1
|
Feng J, Wu YS, Lu LY, Xi C, Wu FY, Wang CY, Yin Q, Dorjsuren A, Jia RL, Qiao Y, Meng YF, Yu J. Effects of the types and ages of vegetation restoration on land surface roughness in the Eastern Hobq Desert, Northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176837. [PMID: 39396786 DOI: 10.1016/j.scitotenv.2024.176837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Vegetation restoration has an important remodelling effect on near-surface characteristics, and consequent changes in land surface roughness (LSR) are key influences on soil wind erosion processes. However, the effects of vegetation restoration types and ages on LSR and the underlying mechanisms are not fully understood. In this study, the sand-fixing vegetation restoration area of the Hobq Desert was examined in comparison to a bare sand control area. The LSR of four artificial vegetation types (Salix psammophila, Caragana korshinskii, Artemisia ordosica, and Populus simonii) with restoration age of 36 years, and Salix psammophila and Caragana korshinskii after different periods of restoration (20, 28, 36 and 45 years) were measured using Structure-from-Motion (SfM) photogrammetry. Near-surface characteristics that may affect LSR were also measured. The results showed that vegetation restoration was associated with a 230-409 % higher LSR compared to the control site (1.74 mm). LSR in the different vegetation restoration areas were ranked, from high to low, as follows: AO (8.85 mm) > CK (7.89 mm) > SP (6.70 mm) > PS (6.61 mm). LSR also increased with time since restoration, with the greatest rate of increase during the first 20 years. The change of LSR is mainly affected by the change of near-surface characteristics, with the direct effects of biological crust thickness (0.331), litter thickness (0.289), soil bulk density (-0.239), and clay content (0.171) being significant. Stem diameter, litter density, biological crust coverage, and soil organic matter affected LSR indirectly, mainly through acting on the above factors. Finally, LSR was effectively estimated based on biological crust thickness, litter thickness, and soil bulk density (R2 = 0.904). The research results will help to further deepen the understanding of the influence mechanism of vegetation restoration on LSR, and provide scientific basis and practical reference for vegetation ecological restoration in similar areas.
Collapse
Affiliation(s)
- Ji Feng
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yong-Sheng Wu
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China.
| | - Li-Yuan Lu
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Chasina Xi
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Feng-Yan Wu
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Chao-Yu Wang
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Qiang Yin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010013, China
| | - Altantuya Dorjsuren
- Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbatar 15170, Mongolia
| | - Rong-Liang Jia
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yu Qiao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010013, China
| | - Yuan-Fa Meng
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010013, China
| | - Jie Yu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010013, China
| |
Collapse
|
2
|
Liao K, Chen C, Ye W, Zhu J, Li Y, She S, Wang P, Tao Y, Lv A, Wang X, Chen L. The adaptability, distribution, ecological function and restoration application of biological soil crusts on metal tailings: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172169. [PMID: 38582126 DOI: 10.1016/j.scitotenv.2024.172169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
A large amount of metal tailings causes many environmental issues. Thus, the techniques for their ecological restoration have garnered extensive attention. However, they are still in the exploratory stage. Biological soil crusts (BSCs) are a coherent layer comprising photoautotrophic organisms, heterotrophic organisms and soil particles. They are crucial in global terrestrial ecosystems and play an equal importance in metal tailings. We summarized the existing knowledge on BSCs growing on metal tailings. The main photosynthetic organisms (cyanobacteria, eukaryotic algae, lichens, and mosses) of BSCs exhibit a high heavy metal(loid) (HM) tolerance. BSCs also have a strong adaptability to other adverse conditions in tailings, such as poor structure, acidification, and infertility. The literature about tailing BSCs has been rapidly increasing, particularly after 2022. The extensive literature confirms that the BSCs distributed on metal tailings, including all major types of metal tailings in different climatic regisions, are common. BSCs perform various ecological functions in tailings, including HM stress reduction, soil structure improvement, soil nutrient increase, biogeochemical cycle enhancement, and microbial community restoration. They interact and accelerate revegetation of tailings (at least in the temperate zone) and soil formation. Restoring tailings by accelerating/inducing BSC formation (e.g., resource augmentation and inoculation) has also attracted attention and achieved small-scale on-site application. However, some knowledge gaps still exist. The potential areas for further research include the relation between BSCs and HMs, large-scale quantification of tailing BSCs, application of emerging biological techniques, controlled laboratory experiments, and other restoration applications.
Collapse
Affiliation(s)
- Kejun Liao
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Chaoqi Chen
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Wenyan Ye
- Lin'an Branch of Hangzhou Bureau of Planning and Natural Resources, Hangzhou, Zhejiang, PR China
| | - Jing Zhu
- Lin'an Branch of Hangzhou Bureau of Planning and Natural Resources, Hangzhou, Zhejiang, PR China
| | - Yan Li
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Sijia She
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Panpan Wang
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Yue Tao
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Ang Lv
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Xinyue Wang
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Lanzhou Chen
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China.
| |
Collapse
|
3
|
Liu S, Liu Y, Cai Y. Incubation study on remediation of nitrate-contaminated soil by Chroococcus sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117637-117653. [PMID: 37870669 DOI: 10.1007/s11356-023-30383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The possibility of using the non-nitrogen-fixing cyanobacterium (Chroococcus sp.) for the reduction of soil nitrate contamination was tested through Petri dish experiments. The application of 0.03, 0.05 and 0.08 mg/cm2 Chroococcus sp. efficiently removed NO3--N from the soil through assimilation of nitrate nutrient and promotion of soil denitrification. At the optimal application dose of 0.05 mg/cm2, 44.06%, 36.89% and 36.17% of NO3--N were removed at initial NO3--N concentrations of 60, 90 and 120 mg/kg, respectively. The polysaccharides released by Chroococcus sp. acted as carbon sources for bacterial denitrification and facilitated the reduction of soil salinity, which significantly (p < 0.05) stimulated the growth of denitrifying bacteria (Hyphomicrobium denitrificans and Hyphomicrobium sp.) as well as significantly (p < 0.05) elevated the activities of nitrate reductase and nitrite reductase by 1.07-1.23 and 1.15-1.22 times, respectively. The application of Chroococcus sp. promoted the dominance of Nocardioides maradonensis in soil microbial community, which resulted in elevated phosphatase activity and increased available phosphorus content. The application of Chroococcus sp. positively regulated the growth of soil bacteria belonging to the genera Chitinophaga, Prevotella and Tumebacillus, which may contribute to increased soil fertility through the production of beneficial enzymes such as invertase, urease and catalase. To date, this is the first study verifying the remediation effect of non-nitrogen-fixing cyanobacteria on nitrate-contaminated soil.
Collapse
Affiliation(s)
- Shuaitong Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yong Cai
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
4
|
Rubio C, Lázaro R. Patterns in biocrust recovery over time in semiarid southeast Spain. Front Microbiol 2023; 14:1184065. [PMID: 37396363 PMCID: PMC10309646 DOI: 10.3389/fmicb.2023.1184065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Biological soil crusts (biocrusts) are communities of microorganisms, fungi, algae, lichens and mosses inhabiting on the soil surface and within the uppermost soil millimetres. They play an important ecological role in drylands, determining physical and chemical soil properties and reducing soil erosion. Studies on biocrust natural recovery establish highly variable recovery times. The different objectives and methodologies of experimentation and analysis, strongly influence these predictions. The main purpose of this research is to analyze the recovery dynamics of four biocrust communities and their relationship with microclimatic variables. In 2004, in Tabernas Desert, some of us removed the biocrust in central 30 cm × 30 cm area of three 50 cm × 50 cm plots in each of four biocrust communities (Cyanobacteria, Squamarina, Diploschistes, and Lepraria), installing a microclimatic station in each one with sensors for temperature and humidity of the soil and air, dew point, PAR and rain. Yearly, the 50 cm × 50 cm plots were photographed, and the cover of every species was monitored in every 5 cm × 5 cm cell of a 36-cells grid covering the removed central area. We analyzed different functions to fit the cover recovery, the differences in cover recovery speed between communities, the recovery dynamics from the spatial analysis of the plot, the changes in dissimilarity and biodiversity and the possible relationships with the climatic variables. The recovery of the biocrust cover fits to a sigmoidal function. The community dominated by Cyanobacteria developed faster than those dominated by lichens. The Squamarina and Diploschistes communities recovered faster than that of Lepraria and appears to be influenced by the surrounding undisturbed areas. Species-based dissimilarity between consecutive inventories fluctuated and decreased over time, while biodiversity increases in a similar way. The speed of recovery of the biocrust in each community, along with the order in which the species appeared, support the hypothesis about the succession, which would include three phases: firstly Cyanobacteria, then Diploschistes and/or Squamarina and finally Lepraria. The relationship between biocrust recovery and microclimate is complex and this work highlights the need to carry out further research on this topic and on biocrust dynamics in general.
Collapse
|
5
|
Hoellrich MR, James DK, Bustos D, Darrouzet-Nardi A, Santiago LS, Pietrasiak N. Biocrust carbon exchange varies with crust type and time on Chihuahuan Desert gypsum soils. Front Microbiol 2023; 14:1128631. [PMID: 37234525 PMCID: PMC10208066 DOI: 10.3389/fmicb.2023.1128631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/30/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction In dryland systems, biological soil crusts (biocrusts) can occupy large areas of plant interspaces, where they fix carbon following rain. Although distinct biocrust types contain different dominant photoautotrophs, few studies to date have documented carbon exchange over time from various biocrust types. This is especially true for gypsum soils. Our objective was to assess the carbon exchange of biocrust types established at the world's largest gypsum dune field at White Sands National Park. Methods We sampled five different biocrust types from a sand sheet location in three different years and seasons (summer 2020, fall 2021, and winter 2022) for carbon exchange measurements in controlled lab conditions. Biocrusts were rehydrated to full saturation and light incubated for 30 min, 2, 6, 12, 24, and 36 h. Samples were then subject to a 12-point light regime with a LI-6400XT photosynthesis system to determine carbon exchange. Results Biocrust carbon exchange values differed by biocrust type, by incubation time since wetting, and by date of field sampling. Lichens and mosses had higher gross and net carbon fixation rates than dark and light cyanobacterial crusts. High respiration rates were found after 0.5 h and 2 h incubation times as communities recovered from desiccation, leveling off after 6 h incubation. Net carbon fixation of all types increased with longer incubation time, primarily as a result of decreasing respiration, which suggests rapid recovery of biocrust photosynthesis across types. However, net carbon fixation rates varied from year to year, likely as a product of time since the last rain event and environmental conditions preceding collection, with moss crusts being most sensitive to environmental stress at our study sites. Discussion Given the complexity of patterns discovered in our study, it is especially important to consider a multitude of factors when comparing biocrust carbon exchange rates across studies. Understanding the dynamics of biocrust carbon fixation in distinct crust types will enable greater precision of carbon cycling models and improved forecasting of impacts of global climate change on dryland carbon cycling and ecosystem functioning.
Collapse
Affiliation(s)
- Mikaela R. Hoellrich
- Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Darren K. James
- USDA-ARS Jornada Experimental Range, New Mexico State University, Las Cruces, NM, United States
| | - David Bustos
- US DOI White Sands National Park, Alamogordo, NM, United States
| | | | - Louis S. Santiago
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nicole Pietrasiak
- Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
6
|
Successional Development of the Phototrophic Community in Biological Soil Crusts on Coastal and Inland Dunes. BIOLOGY 2022; 12:biology12010058. [PMID: 36671750 PMCID: PMC9856012 DOI: 10.3390/biology12010058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
(1) Biological soil crusts (biocrusts) are microecosystems consisting of prokaryotic and eukaryotic microorganisms growing on the topsoil. This study aims to characterize changes in the community structure of biocrust phototrophic organisms along a dune chronosequence in the Baltic Sea compared to an inland dune in northern Germany. (2) A vegetation survey followed by species determination and sediment analyses were conducted. (3) The results highlight a varying phototrophic community composition within the biocrusts regarding the different successional stages of the dunes. At both study sites, a shift from algae-dominated to lichen- and moss-dominated biocrusts in later successional dune types was observed. The algae community of both study sites shared 50% of the identified species while the moss and lichen community shared less than 15%. This indicates a more generalized occurrence of the algal taxa along both chronosequences. The mosses and lichens showed a habitat-specific species community. Moreover, an increase in the organic matter and moisture content with advanced biocrust development was detected. The enrichment of carbon, nitrogen, and phosphorus in the different biocrust types showed a similar relationship. (4) This relation can be explained by biomass growth and potential nutrient mobilization by the microorganisms. Hence, the observed biocrust development potentially enhanced soil formation and contributed to nutrient accumulation.
Collapse
|
7
|
Yizhaq H, Ashkenazy Y. Spatiotemporal dynamics of biocrust and vegetation on sand dunes. CHAOS (WOODBURY, N.Y.) 2022; 32:053103. [PMID: 35649998 DOI: 10.1063/5.0087296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
We propose a model to study at the first time the spatiotemporal dynamics of the coupling between biocrust and vegetation cover on sand dunes; previous studies modeled the temporal dynamics of vegetation-biocrust-sand system while other focused only on the spatiotemporal dynamics of vegetation on sand dunes, excluding the effect of biocrust. The model consists of two coupled partial nonlinear differential equations and includes diffusion and advection terms for modeling the dispersal of vegetation and biocrust and the effect of wind on them. In the absence of spatial variability, the model exhibits self-sustained relaxation oscillations and regimes of bistability-the first state is dominated by biocrust and the second by vegetation. We concentrate on the one-dimensional dynamics of the model and show that the front that connects these two states propagates mainly due to the wind advection. In the oscillatory regime the front propagation is complex and very interesting compared to the non-spatial relaxation oscillations. For low wind DP (drift potential) values, a series of spatially oscillatory domains develops as the front advances downwind. These domains form due to the oscillations of the spatially homogeneous states away from the front. However, for higher DP values, the dynamics is much more complex, becoming very sensitive to the initial conditions and exhibiting an irregular spatial pattern as small domains are created and annihilated during the front advance. The irregular spatiotemporal dynamics reported here seems to be unique, at least in the context of vegetation dynamics and possibly also in context of other dynamical systems.
Collapse
Affiliation(s)
- H Yizhaq
- Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University, Midreshet Ben-Gurion 8499000, Israel
| | - Y Ashkenazy
- Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
8
|
Maggioli L, Rodríguez-Caballero E, Cantón Y, Rodríguez-Lozano B, Chamizo S. Design Optimization of Biocrust-Plant Spatial Configuration for Dry Ecosystem Restoration Using Water Redistribution and Erosion Models. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.765148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Land degradation is one of the main threats to dryland sustainability in the next decades, hence restoration of the degraded land from drylands is an urgent need to maintain ecosystem functionality and their ability to provide ecosystem services. To achieve this goal, restoration practices should pursue the recovery of the main ground components, arranged in an optimal spatial configuration, to mimic undisturbed natural conditions. Drylands function as complex ecohydrologically coupled systems in which interplant source areas, frequently covered by biocrusts, act as sources of runoff and nutrients to adjacent vegetation, which act as sinks for these resources. Thus, one way to increase dryland restoration success is through an optimal spatial configuration of biocrusts and plants that maximizes an efficient use of the limited resources within the system. In this study, we selected a degraded slope from a limestone quarry located in Almería province (SE Spain) and modeled how active restoration of the biocrust through soil inoculation with cyanobacteria and its combination with different spatial configurations of vegetation affected runoff redistribution and erosion. For that, we applied the spatially distributed Limburg Soil Erosion Model (LISEM) which was able to predict the erosion measured on the slope during the study period with low error (RMSE = 17.8%). Modeling results showed that the introduction of vegetation on the degraded slope reduced runoff between 2 and 24% and erosion between 4 and 17% for the scenario with plants compared to the one without restoration management. Of all the vegetation spatial configurations tested, the one that provided better results was the scenario in which plants were located in the areas of higher water accumulation (higher topographic wetness index). Moreover, we found that active biocrust restoration by cyanobacteria inoculation significantly reduced erosion by 70–90%, especially during the first stages of plant development, while maintaining water supply to vegetation. These findings highlight the potential of water redistribution and erosion simulation models to identify the most optimal spatial configuration of ground covers that maximizes water and nutrient supply to vegetation, while minimizes water, sediment, and nutrient losses by erosion, thus serving as an efficient tool to plan restoration actions in drylands.
Collapse
|
9
|
Screening and Characterization of Two Extracellular Polysaccharide-Producing Bacteria from the Biocrust of the Mu Us Desert. Molecules 2021; 26:molecules26185521. [PMID: 34576992 PMCID: PMC8466918 DOI: 10.3390/molecules26185521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
The extracellular polysaccharide (EPS) matrix embedding microbial cells and soil particles plays an important role in the development of biological soil crusts (BSCs), which is widely recognized as beneficial to soil fertility in dryland worldwide. This study examined the EPS-producing bacterial strains YL24-1 and YL24-3 isolated from sandy soil in the Mu Us Desert in Yulin, Shaanxi province, China. The strains YL24-1 and YL24-3 were able to efficiently produce EPS; the levels of EPS were determined to be 257.22 μg/mL and 83.41 μg/mL in cultures grown for 72 h and were identified as Sinorhizobium meliloti and Pedobacter sp., respectively. When the strain YL24-3 was compared to Pedobacter yulinensis YL28-9T using 16S rRNA gene sequencing, the resemblance was 98.6% and the strain was classified as Pedobacter sp. using physiological and biochemical analysis. Furthermore, strain YL24-3 was also identified as a subspecies of Pedobacter yulinensis YL28-9T on the basis of DNA–DNA hybridization and polar lipid analysis compared with YL28-9T. On the basis of the EPS-related genes of relevant strains in the GenBank, several EPS-related genes were cloned and sequenced in the strain YL24-1, including those potentially involved in EPS synthesis, assembly, transport, and secretion. Given the differences of the strains in EPS production, it is possible that the differences in gene sequences result in variations in the enzyme/protein activities for EPS biosynthesis, assembly, transport, and secretion. The results provide preliminary evidence of various contributions of bacterial strains to the formation of EPS matrix in the Mu Us Desert.
Collapse
|
10
|
Zhu Q, Wu L, Li X, Li G, Li J, Li C, Zhao C, Wang F, Du C, Deng C, Li W, Zhang L. Effects of ambient temperature on the redistribution efficiency of nutrients by desert cyanobacteria- Scytonema javanicum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139733. [PMID: 32783823 DOI: 10.1016/j.scitotenv.2020.139733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Cultures of Scytonema javanicum obtained from artificial medium are used to control desertification, and through the effective redistribution of nutrients, related environmental problems can be alleviated. Wastewater is considered to be a potential alternative medium for S. javanicum. However, the effect of temperature on the nutrient redistribution ability of S. javanicum cultured in wastewater has rarely been considered. Therefore, this study explores the effect of temperature on S. javanicum in wastewater. The results showed that a sufficient temperature increase (from 25 °C to 30 °C) increased the photosynthetic activity of photosynthetic system II (PSII), accelerated the accumulation rate of S. javanicum biomass, and improved the removal efficiency of nutrients in wastewater. However, an increasing temperature caused a decrease in the final accumulated biomass. When the temperature was above 35 °C, the ratio of the variable to maximal fluorescence (Fv/Fm) of S. javanicum decreased, thus, causing damage to PSII. The average Fv/Fm at 35 °C and 40 °C decreased by 10.49% and 72.37%, respectively, compared to that at 25 °C. By analysing the chlorophyll fluorescence induction kinetics (OJIP) curve after 30 days, the P phase at 30 °C increased by 15.47% relative to that at 25 °C, whereas that at 35 °C and 40 °C decreased by 45.54% and 86.37%, respectively. In particular, at 40 °C, the O-J-I-P phase transformed into the O-J (J = I = P) phase, which caused irreversible damage to the PSII of S. javanicum. Comprehensive scores were determined using the entropy weight method and revealed that 30 °C was the optimal temperature for the wastewater culture of S. javanicum. This temperature improved the biomass accumulation rate and wastewater transfer efficiency. These results provide a scientific basis for improving the efficiency of the coupling technology of wastewater treatment and desert algal cultivation.
Collapse
Affiliation(s)
- Qiuheng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiaoguang Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guowen Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiaxi Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caole Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Fan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Caili Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chenning Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wei Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|