1
|
Anjum M, Prakash NB. Production of phytolith and PhytOC and distribution of extractable Si Pools in aerobic rice as influenced by different Si sources. FRONTIERS IN PLANT SCIENCE 2023; 14:1146416. [PMID: 37692442 PMCID: PMC10486906 DOI: 10.3389/fpls.2023.1146416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Phytoliths are composed of 66 to 91% SiO2 and 1 to 6% organic carbon (C) known as phytolith occluded carbon (PhytOC). PhytOC is critical for long-term C storage in the agroecosystem. A field experiment was carried out to investigate the effect of three different sources of exogenous Si, i.e., diatomaceous earth (DE), silicic acid (SA) and rice husk biochar (RHB) on 1) plant phytolith, C content in phytolith and PhytOC content in different rice organs; 2) relationship between plant phytolith, C content in phytolith, PhytOC content, and soil properties (soil physicochemical properties and readily soluble silicon pools). Different Si sources produced significantly higher phytolith, PhytOC content, and readily soluble Si pools (CCSi, AASi, and ASi) than the control (RDF), with treatment receiving 4 t RHB ha-1 outperforming the other treatments. Phytolith and PhytOC production were found to be significantly correlated to soil organic carbon (OC), available nitrogen (N) and potassium (K), 0.01 M CaCl2 extractable Si (CCSi) and amorphous Si (ASi) content in the soil. Redundancy analysis showed that treatments receiving 4 t RHB ha-1 have a stronger relationship with the CCSi and ASi which majorly contributed to the higher phytolith and PhytOC production. Thus, practices such as Si fertilizers and RHB application have a high potential for phytolith production and PhytOC sequestration, a critical mechanism of the global biogeochemical C sink.
Collapse
Affiliation(s)
- Mohsina Anjum
- Plant Nutrition Laboratory, Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, Bangalore, India
| | | |
Collapse
|
2
|
Liu L, Song Z, Tang J, Li Q, Sarkar B, Ellam RM, Wang Y, Zhu X, Bolan N, Wang H. New insight into the mechanisms of preferential encapsulation of metal(loid)s by wheat phytoliths under silicon nanoparticle amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162680. [PMID: 36889405 DOI: 10.1016/j.scitotenv.2023.162680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Silicon nanoparticles (SiNPs) have been widely used to immobilize toxic trace metal(loid)s (TTMs) in contaminated croplands. However, the effect and mechanisms of SiNP application on TTM transportation in response to phytolith formation and phytolith-encapsulated-TTM (PhytTTM) production in plants are unclear. This study demonstrates the promotion effect of SiNP amendment on phytolith development and explores the associated mechanisms of TTM encapsulation in wheat phytoliths grown on multi-TTM contaminated soil. The bioconcentration factors between organic tissues and phytoliths of As and Cr (> 1) were significantly higher than those of Cd, Pb, Zn and Cu, and about 10 % and 40 % of the total As and Cr that bioaccumulated in wheat organic tissues were encapsulated into the corresponding phytoliths under high-level SiNP treatment. These observations demonstrate that the potential interaction of plant silica with TTMs is highly variable among elements, with As and Cr being the two most strongly concentrated TTMs in the phytoliths of wheat treated with SiNPs. The qualitative and semi-quantitative analyses of the phytoliths extracted from wheat tissues suggest that the high pore space and surface area (≈ 200 m2 g-1) of phytolith particles could have contributed to the embedding of TTMs during silica gel polymerization and concentration to form PhytTTMs. The abundant SiO functional groups and high silicate-minerals in phytoliths are dominant chemical mechanisms for the preferential encapsulation of TTMs (i.e., As and Cr) by wheat phytoliths. Notably, the organic carbon and bioavailable Si of soils and the translocation of minerals from soil to plant aerial parts can impact TTM sequestration by phytoliths. Thus, this study has implications for the distribution or detoxification of TTMs in plants via preferential PhytTTM production and biogeochemical cycling of PhytTTMs in contaminated cropland following exogenous Si supplementation.
Collapse
Affiliation(s)
- Linan Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Robert Mark Ellam
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China
| | - Xiangyu Zhu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
3
|
Orzoł A, Cruzado-Tafur E, Gołębiowski A, Rogowska A, Pomastowski P, Górecki RJ, Buszewski B, Szultka-Młyńska M, Głowacka K. Comprehensive Study of Si-Based Compounds in Selected Plants ( Pisum sativum L., Medicago sativa L., Triticum aestivum L.). Molecules 2023; 28:4311. [PMID: 37298792 PMCID: PMC10254194 DOI: 10.3390/molecules28114311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
This review describes the role of silicon (Si) in plants. Methods of silicon determination and speciation are also reported. The mechanisms of Si uptake by plants, silicon fractions in the soil, and the participation of flora and fauna in the Si cycle in terrestrial ecosystems have been overviewed. Plants of Fabaceae (especially Pisum sativum L. and Medicago sativa L.) and Poaceae (particularly Triticum aestivum L.) families with different Si accumulation capabilities were taken into consideration to describe the role of Si in the alleviation of the negative effects of biotic and abiotic stresses. The article focuses on sample preparation, which includes extraction methods and analytical techniques. The methods of isolation and the characterization of the Si-based biologically active compounds from plants have been overviewed. The antimicrobial properties and cytotoxic effects of known bioactive compounds obtained from pea, alfalfa, and wheat were also described.
Collapse
Affiliation(s)
- Aleksandra Orzoł
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
| | - Edith Cruzado-Tafur
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| | - Adrian Gołębiowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Ryszard J. Górecki
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| |
Collapse
|
4
|
Liu L, Chang SX, Huang C, Zhi Y, Jie Y, Yu X, Jiang P. Enhancement of phytolith-occluded carbon accumulation of Moso bamboo response to temperatures elevation and different fertilization. FRONTIERS IN PLANT SCIENCE 2023; 14:1144961. [PMID: 36993853 PMCID: PMC10040793 DOI: 10.3389/fpls.2023.1144961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
The accumulation of phytolith-occluded carbon (PhytOC) in Moso bamboo could be a novel long-term carbon sequestration strategy. The objective of this study was to investigate the effects of temperature change and different fertilization on PhytOC accumulation. The pot experiment was established with different fertilization (including control (CK), nitrogen fertilizers (N), silicon fertilizers (Si), and a combination of nitrogen and silicon (NSi)) under high- and low-temperature. Despite the different fertilization, the PhytOC accumulation of the high-temperature group increases by 45.3% on average compared with the low-temperature group, suggesting higher temperature is greatly beneficial to the PhytOC accumulation. Fertilization significantly increases the accumulation of PhytOC (increased by 80.7% and 48.4% on average for the low- and high-temperature group, respectively) compared with CK. However, the N treatment increased both Moso bamboo biomass and PhytOC accumulation. The difference in the accumulation of PhytOC in Si and NSi was insignificant, indicating the combination of N and Si didn't bring extra benefit to PhytOC accumulation compared to Si fertilizer alone. These results indicated the application of nitrogen fertilizer is a practical and effective method for enhancing long-term carbon sequestration for Moso bamboo. Based on our study, we conclude that global warming poses a positive effect on promoting the long-term carbon sequestration of Moso bamboo.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Chengpeng Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Yuyou Zhi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Yang Jie
- Department of Bamboo Research, Fujian Academy of Forestry, Fuzhou, Fujian, China
| | - Xiuling Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Peikun Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, Zhejiang, China
| |
Collapse
|
5
|
Ding Z, Kumar Awasthi S, Kumar M, Kumar V, Mikhailovich Dregulo A, Yadav V, Sindhu R, Binod P, Sarsaiya S, Pandey A, Taherzadeh MJ, Rathour R, Singh L, Zhang Z, Lian Z, Kumar Awasthi M. A thermo-chemical and biotechnological approaches for bamboo waste recycling and conversion to value added product: Towards a zero-waste biorefinery and circular bioeconomy. FUEL 2023; 333:126469. [DOI: 10.1016/j.fuel.2022.126469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
6
|
Li W, Tan L, Zhang N, Chen H, Fan X, Peng M, Ye M, Yan G, Peng H, Nikolic N, Liang Y. Phytolith-occluded carbon in residues and economic benefits under rice/single-season Zizania latifolia rotation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155504. [PMID: 35490808 DOI: 10.1016/j.scitotenv.2022.155504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Zizania latifolia is a wild rice that contains phytoliths (Phyt) that have considerable potential for carbon sequestration. We hypothesized that the capacity of phytolith-occluded carbon (PhytOC) sequestration in residues might increase by 20%, and economic profit would be twice as high under a rice/single-season Z. latifolia rotation as under rice monoculture. To test this hypothesis, we collected rice and Z. latifolia plants and their corresponding soil samples from Zhejiang Province to determine the ability of both crops to fix carbon in the phytoliths. We showed that the soil concentrations of available Si, total carbon (Ctot) and total nitrogen (Ntot) were highly positively correlated with the concentrations of phytoliths and phytolith-occluded carbon in the residues of both crops. The cold waterlogged paddy fields in China have low productivity but their environmental conditions are suitable for planting Z. latifolia. Our model scenario, built on secondary data, demonstrated that, on a national basis, if the cold waterlogged paddy fields (occupying approximately 15% of the total paddy fields) were under rice/single-season Z. latifolia rotation, the contents of phytoliths and PhytOC in rice and Z. latifolia residues would be up to 19.46 × 106 t yr-1 and 8.82 × 104 t yr-1 (0.32 Tg CO2 yr-1), respectively. As a result, the economic benefit would be increased by 1.12 × 1011 USD per year compared to rice monoculture. Therefore, adopting rotational cropping of rice with single-season Z. latifolia will not only increase the content of PhytOC sequestration in residues and improve cold waterlogged paddy fields but also bring economic benefits to farmers.
Collapse
Affiliation(s)
- Wenjuan Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Tan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Chen
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoping Fan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Miao Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mujun Ye
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guochao Yan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nina Nikolic
- Institute for Multidiciplinary Research, Belgrade University, Belgrade, Serbia
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Semenova NA, Smirnov AA, Grishin AA, Pishchalnikov RY, Chesalin DD, Gudkov SV, Chilingaryan NO, Skorokhodova AN, Dorokhov AS, Izmailov AY. The Effect of Plant Growth Compensation by Adding Silicon-Containing Fertilizer under Light Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071287. [PMID: 34202814 PMCID: PMC8308918 DOI: 10.3390/plants10071287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 06/19/2021] [Indexed: 05/17/2023]
Abstract
The effects of different spectral compositions of light-emitting diode (LED) sources and fertilizer containing biologically active silicon (Si) in the nutrient solution on morphological and physiological plant response were studied. Qualitative indicators and the productivity of plants of a red-leaved and a green-leaved lettuce were estimated. Lettuce was grown applying low-volume hydroponics in closed artificial agroecosystems. The positive effect of Si fertilizer used as a microadditive in the nutrient solution on the freshly harvested biomass was established on the thirtieth day of vegetation under LEDs. Increase in productivity of the red-leaved lettuce for freshly harvested biomass was 26.6%, while for the green-leaved lettuce no loss of dry matter was observed. However, being grown under sodium lamps, a negative impact of Si fertilizer on productivity of both types of plants was observed: the amount of harvested biomass decreased by 22.6% and 30.3% for the green- and red-leaved lettuces, respectively. The effect of using Si fertilizer dramatically changed during the total growing period: up to the fifteenth day of cultivation, a sharp inhibition of the growth of both types of lettuce was observed; then, by the thirtieth day of LED lighting, Si fertilizer showed a stress-protective effect and had a positive influence on the plants. However, by the period of ripening there was no effect of using the fertilizer. Therefore, we can conclude that the use of Si fertilizers is preferable only when LED irradiation is applied throughout the active plant growth period.
Collapse
Affiliation(s)
- Natalya A. Semenova
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia; (N.A.S.); (A.A.S.); (A.A.G.); (N.O.C.); (A.S.D.); (A.Y.I.)
| | - Alexandr A. Smirnov
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia; (N.A.S.); (A.A.S.); (A.A.G.); (N.O.C.); (A.S.D.); (A.Y.I.)
| | - Andrey A. Grishin
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia; (N.A.S.); (A.A.S.); (A.A.G.); (N.O.C.); (A.S.D.); (A.Y.I.)
| | - Roman Y. Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.D.C.); (S.V.G.)
- Correspondence: ; Tel.: +7-916-518-7076
| | - Denis D. Chesalin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.D.C.); (S.V.G.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.D.C.); (S.V.G.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 603022 Nizhni Novgorod, Russia
| | - Narek O. Chilingaryan
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia; (N.A.S.); (A.A.S.); (A.A.G.); (N.O.C.); (A.S.D.); (A.Y.I.)
| | | | - Alexey S. Dorokhov
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia; (N.A.S.); (A.A.S.); (A.A.G.); (N.O.C.); (A.S.D.); (A.Y.I.)
| | - Andrey Y. Izmailov
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM” (FSAC VIM), 109428 Moscow, Russia; (N.A.S.); (A.A.S.); (A.A.G.); (N.O.C.); (A.S.D.); (A.Y.I.)
| |
Collapse
|
8
|
Lv W, Zhou G, Chen G, Zhou Y, Ge Z, Niu Z, Xu L, Shi Y. Effects of Different Management Practices on the Increase in Phytolith-Occluded Carbon in Moso Bamboo Forests. FRONTIERS IN PLANT SCIENCE 2020; 11:591852. [PMID: 33343597 PMCID: PMC7744606 DOI: 10.3389/fpls.2020.591852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Phytolith-occluded carbon (PhytOC), a promising long-term biogeochemical carbon sequestration mode, plays a crucial role in the global carbon cycle and the regulation of atmospheric CO2. Previous studies mostly focused on the estimation of the content and storage of PhytOC, while it remains unclear about how the management practices affect the PhytOC content and whether it varies with stand age. Moso bamboo (Phyllostachys heterocycla var. pubescens) has a great potential in carbon sequestration and is rich in PhytOC. Here, we selected four management treatments, including control (CK), compound fertilization (CF), silicon (Si) fertilization (SiF) (monosilicic acid can form phytoliths through silicification), and cut to investigate the variation of phytoliths and PhytOC contents in soil, leaves, and litters, and their storage in Moso bamboo forests. In soil, the SiF fertilizer treatment significantly (P < 0.05) increased phytolith content, PhytOC content, and storage compared to CK, while there were no significant differences between the treatments of CF and cut. In leaf, compared with CK, phytolith content of the second-degree leaves under SiF and the first-degree leaves under cut treatment significantly increased, and the three treatments significantly increased PhytOC storage for leaves with three age classes. In litter, the phytolith and PhytOC contents under the three treatments were not significantly different from that under the CK treatment. The PhytOC storage increased by 19.33% under SiF treatment, but significantly decreased by 40.63% under the CF treatment. For the entire Moso bamboo forest ecosystems, PhytOC storage of all the three management treatments increased compared with CK, with the largest increase by 102% under the SiF treatment. The effects of management practices on the accumulation of PhytOC varied with age. Our study implied that Si fertilization has a greater potential to significantly promote the capacity of sequestration of carbon in Moso bamboo forests.
Collapse
Affiliation(s)
- Wanjie Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou, China
| | - Guomo Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou, China
| | - Guangsheng Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou, China
| | - Yufeng Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou, China
| | - Zhipeng Ge
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou, China
| | - Zhengwen Niu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou, China
| | - Lin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou, China
| | - Yongjun Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
9
|
Effects of ecological factors on growth of Arundinaria spanostachya shoots in Liziping National Nature Reserve, China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|