson Mandela African Institute of Science and Technology, P.O. BOX 447, Arusha, Tanzania.
| | - Luc Brendonck
- Laboratory of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium.
| | - David Gilvear
- School of Geography, Earth and Environmental sciences, University of Plymouth, PL4 8AA, Portland Square, Drake Circus, Plymouth, UK.
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Patrick Ndakidemi
- School of Life Sciences and Bioengineering, Nelson Mandela African Institute of Science and Technology, P.O. BOX 447, Arusha, Tanzania.
| | - William H Blake
- School of Geography, Earth and Environmental sciences, University of Plymouth, PL4 8AA, Portland Square, Drake Circus, Plymouth, UK.
| |
Collapse
|
10
|
Collins AL, Blackwell M, Boeckx P, Chivers CA, Emelko M, Evrard O, Foster I, Gellis A, Gholami H, Granger S, Harris P, Horowitz AJ, Laceby JP, Martinez-Carreras N, Minella J, Mol L, Nosrati K, Pulley S, Silins U, da Silva YJ, Stone M, Tiecher T, Upadhayay HR, Zhang Y. Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. JOURNAL OF SOILS AND SEDIMENTS 2020; 20:4160-4193. [PMID: 33239964 PMCID: PMC7679299 DOI: 10.1007/s11368-020-02755-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/13/2020] [Indexed: 05/23/2023]
Abstract
PURPOSE This review of sediment source fingerprinting assesses the current state-of-the-art, remaining challenges and emerging themes. It combines inputs from international scientists either with track records in the approach or with expertise relevant to progressing the science. METHODS Web of Science and Google Scholar were used to review published papers spanning the period 2013-2019, inclusive, to confirm publication trends in quantities of papers by study area country and the types of tracers used. The most recent (2018-2019, inclusive) papers were also benchmarked using a methodological decision-tree published in 2017. SCOPE Areas requiring further research and international consensus on methodological detail are reviewed, and these comprise spatial variability in tracers and corresponding sampling implications for end-members, temporal variability in tracers and sampling implications for end-members and target sediment, tracer conservation and knowledge-based pre-selection, the physico-chemical basis for source discrimination and dissemination of fingerprinting results to stakeholders. Emerging themes are also discussed: novel tracers, concentration-dependence for biomarkers, combining sediment fingerprinting and age-dating, applications to sediment-bound pollutants, incorporation of supportive spatial information to augment discrimination and modelling, aeolian sediment source fingerprinting, integration with process-based models and development of open-access software tools for data processing. CONCLUSIONS The popularity of sediment source fingerprinting continues on an upward trend globally, but with this growth comes issues surrounding lack of standardisation and procedural diversity. Nonetheless, the last 2 years have also evidenced growing uptake of critical requirements for robust applications and this review is intended to signpost investigators, both old and new, towards these benchmarks and remaining research challenges for, and emerging options for different applications of, the fingerprinting approach.
Collapse
Affiliation(s)
- Adrian L. Collins
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Martin Blackwell
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Charlotte-Anne Chivers
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
- Centre for Rural Policy Research, University of Exeter, Lazenby House, Pennsylvania Road, Exeter, EX4 4PJ UK
| | - Monica Emelko
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario Canada
| | - Olivier Evrard
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA/CNRS/UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Ian Foster
- Environmental & Geographical Sciences, Learning Hub (Room 101), University of Northampton, University Drive, Northampton, NN1 5PH UK
| | - Allen Gellis
- U.S. Geological Survey, 5522 Research Park Drive, Baltimore, MD 21228 USA
| | - Hamid Gholami
- Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan Iran
| | - Steve Granger
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Paul Harris
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Arthur J. Horowitz
- South Atlantic Water Science Center, U.S. Geological Survey, Atlanta, GA USA
| | - J. Patrick Laceby
- Alberta Environment and Parks, 3535 Research Rd NW, Calgary, Alberta T2L 2K8 Canada
| | - Nuria Martinez-Carreras
- Luxembourg Institute of Science and Technology (LIST), Catchment and Eco-hydrology Research Group (CAT), L-4422 Belvaux, Luxembourg
| | - Jean Minella
- Department of Soil Science, Federal University of Santa Maria, Roraima Ave. 1000, Santa Maria, RS 97105-900 Brazil
| | - Lisa Mol
- Department of Geography and Environmental Management, University of the West of England, Bristol, UK
| | - Kazem Nosrati
- Department of Physical Geography, School of Earth Sciences, Shahid Beheshti University, Tehran, 1983969411 Iran
| | - Simon Pulley
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Uldis Silins
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2I7 Canada
| | - Yuri Jacques da Silva
- Agronomy Department, Federal University of Piaui (UFPI), Planalto Horizonte, Bom Jesus, PI 64900-000 Brazil
| | - Micheal Stone
- Department of Geography and Environmental Management, Faculty of Environment, University of Waterloo, EV1 Room 112, Waterloo, Canada
| | - Tales Tiecher
- Department of Soil Science, Federal University of Rio Grande do Sul, Bento Gonçalves Ave. 7712, Porto Alegre, RS 91540-000 Brazil
| | - Hari Ram Upadhayay
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Yusheng Zhang
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| |
Collapse
|