1
|
Panghal V, Singh A, Hooda V, Arora D, Bhateria R, Kumar S. Recent progress, challenges, and future prospects in constructed wetlands employing biochar as a substrate: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1139-1166. [PMID: 39739227 DOI: 10.1007/s11356-024-35846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Constructed wetlands (CWs) are a cost-effective, efficient, and long-term wastewater treatment solution in various countries. The efficacy and performance of constructed wetlands are greatly influenced by the substrate. Recently, biochar as a substrate, along with sand and gravel in constructed wetlands, has gained importance due to its various physical, chemical, and biological properties. This review presents a detailed study of biochar as a substrate in CWs and the mechanism involved in efficiency enhancement in pollutant removal. Different methods for producing biochar using various types of biomasses are also addressed. The effect of biochar in removing pollutants like biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, heavy metals, and non-conventional pollutants (microcystin, phenanthrene, antibiotics, etc.) are also discussed. Furthermore, post-harvest utilization of constructed wetland macrophytic biomass via bioenergy production, biochar formation, and biosorbent formation is explained. Various challenges and future prospects in biochar-amended constructed wetlands are also discussed. Biochar proved to be an effective substrate in the removal of pollutants and proved to be a promising technique for wastewater treatment, especially for developing countries where the cost of treatment is a constraint. Biochar is an effective substrate; further modification in biochar with the right plant combination for different wastewater needs to be explored in the future. Future researchers in the field of constructed wetlands will benefit from this review during the utilization of biochar in constructed wetlands and optimization of biochar characteristics, viz., quantity, size, preparation method, and other biochar modifications.
Collapse
Affiliation(s)
- Vishal Panghal
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Asha Singh
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vishwajit Hooda
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Dinesh Arora
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rachna Bhateria
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Kumar
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
2
|
Satyendra, Vijay R. An innovative design and development of up-flow compact constructed wetland for sewage treatment. ENVIRONMENTAL RESEARCH 2025; 264:120350. [PMID: 39542157 DOI: 10.1016/j.envres.2024.120350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The growing demand for sustainable sewage treatment requires technologies that overcome the limitations of energy-intensive and chemical-dependent systems. This study presents an innovative solution addressing both environmental and operational challenges with the design and development of an Up-flow Compact Constructed Wetland (UCCW) based Sewage Treatment Plant (STP). This system integrates preliminary, primary, secondary, and tertiary treatment units into a single setup. The performance of UCCW based STP was evaluated over 720 days under different Hydraulic Retention Times (HRTs), considering seasonal variations in both rectangular and circular configurations. The system achieved significant pollutant removal as Total Suspended Solids (96%), Chemical Oxygen Demand (86%), Biochemical Oxygen Demand (90%), Total Nitrogen (70%), Total Phosphorus (65%), and Fecal Coliforms (99%) at a 36-h HRT. These parameters meet discharge standards, except FC, which requires disinfection for safe reuse and recycling. Further, Response Surface Methodology (RSM) and Monte Carle Simulation of UCCW based STP confirmed optimal and reliable performance at a 36-h HRT. Compared to conventional treatment technologies, the UCCW based STP demonstrated higher efficiency, a smaller footprint (1m2/KLD), better operational flexibility, cost-effectiveness, and minimal operation & maintenance to make it sustainable for decentralised treatment.
Collapse
Affiliation(s)
- Satyendra
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440420, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ritesh Vijay
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440420, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Patnaik L, Mallick SK. Acclimatization of a sequencing batch vertical oxidation pond with simulated agricultural wastewater using duckweed as vegetation: analysis of efficiency, Biomass, and Soil properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47771-47788. [PMID: 39007973 DOI: 10.1007/s11356-024-34330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Vertical oxidation pond operated in sequencing batch mode (HRT: 1.25 day) with duckweed as the vegetation was used to acclimatize with simulated agricultural wastewater. The maximum removal rate of urea [371 g/(m3.d)] and COD [222.4 g/(m3.d)] were observed at moderate concentrations of urea (500 mg/L), N-P-K (60 mg/L), and pesticide (20 mg/L). Inhibition and toxicity posed by higher concentrations, decreased the removals of urea (83% to 61%), COD (81% to 51%), and TDS (76% to 50%) at the end of the acclimatization. Steady removal (> 99%) of PO43--P was observed during acclimatization. Effluent pH increased due to the generation of NH4+-N (maximum 370 ± 5 mg/L) from the assimilation of urea. Oxidation of ammonia led to the maximum generation of NO2--N and NO3--N of 10 mg/L and 9 mg/L, respectively. Particles less than 300 μm increased, and both specific gravity (from 2.62 to 2.42) and maximum dry density (from 1.73 to 1.30 g/cm3) of the base soil decreased with an increase in urea, N-P-K, and pesticide. Reactor biomass increased (1.42 to 1.90 g/L) up to initial concentrations of urea (500 mg/L), N-P-K (60 mg/L), and pesticide (20 mg/L), then decreased (1.68 g/L) with an increase in concentration.
Collapse
Affiliation(s)
- Lipsa Patnaik
- Department of Civil Engineering, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha-751030, India
| | - Subrat Kumar Mallick
- Department of Civil Engineering, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha-751030, India.
| |
Collapse
|
4
|
Munir R, Muneer A, Younas F, Sayed M, Sardar MF, Albasher G, Noreen S. Actas Pink-2B dye removal in biochar nanocomposites augmented vertical flow constructed wetland (VF-CWs). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1392-1409. [PMID: 38441053 DOI: 10.1080/15226514.2024.2324360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Industries generate hazardous dye wastewater, posing significant threats to public health and the environment. Removing dyes before discharge is crucial. The ongoing study primarily focused on synthesizing, applying, and understanding the mechanism of green nano-biochar composites. These composites, including zinc oxide/biochar, copper oxide/biochar, magnesium oxide/biochar, and manganese oxide/biochar, are designed to effectively remove Actas Pink-2B (Direct Red-31) in conjunction with constructed wetlands. Constructed wetland maintained pH 6.0-7.9. At the 10th week, the copper oxide/biochar treatment demonstrated the highest removal efficiency of total suspended solids (72%), dissolved oxygen (7.2 mg/L), and total dissolved solids (79.90%), followed by other biochar composites. The maximum removal efficiency for chemical oxygen demand (COD) and color was observed at a retention time of 60 days. The electrical conductivity also followed the same order, with a decrease observed up to the 8th week before becoming constant. A comprehensive statistical analysis was conducted, encompassing various techniques including variance analysis, regression analysis, correlation analysis, and principal component analysis. The rate of color and COD removal followed a second-order and first-order kinetics, respectively. A significant negative relationship was observed between dissolved oxygen and COD. The study indicates that employing biochar composites in constructed wetlands improves textile dye removal efficiency.
Collapse
Affiliation(s)
- Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Murtaza Sayed
- National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Fahad Sardar
- Qingdao Key Laboratory of Ecological Protection and Restoration, School of Life Science, Shandong University, Qingdao, China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
5
|
Riyad YM, Elmorsi TM, Alam MG, Abel B. Surface Functionalization of Bioactive Hybrid Adsorbents for Enhanced Adsorption of Organic Dyes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095750. [PMID: 37174267 PMCID: PMC10177766 DOI: 10.3390/ijerph20095750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
In this study, a valuable adsorbent was functionalized using commercial ZnO and a mango seed extract (MS-Ext) as a green approach for synthesis. Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray analysis spectraconfirmed the presence of bioactive phenolic compounds and Cu2+ ions on the surface of ZnO. Functionalized Cu-doped ZnO/MS-Ext exhibits high efficacy in acidic, neutral, and alkaline medium, as indicated by 98.3% and 93.7% removal of methylene blue (MB) and crystal violet (CV) dyes, respectively. Cu-doped ZnO/MS-Ext has a zeta potential significantly lower than pristine zinc oxide (p-ZnO), which results in enhanced adsorption of cationic MB and CV dyes. In binary systems, both MB and CV were significantly removed in acidic and alkaline media, with 92% and 87% being removed for CV in acidic and alkaline media, respectively. In contrast, the removal efficiency of methyl orange dye (MO) was 16.4%, 6.6% and 11.2% for p-ZnO, ZnO/Ext and Cu-doped ZnO/Ext, respectively. In general, the adsorption kinetics of MB on Cu-doped ZnO/MS-Ext follow this order: linear pseudo-second-order (PSO) > nonlinear pseudo-second-order (PSO) > nonlinear Elovich model > linear Elovich model. The Langmuir isotherm represents the adsorption process and indicates that MB, CV, and MO are chemisorbed onto the surface of the adsorbent at localized active centers of the MS-extract functional groups. In a binary system consisting of MB and CV, the maximum adsorption capacity (qm) was 72.49 mg/g and 46.61 mg/g, respectively. The adsorption mechanism is governed by electrostatic attraction and repulsion, coordination bonds, and π-π interactions between cationic and anionic dyes upon Cu-doped ZnO/Ext surfaces.
Collapse
Affiliation(s)
- Yasser M Riyad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Taha M Elmorsi
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Mohd Gulfam Alam
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Bernd Abel
- Institute of Chemical Technology, Leipzig University, Linne´-Strasse 3, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Jian Y, Zhu J, Zeng Y, Long D, Wang H, Liu Z, Pu S. Pollutant removal from swine wastewater and kinetics in constructed rapid infiltration system (CRI system). ENVIRONMENTAL TECHNOLOGY 2023; 44:1642-1652. [PMID: 34807808 DOI: 10.1080/09593330.2021.2010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this paper is centred on the kinetics of removal of main pollutants in wastewater and to compared different hydraulic loading conditions of the constructed rapid infiltration system (CRI system) in terms of removal efficiencies, effluent concentrations, mass removal rate (MRR), and the first-order removal rate coefficient (k) of COD, TOC, NH4+-N, TN, and TP. The results showed that the higher the hydraulic loading, the higher the effluent concentration. The results that synthesized hydraulic loading, effluent concentrations, removal efficiencies, and other conditions showed that the best hydraulic loading was 40 cm/d. When the hydraulic load was 40 cm/d, the effluent average concentrations of COD, TOC, NH4+-N, TN, TP, Cu2+ and the removal efficiencies were 27.31 ± 16.40 mg/L, 86.11%, 10.55 ± 5.25 mg/L, 84.64%, 0.59 ± 0.87 mg/L, 99.60%, 143.31 ± 14.77 mg/L, 7.04%, 5.64 ± 1.38 mg/L, 79.20%, and 0.13 ± 0.47 mg/L, 97.51%, respectively. According to a kinetic study of the primary pollutants, the MRR increased with an increase in the hydraulic loading, except for ammonia nitrogen. CRI-3, CRI-4 were high significant correlated with ammonia nitrogen (with R2 = 93.65% and R2 = 95.03%, respectively), while CRI-2, CRI-3, and CRI-4 were high significant correlated with total nitrogen (with R2 = 94.56%, R2 = 96.70% and R2 = 96.56% respectively).
Collapse
Affiliation(s)
- Yue Jian
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Jiaming Zhu
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Yaqiong Zeng
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Dingbiao Long
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Hao Wang
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Chen C, Luo J, Bu C, Zhang W, Ma L. Efficacy of a large-scale integrated constructed wetland for pesticide removal in tail water from a sewage treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156568. [PMID: 35688240 DOI: 10.1016/j.scitotenv.2022.156568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/11/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The higher and higher detection frequencies of micro-pollutants such as pesticides in water are nowadays intensifying the investigation for strategies to provide effective engineering methods that could mitigate such substances. Traditional sewage treatment plants (STP) do not design specific processes for micro-pollutants removal in water. As an environmentally-friendly measure, some laboratory-scale wetlands have been proved to be effective in the removal of pesticides in water, but such studies are rarely carried out in large-scale wetlands, especially when they are adopted as a polishing step of STPs. Therefore, the further removals of micro-pollutants in tail water of STPs through the large-scale wetlands and the relevant removal mechanism are still knowledge gaps. In this study, 44 target pesticides were detected in the water of a large-scale integrated constructed wetland (ICW) for four seasons. The ICW was established to further process the tail water from a STP, whose drainage was from domestic sewage of local residents. There were 19, 16, 17, and 19 pesticides detected in spring, summer, autumn, and winter, respectively. The removal values for Σ19 pesticides ranged from 49.99% to 84.96% during the study period, and the removal of these pesticides followed significant seasonal trends, which was likely because the microorganisms responsible for biotic degradation were markedly influenced by seasonal temperature fluctuations. Proteobacteria, Chloroflexi, Acidobacteria, Planctomycetes, and Bacteroidetes were the dominant phyla, and might be associated with the biodegradation of organic pollutants in the ICW. Removal of pesticides by the ICW resulted in overall toxicity reductions in water, but butachlor and chlorpyrifos were still at non-ignorable ecological risks. This study highlights the potential of constructed wetlands for micro-pollutants removal in water as a polishing step in STPs.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiahong Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Chengcheng Bu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Weiwei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Muduli M, Choudhary M, Haldar S, Ray S. Monitoring and assessment of Dracaena-based constructed vertical flow wetlands treating textile dye wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:727. [PMID: 36064995 PMCID: PMC9444094 DOI: 10.1007/s10661-022-10415-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The monitoring and assessment of multiple constructed vertical flow wetlands (CVFWs) treating textile dye wastewater (metanil yellow as dye) are studied covering three seasons. Three CVFWs (CVFW-1, dye-5 mg/l; CVFW-2, dye-50 mg/l; and CVFW-3, dye-100 mg/l) and a control (dye-5 mg/l) were used. The CVFWs with Dracaena (an ornamental plant) efficiently removed contaminants like dye, COD, NH4+-N, and PO43--P from the wastewater under varying inlet dye concentrations, indicating its dependence on meteorological conditions. Substantial dye removal was observed to be maximum in summer (control, 44.3%; CVFW-1, 75.1%; CVFW-2, 76.1%; CVFW-3, 46%), but lesser in winter (control, 45%; CVFW-1, 73.1%; CVFW-2, 76.8%; CVFW-3, 42.6%) and minimum in monsoon (control, 40.8%; CVFW-1, 63.5%; CVFW-2, 51.6%; CVFW-3, 37.1%), respectively. Efficiency was less in CVFW-3 as it observed plant stress due to higher inlet dye concentration. COD removal was higher in winter, followed by summer and monsoon. A first-order kinetic model was used to investigate the efficiency of the CVFW system w.r.t. contaminant removal. Various functional groups were characterized using Fourier transform infrared spectroscopy (FTIR) from the inlet and outlet water samples of different CVFWs. The Dracaena accumulated various elements and oxides during the treatment with no stress on its health. No effects on plant health highlight the suitability of Dracaena for textile wastewater treatment. The results were validated using statistical tools like the Mann-Whitney U test and principal component analysis (PCA).
Collapse
Affiliation(s)
- Monali Muduli
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Meena Choudhary
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanak Ray
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Boopathi N, Kadarkarai R. A laboratory-scale study of residential greywater treatment with sugarcane in a constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61178-61186. [PMID: 35441291 DOI: 10.1007/s11356-022-20264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Due to India's population expansion, water recycling is critical to reducing water scarcity. The purpose of this study is to discuss the recycling and reuse of domestic greywater. The horizontal subsurface flow constructed wetland (HSSF-CW) was employed to treat greywater, with bioenergy crops replacing decorative plants. CO 86032 and CO 15027 sugarcane varieties were employed for phytoremediation. In a laboratory-scale HSSF-CW system with dimensions of 0.92 m, 0.61 m, and 0.45 m, coarse aggregate (20 mm), brick jelly (20 mm), and red soil mixed with coir pith (1/3 of coir pith volume-based) were employed as filter materials. During a hydraulic retention time (HRT) of 2 to 48 h, the maximum removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), and total nitrogen (TN) was 77.78-90%, 69.92-81.20%, 82-91.06%, and 75.83-84.02%, respectively.
Collapse
Affiliation(s)
- Nandhagopal Boopathi
- Department of Civil Engineering, Annapoorana Engineering College, Salem, Tamil Nadu, India.
| | - Rajeshkumar Kadarkarai
- Department of Environmental Engineering, Government College of Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
10
|
Muduli M, Sonpal V, Ray S, Haldar S. In-depth performance study of an innovative decentralized multistage constructed wetland system treating real institutional wastewater. ENVIRONMENTAL RESEARCH 2022; 210:112896. [PMID: 35182600 DOI: 10.1016/j.envres.2022.112896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The performance of an innovative decentralized multistage constructed wetland (DMCW) treating institutional wastewater is studied covering three seasons. The DMCW system with Canna lily efficiently removed organics contaminants like COD and BOD, and nutrients from the wastewater, showing its dependency on meteorological factors. Overall the performance is maximum in summer and least in monsoon, with a COD removal of 85.6% in summer followed by 82.5% in winter and 61.2% in monsoon. Removal of TSS (67.7-85.5%), PO43--P (52.1-64.4%), NH4+-N (56.6-71.6%), NO3--N (47.3-63.4%) and NO2--N (62-75.4%) were achieved along with heavy metals like Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Hg and Pb. Removal of pathogens like Vibrio is >98%, E. coli 95%, Pseudomonas 99%, and Aeromonas 63% was observed. Mass removal rate of COD was maximum in summer (97.3 g/m2/d) followed by winter (78.7 g/m2/d) and monsoon (43.5 g/m2/d). Majority of organics removal during the treatment was highlighted through Gas Chromatography-Mass Spectrometry (GCMS) and Fourier Transform Infrared Spectroscopy (FTIR) confirmed wastewater to be complex. The Canna lily accumulated various elements and oxides during the treatment with no stress on its health. The treated water quality is within the permissible limits and stands suitable for irrigational purposes. Better plant health and increased microbial diversity in the garden proves the suitability of treated water for irrigational activities. The results were validated using statistical tools like Mann-Whitney U test and principal component analysis.
Collapse
Affiliation(s)
- Monali Muduli
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vasavdutta Sonpal
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
| | - Sanak Ray
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Comparative Efficiency of Two Different Constructed Wetlands for Wastewater Treatment of Small Populations in Mediterranean Continental Climate. SUSTAINABILITY 2022. [DOI: 10.3390/su14116511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The treatment of wastewater from small towns supposes problems of economic efficiency, leading to very high environmental costs in areas with low population density. Constructed wetlands (CW) seems to be the more suitable solution for this kind of situation, but further investigations are needed regarding their efficiency under different climatic conditions. This work presents the results concerning urban wastewater treatment by means of two different constructed wetlands using macrophytes: horizontal subsurface flow (HSSF) and free water surface (FWS). The systems are located in a Mediterranean continental climate area and are fed by a by-pass at the entrance of a wastewater treatment plant. A four-year sampling campaign at the outlet of the CW allowed verifying their relative effectiveness in removing pollutants in the different seasons of the year. BOD5, COD, and TSS were significantly removed (with average reductions of 55%, 60%, and 57%, respectively) by these natural phytodepuration systems, with HSSF being more efficient during plants’ dormancy than FWS, but the concentrations of nutrients indicated that cumulative effects occur in CW with the need of adequate annual maintenance. It was found that the main factors controlling the efficiency of such systems throughout the year are the period of vegetative development, the presence/absence of a solid substrate, and the pollutant load of the wastewater inlet.
Collapse
|
12
|
Wdowczyk A, Szymańska-Pulikowska A. Micro- and Macroelements Content of Plants Used for Landfill Leachate Treatment Based on Phragmites australis and Ceratophyllum demersum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106035. [PMID: 35627572 PMCID: PMC9141712 DOI: 10.3390/ijerph19106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
One of the key problems associated with the functioning of landfills is the generation of leachate. In order to reduce their negative impact on the environment, various treatment technologies are applied. Among them, solutions based on the use of phytotechnology deserve special attention. The aim of this study was to evaluate the impact of landfill leachate on the content of micro- and macroelements in plant material. The research was carried out in four municipal waste landfills located in Poland. Emergent macrophytes (P. australis) and submergent macrophytes (C. demersum) were used in this research. The migration and distribution of pollutants reaching the roots and shoots of P. australis from water solutions were also studied. The concentrations of heavy metals in the studied plants were low in all analysed cases. Higher metal contents could often be observed in roots rather than in shoots, but these differences were insignificant. The chemical composition of the studied plant samples was primarily related to the source of origin of the treated leachate (landfill), as clearly demonstrated by cluster analysis. In the conducted studies, no important differences were noted in the accumulation of the studied components between submergent plants (C. demersum) and emergent macrophytes (P. australis).
Collapse
|
13
|
Soti A, Singh S, Verma V, Kulshreshtha NM, Brighu U, Kalbar P, Gupta AB. Designing the vertical flow constructed wetland based on targeted limiting pollutant. BIORESOURCE TECHNOLOGY 2022; 351:127068. [PMID: 35351563 DOI: 10.1016/j.biortech.2022.127068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The requirement of large land area limits the adoption of constructed wetlands (CWs) in urban settings with limited land availability. The area calculations for CW design are commonly carried out following Kikuth approach where the removal rate constant (K) is derived from literature. Investigation of secondary data of 82 vertical flow CWs, performed in this study, yielded wide variations (0.0003 - 0.822 md-1) in the calculated K values for different pollutants under different environmental and operational conditions indicating that it is important to incorporate the desired levels of pollutant removal to arrive at customized design of CWs. The results indicated that the relative standard deviation of K values could be narrowed by classifying the datasets based on design parameters like depth, hydraulic loading rates and substrate loading rates. These calculations can help arrive at more scientific design of CW to achieve the prevailing standards for the discharge or reuse of sewage.
Collapse
Affiliation(s)
- Abhishek Soti
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur Pin- 302017, India
| | - Saurabh Singh
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur Pin- 302017, India
| | - Vishesh Verma
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur Pin- 302017, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur Pin- 302017, India
| | - Urmila Brighu
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur Pin- 302017, India
| | - Pradip Kalbar
- Centre for Urban Science and Engineering (CUSE), Indian Institute of Technology Bombay, Pin - 400076, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur Pin- 302017, India.
| |
Collapse
|
14
|
McLaughlin MC, McDevitt B, Miller H, Amundson KK, Wilkins MJ, Warner NR, Blotevogel J, Borch T. Constructed wetlands for polishing oil and gas produced water releases. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1961-1976. [PMID: 34723304 DOI: 10.1039/d1em00311a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Produced water (PW) is the largest waste stream associated with oil and gas (O&G) operations and contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives. In some areas in Wyoming, constructed wetlands (CWs) are used to polish PW downstream of National Pollutant Discharge Elimination System (NPDES) PW release points. In recent years, there has been increased interest in finding lower cost options, such as CWs, for PW treatment. The goal of this study was to understand the efficacy of removal and environmental fate of O&G organic chemical additives in CW systems used to treat PW released for agricultural beneficial reuse. To achieve this goal, we analyzed water and sediment samples for organic O&G chemical additives and conducted 16S rRNA gene sequencing for microbial community characterization on three such systems in Wyoming, USA. Three surfactants (polyethylene glycols, polypropylene glycols, and nonylphenol ethoxylates) and one biocide (alkyldimethylammonium chloride) were detected in all three PW discharges and >94% removal of all species from PW was achieved after treatment in two CWs in series. These O&G extraction additives were detected in all sediment samples collected downstream of PW discharges. Chemical and microbial analyses indicated that sorption and biodegradation were the main attenuation mechanisms for these species. Additionally, all three discharges showed a trend of increasingly diverse, but similar, microbial communities with greater distance from NPDES PW discharge points. Results of this study can be used to inform design and management of constructed wetlands for produced water treatment.
Collapse
Affiliation(s)
- Molly C McLaughlin
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Bonnie McDevitt
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16801, USA
| | - Hannah Miller
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado 80523, USA
| | - Kaela K Amundson
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado 80523, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado 80523, USA
| | - Nathaniel R Warner
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16801, USA
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Thomas Borch
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO, 80523, USA.
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado 80523, USA
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
15
|
Assessment of the Efficiency, Environmental and Economic Effects of Compact Type On-Site Wastewater Treatment Plants—Results from Random Testing. SUSTAINABILITY 2021. [DOI: 10.3390/su13020982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study presents the results of random testing of selected on-site wastewater treatment plants (WWTPs) constructed in Poland in Masovia Voivodship in the years 2011–2016. The vast majority of tested on-site WWTPs were compact (container) type treatment plants, based on low rate activated sludge (AS), sequencing batch reactors (SBR), or a hybrid (activated sludge supported with biological film, AS + BF) method. Compact type plans are becoming more and more popular in single households in Poland, due to the option of co-financing. According to certificates provided by producers and distributors, container on-site wastewater treatment plants are efficient in BOD5 removal, with the expected removal rate being over 80%. The aim of this study was (1) to analyze BOD5 in effluents sampled from randomly selected on-site WWTPs, (2) to evaluate predicted and real environmental effects of the implementation of on-site WWTPs in selected communes within Masovia Voivodship, and (3) to calculate unit environmental and economic effects of container on-site WWTPs in three different technologies. Results of this study show that in most cases, there is a gap between the declared and the real BOD5 removal efficiency. There is also a difference between the performance of different container type technologies. The lowest real environmental effect was obtained for AS technology, and the highest for the hybrid one. The predicted environmental effect has only been almost achieved in the case of hybrid systems. Based on net present value (NPV) benefits, technologies can be set up as follows: AS > SBR > AS + BF, making the AS method the most effective technology from the point of view of the economy.
Collapse
|
16
|
The Potential Role of Hybrid Constructed Wetlands Treating University Wastewater—Experience from Northern Italy. SUSTAINABILITY 2020. [DOI: 10.3390/su122410604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
University wastewater is a type of wastewater with higher pollutants load and flow rate variability than typical domestic wastewater. Constructed wetlands (CW) could be used for university wastewater treatment and consequently for wastewater reuse. A hybrid CW pilot plant, at the University of Bologna (Italy), was monitored to assess its potential to be used at the university. Its treatment performance was monitored for one year and public acceptance explored through a survey. The pilot plant had two treatment lines, (1) a vertical flow CW (VFCW) and a planted horizontal flow CW (HFCW), and (2) the same VFCW and an unplanted horizontal flow filter (HFF). The HFCW achieved higher removals than the HFF, but it was also found to be prone to higher water losses. However, both treatment lines met the Italian limits for discharge in natural water bodies and some of the limits for wastewater reuse in Italy and the EU. The VFCW alone was not able to meet the same limits, demonstrating the advantages of hybrid over single stage CWs. A positive attitude towards CWs and wastewater reuse was found among the survey participants. Therefore, hybrid CWs (planted and unplanted) are considered a feasible technology for application at universities.
Collapse
|
17
|
Technological Reliability and Efficiency of Wastewater Treatment in Two Hybrid Constructed Wetlands in the Roztocze National Park (Poland). WATER 2020. [DOI: 10.3390/w12123435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The paper presents the results of a 3-year study on the technological reliability and the efficiency of typical domestic wastewater treatment in two hybrid constructed wetland systems (CWs) located in the area of the Roztocze National Park (Poland). The studied objects consist of an initial settling tank and a system of two beds of the vertical flow (VF) and horizontal flow (HF) (VF–HF) type with reed and willow. The wastewater flow rate in the constructed wetlands systems (CWs) was 0.4 and 1.0 m3/d, respectively. During the study period (2017–2019) 20 series of analyses were performed and 60 wastewater samples were collected. Based on the obtained results the effects of pollutant removal and the technological reliability were determined, which were specified with the Weibull method. The average efficiency of biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) removal was 96–99%. Slightly lower effects were obtained in the case of total phosphorus (TP) removal (90–94%), as well as for total suspended solids (TSS) (80–87%) and total nitrogen (TN) (73–86%) removal. The analysed CWs were characterised by 100% technological reliability for BOD5 and COD, as well as a good reliability for TSS and TP (87–100%) but slightly lower for TN removal (35–89%). Hybrid CWs of VF–HF type should be recommended to use in protected areas for wastewater treatment and water resources quality protection.
Collapse
|
18
|
Oxygen Consumption in Two Subsurface Wastewater Infiltration Systems under Continuous Operation Mode. WATER 2020. [DOI: 10.3390/w12113007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, an innovative arrangement of a vertical subsurface flow wastewater infiltration system (SWIS) was studied. The principal objective of this study was to evaluate the oxygen transfer rate (OTR) in two different pilot-scale arrangements of an SWIS. The two pilot plants were composed of four filter beds in series, one with a vertical arrangement of the beds (one over the other) and the other with a horizontal arrangement of the beds (one next to the other). Furthermore, two kinetic models were applied for correlating the COD and NH4+-N concentrations at the inlet and outlet of each treatment step in both pilot plants. The fitting of experimental data to the models allowed the calculation of the areal rate constants. The OTR values obtained were 54.69 g m−2 h−1 and 28.84 g m−2 h−1 for horizontal and vertical arrangement, respectively. These values were considerably higher than those obtained by other authors. The plug flow model describes the behaviour of these SWISs better, and the best fits were achieved for the vertical arrangement. The areal rate constant values obtained in this study were higher than those reported in the bibliography, which indicates a great removal efficiency and therefore lower surface area needed for the treatment.
Collapse
|
19
|
Ansari S, Alavi J. Polishing low-biodegradable and saline industrial effluent in a full-scale horizontal subsurface flow constructed wetland: evaluation of bio-treatability and predictive power of kinetic models. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:89-101. [PMID: 32723074 DOI: 10.1080/15226514.2020.1797629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study evaluates the bio-treatability performance and kinetic models of full-scale horizontal subsurface flow constructed wetland used for the tertiary treatment of composite industrial effluent characterized by high-salt content ranging from 5830 to 10,400 µS/cm and biochemical oxygen demand (BOD5): chemical oxygen demand (COD) ratio below 0.2. The wetland vegetated with Phragmites australis was operated in a semi-arid climate under an average hydraulic loading rate of 63 mm/d. The results of a 4-year operation calculated based on the concentration of pollutants showed that the average removal efficiency of COD, BOD5, and total suspended solids (TSS) were 17.5, 5.1, and 11.2%, respectively. The system reduced up to 6.5 ± 0.7% of electrical conductivity presenting poor phyto-desalination potential without considering the contribution of evapotranspiration in water balance in contrast to satisfying performance for heavy metals reduction. The comparison of the kinetics of organic matter removal obtained by the first-order and Monod models paired with continuous stirred-tank reactor and plug flow regime showed that Monod-plug flow model provided the best fit with the constants of 2.01 g COD/m2·d and 0.3014 g BOD5/m2·d with the best correlation coefficient of 0.610 and 0.968 between the predicted and measured concentrations, respectively. The low kinetic rates indicate that the process is capable of effluent polishing instead of purification due to the presence of organic compounds recalcitrant to biodegradation and a high level of salinity.
Collapse
Affiliation(s)
- Sepideh Ansari
- Department of Environmental Sciences and Engineering, Kheradgarayan Motahar Institute of Higher Education, Mashhad, Iran
| | - Javad Alavi
- Department of Environmental Sciences and Engineering, Kheradgarayan Motahar Institute of Higher Education, Mashhad, Iran
| |
Collapse
|
20
|
Liang Y, Wang Q, Huang L, Liu M, Wang N, Chen Y. Insight into the mechanisms of biochar addition on pollutant removal enhancement and nitrous oxide emission reduction in subsurface flow constructed wetlands: Microbial community structure, functional genes and enzyme activity. BIORESOURCE TECHNOLOGY 2020; 307:123249. [PMID: 32244072 DOI: 10.1016/j.biortech.2020.123249] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
A set of constructed wetlands (CWs) under different biochar addition ratios (0%, 10%, 20%, and 30%) was established to analyze the pollutant removal performance enhancement and nitrous oxide (N2O) emission reduction from various angles, including microbial community structure, functional genes and enzyme activity. Results revealed that the average removal efficiencies of ammonium (NH4+-N) and total nitrogen (TN) were improved by 2.6%-5.2% and 2.5%-7.0%. Meanwhile, N2O emissions were reduced by 56.0%-67.5% after biochar addition. Increased nitrogen removal efficiency and decreased N2O emissions resulted from the increase of biochar addition ratio. Biochar addition changed the microbial community diversity and similarity. The relative abundance of functional microorganisms such as Nitrosomonas, Nitrospira, Thauera and Pseudomonas, increased due to biochar addition, which promoted the nitrogen cycle and N2O emission reduction. High gene copy number and enzyme activity involved in nitrification and denitrification process were obtained in biochar CWs, moderating N2O emission.
Collapse
Affiliation(s)
- Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| | - Maolin Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China
| | - Ning Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| |
Collapse
|