1
|
Joshi A, Kathuria D, Paul M, Singh N. An overview on the potential application of nanotechnology in enhancing the therapeutic efficacy of phytoestrogens. Food Chem 2025; 464:141779. [PMID: 39481307 DOI: 10.1016/j.foodchem.2024.141779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Phytoestrogens, derived from plants possesses structural similarity with 17 β-estradiol found in mammals. It is abundantly present in soybean along with red clove, alfalfa as well as other legumes, nuts, vegetables and seeds. It is used as hormone replacement therapy and exhibits both anti-estrogenic and estrogenic properties that linked to therapeutic benefits as well as plays active role in sports nutrition. Despite the potential benefits of phytoestrogens, their low solubility, bioavailability, and stability make it challenging to target them effectively. Recent advancements in nanotechnology have paved in facilitating target delivery. Scaling at nano level offered greater surface area, improved solubility, and bioavailability of phytoestrogens which has ultimately reduced the required medication dosage, and enhanced cost-effectiveness, particularly for expensive bioactive substances where precise dosages are recommended. The present article discussed about the potential application of nanotechnology in enhancing therapeutic benefits of phytoestrogens while minimizing their potential side effects.
Collapse
Affiliation(s)
- Aroma Joshi
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Deepika Kathuria
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Maman Paul
- Department of Physiotherapy, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India.
| |
Collapse
|
2
|
Won JP, Yoon HJ, Lee HG, Seo HG. Biochanin A inhibits excitotoxicity-triggered ferroptosis in hippocampal neurons. Eur J Pharmacol 2024; 985:177104. [PMID: 39532228 DOI: 10.1016/j.ejphar.2024.177104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Excitatory neurotransmitter-induced neuronal ferroptosis has been implicated in multiple neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Although there are several reports pertaining to the pharmacological activities of biochanin A, the effects of this isoflavone on excitotoxicity-triggered neuronal ferroptosis remain unclear. In this study, we demonstrate that biochanin A inhibits ferroptosis of mouse hippocampal neurons induced by glutamate or the glutamate analog, kainic acid. Biochanin A significantly inhibited accumulation of intracellular iron and lipid peroxidation in glutamate- or kainic acid-treated mouse hippocampal neurons. Furthermore, biochanin A regulated the level of glutathione peroxidase 4, a master regulator of ferroptosis, by modulating its autophagy-dependent degradation. We observed that biochanin A reduced the glutamate-induced accumulation of intracellular iron by regulating expression of iron metabolism-related proteins including ferroportin-1, divalent metal transferase 1, and transferrin receptor 1. Taken together, these results indicate that biochanin A effectively inhibits hippocampal neuronal death triggered by glutamate or kainic acid. Our study is the first to report that biochanin A has therapeutic potential for the treatment of diseases associated with hippocampal neuronal death, particularly ferroptosis induced by excitatory neurotransmitter.
Collapse
Affiliation(s)
- Jun Pil Won
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Han Jun Yoon
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hyuk Gyoon Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
3
|
Wang D, Zheng C, Chen B, Ma S. Biochanin A Induces Apoptosis in MCF-7 Breast Cancer Cells through Mitochondrial Pathway and Pi3K/AKT Inhibition. Cell Biochem Funct 2024; 42:e70014. [PMID: 39529484 DOI: 10.1002/cbf.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
The study aimed to investigate the molecular mechanisms by which Biochanin A inhibits proliferation and induces apoptosis in breast cancer cells. Cultured MCF-7 cells were divided into four groups: Group 1-control, while Groups 2, 3, and 4 were treated with Biochanin A at different concentrations. After treatment, the cells were monitored, and morphological changes were examined after 24 h of incubation. The results showed that Biochanin A inhibited cell proliferation, increased reactive oxygen species formation, and induced apoptosis. Furthermore, western blot analysis revealed that Biochanin A-treated cells exhibited lower expression of the Bcl-2, p-PI3K and p-AKT and higher expression of proapoptotic genes, including Bax, Caspase-3, Caspase-9, and cytochrome c. Additionally, PCR array analysis indicated that the gene expression levels of cyclin D3, cyclin B1, CDK1, CDK2, and CDK4 were downregulated, while the expression levels of p21, p27, and p53 were significantly upregulated. These results suggest that Biochanin A can suppress the viability of breast cancer cells and induce apoptosis via the mitochondrial pathway, along with inhibition of the Pi3K/Akt signaling pathway and modulation of cell cycle markers.
Collapse
Affiliation(s)
- Dianxiu Wang
- Department of General Surgery, SiJing Hospital of SongJiang District, Shanghai, China
| | - Chuyi Zheng
- Department of Pathology, Shanghai University of TCM Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Bo Chen
- Department of Oncology, Chengdu First People's Hospital, Chengdu, China
| | - Shuang Ma
- Department of General Surgery, Danyang Hospital of Traditional Chinese Medicine, Danyang, China
| |
Collapse
|
4
|
Won JP, Lee HG, Yoon HJ, Seo HG. Biochanin A-mediated anti-ferroptosis is associated with reduction of septic kidney injury. Life Sci 2024; 358:123124. [PMID: 39396639 DOI: 10.1016/j.lfs.2024.123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
AIMS This study aimed to investigate the therapeutic potential of biochanin A in a sepsis associated- acute kidney injury (SA-AKI) mouse model induced by lipopolysaccharide (LPS). MAIN METHODS Male BALB/C mice (n = 7 per group) were injected with biochanin A (40 mg/kg, i.p.) or ferrostatin-1 (5 mg/kg, i.p.) in the presence or absence of LPS (10 mg/kg, i.p.). Survival rates were monitored twice a day for up to 2 weeks. Morphologic and functional changes in kidney tissue were assessed by H&E staining and by analyzing of levels of blood-urea nitrogen (BUN) and creatinine (CR) in serum, respectively. Kidney epithelial cell death was analyzed by TUNEL staining, Prussian blue staining, iron quantification, lipid peroxide quantification, and glutathione quantification. Anti-ferroptosis mechanism of biochanin A was analyzed by RNA sequencing in mouse embryonic fibroblast cells. KEY FINDINGS Biochanin A increased the survival rate of septic mice and inhibited the secretion of high mobility group box 1, an important inflammatory mediator in sepsis. Biochanin A inhibited LPS-induced kidney damage by suppressing dilatation and kidney tubular epithelial cell death. Furthermore, serum levels of BUN and CR were reduced in biochanin A-treated endotoxemic mice. Biochanin A inhibited the accumulation of iron and lipid peroxide and prevented glutathione depletion in the kidney tissue. Also, nine genes associated with the anti-ferroptosis effects of biochanin A were identified by RNA sequencing analysis. SIGNIFICANCE The present study suggests that biochanin A is an effective inhibitor of ferroptosis, representing a potential treatment or prophylactic for sepsis-related disorders such as SA-AKI.
Collapse
Affiliation(s)
- Jun Pil Won
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Gyoon Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Jun Yoon
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Li YQ, Yu XM, Shang XM, Lin JY, Tan RZ, Li JC, Su HW, Shen HP, Wang HL, Wang L. Biochanin A suppresses Klf6-mediated Smad3 transcription to attenuate renal fibrosis in UUO mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156067. [PMID: 39326137 DOI: 10.1016/j.phymed.2024.156067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Renal fibrosis is a hallmark of chronic kidney disease (CKD). Smad3 serves as the principal transcription factor mediating the pro-fibrosis effects of TGF-β signaling in renal fibrosis. Biochanin A (BCA), a natural isoflavone, has been shown to attenuate renal fibrosis by inhibiting TGF-β signaling but the detailed mechanisms remain unresolved. This study aimed to elucidate the specific mechanisms by which BCA modulates TGF-β signaling. METHODS Renal fibrosis models were established both in vitro, using TGF-β1-stimulated mouse renal tubular TCMK1 cells, and in vivo, employing mice with unilateral ureter obstruction (UUO). RNA-seq was conducted to identify BCA-regulated genes. The AnimalTFDB4.0 database was utilized to predict transcription factors with potential binding to Smad3 promoter. The activities of TGF-β signaling and the cloned mouse Smad3 promoter were assessed using luciferase reporter assays. Plasmid transfection was performed using polyethylenimine in TCMK1 cells or ultrasound microbubbles in UUO kidneys. Gene expression was analyzed by RT-PCR, western blot, and immunohistochemistry assays. RESULTS BCA significantly inhibited TGF-β signaling activity and suppressed TGF-β1-induced fibrotic gene expression in TCMK1 cells. RNA-seq and in silico analyses identified Smad3 as the key gene downregulated by BCA, while leaving Smad2 unaffected. This selective transcriptional suppression of Smad3 by BCA was validated by luciferase reporter assays using the cloned Smad3 promoter. Furthermore, transcription factor binding prediction identified that Klf6, a transcription factor downregulated by BCA, has binding potential to the Smad3 promoter and promotes Smad3 transcription. Klf6 expression was induced in TGF-β1-stimulated TCMK1 cells and UUO kidneys, but this induction was abolished upon BCA treatment. Importantly, Klf6 overexpression restored Smad3 expression and counteracted the anti-fibrosis effects of BCA in both TGF-β1-stimulated TCMK1 cells and UUO kidneys. CONCLUSION TGF-β-responsive Klf6 transcriptionally transactivates Smad3 expression. BCA exerts anti-renal fibrosis effects by inhibiting the Klf6-Smad3 signaling axis, underscoring its therapeutic potential in the treatment of CKD.
Collapse
Affiliation(s)
- Yu-Qing Li
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xin-Ming Yu
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xue-Mei Shang
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jing-Yi Lin
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Rui-Zhi Tan
- Research Center of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jian-Chun Li
- Research Center of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Wei Su
- The Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Ping Shen
- The Clinical Trial Research Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Lian Wang
- Research Center of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China.
| | - Li Wang
- Research Center of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
6
|
Sheng W, Liao S, Wang D, Liu P, Zeng H. The role of ferroptosis in osteoarthritis: Progress and prospects. Biochem Biophys Res Commun 2024; 733:150683. [PMID: 39293333 DOI: 10.1016/j.bbrc.2024.150683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease, marked by cartilage degeneration, synovitis, and subchondral bone changes. The absence of effective drugs and treatments to decelerate OA's progression highlights a significant gap in clinical practice. Ferroptosis, an iron-dependent cell death driven by lipid peroxidation, has emerged as a research focus in osteoarthritic chondrocytes. This form of cell death is characterized by imbalances in iron and increased lipid peroxidation within osteoarthritic chondrocytes. Key antioxidant mechanisms, such as Glutathione Peroxidase 4 (GPX4) and the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) pathway, are vital in countering ferroptosis in osteoarthritic chondrocytes. This review collates recent findings on ferroptosis in osteoarthritic chondrocytes, emphasizing iron regulation, lipid peroxidation, and antioxidative responses. It also explores emerging therapeutics aimed at mitigating OA by targeting ferroptosis in chondrocytes.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Shuai Liao
- West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China; Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guang dong, China.
| |
Collapse
|
7
|
Bhalodi K, Kothari C, Butani S. Next-generation cancer nanotherapeutics: Pluronic ® F127 based mixed micelles for enhanced drug delivery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03582-x. [PMID: 39527309 DOI: 10.1007/s00210-024-03582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Cancer, projected to become the second leading cause of mortality globally, underscores the critical need for precise drug delivery systems. Nanotechnology, particularly micelles, has emerged as a promising avenue. These nano-sized colloidal dispersions (< 100 nm) utilize amphiphilic molecules featuring a hydrophilic tail and hydrophobic core, facilitating efficient drug encapsulation and delivery. Pluronic® F127, a triblock copolymer (PEO101-PPO56-PEO101), has emerged as a promising drug carrier due to its non-ionic, less-toxic nature, which prolongs drug circulation time and improves drug delivery across blood-brain and intestinal barriers. Mixed micelles, formed using Pluronic® F127 combined with other polymers, surfactants, and drugs, enhance drug solubility, stability, and targeted delivery. This review highlights the key features of mixed micelles, including enhanced pharmacokinetics and targeting abilities, folic acid (FA) conjugation strategies, superior cytotoxicity with reduced side effects, overcoming multidrug resistance, and versatility across various cancer types and compounds. Additionally, the potential for clinical translation of Pluronic® F127-based mixed micelle in cancer treatment is discussed, addressing current challenges and paving the way for optimized applications.
Collapse
Affiliation(s)
- Krishna Bhalodi
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Charmy Kothari
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| | - Shital Butani
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| |
Collapse
|
8
|
Lv Y, Xu Y, Liu S, Zeng X, Yang B. Biochanin A Attenuates Psoriasiform Inflammation by Regulating Nrf2/HO-1 Pathway Activation and Attenuating Inflammatory Signalling. Cell Biochem Biophys 2024:10.1007/s12013-024-01595-0. [PMID: 39499389 DOI: 10.1007/s12013-024-01595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/07/2024]
Abstract
Psoriasis is a long-term inflammatory skin condition marked by an overabundance of keratinocytes and the release of pro-inflammatory cytokines in the outer layer of skin. For the comprehensive management of intermediate to advanced psoriasis, innovative biological treatments have been developed. Products for the superficial therapy of mild to moderate psoriasis are still necessary, though. Trifolium pratense contains the isoflavone biochanin A (BCA), which exhibits antiviral, antioxidant, anti-carcinogenic, and anti-inflammatory properties, and helps protect the integrity and function of the endothelium. Although investigations have not shown that BCA is effective in treating psoriasis, it has been shown to slow down the breakdown of the skin barrier by regulating keratinocyte growth. We sought to clarify the basic mechanisms behind BCA's impact on psoriasis in vitro and in vivo using experimental research via regulating Nrf2/HO-1 signaling pathway. By subjecting human primary keratinocytes to psoriasis-related cytokines, psoriasis-like keratinocytes were produced. The CCK8 test was used in this investigation to assess cell viability. BCA reduced keratinocyte growth and inflammatory cascade stimulation produced by TNF-α and IL-6, according to in vitro investigations conducted on HaCaT cells. The in vivo findings showed that six days of BCA therapy significantly decreased the skin, hematological indicators, levels of NO, TBARS, histopathological, and pro-inflammatory factors of COX-2, iNOS, NF-κB pathway. It additionally influenced the protein content of pro-inflammatory cytokines such as IL-17, IL-23, IL-1β in the epidermis along with IL-6, TNF-α among the epidermis and serum. In addition, in contrast to the IMQ group, BCA improved the skin's level of Nrf2/HO-1 protein, anti-inflammatory cytokine IL-10, and antioxidant indicators like SOD, CAT, GST, GSH, GR, and Vit-C. Ultimately, our research shows that BCA was effective in treating psoriasis in pre-clinical animal models by activating the Nrf2/HO-1 pathway, leading to an increase in antioxidant and anti-inflammatory markers.
Collapse
Affiliation(s)
- Yaping Lv
- Department of Dermatology and Venereology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, China
| | - Yingsheng Xu
- Department of Clinical Nutrition, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Songchun Liu
- Department of Clinical Nutrition, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Xianjing Zeng
- General Practice Medicine, Affiliated Hospital of Jinggangshan University, Ji 'an, Jiangxi, 343000, China
| | - Bin Yang
- Department of Dermatology, Affiliated Hospital of Jinggangshan University, Ji 'an, Jiangxi, 343000, China, Jinggangshan University, Ji 'an, Jiangxi, 343009, China.
| |
Collapse
|
9
|
Xia P, Li R, Chen M, Zeng F, Zhou W, Hou T. Proanthocyanidins and β-Glucan Synergistically Regulate Intestinal Inflammation in Dextran Sulfate Sodium-Induced Colitis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19366-19377. [PMID: 39178327 DOI: 10.1021/acs.jafc.4c03544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Proanthocyanidins (PA) have been proven to have an anti-inflammation effect in multiple models by regulating oxidative stress. β-glucan (BG) could alleviate colitis from the perspectives of intestinal permeability and gut microbiota. In the present study, the synergistic anti-inflammatory function of PA and BG was explored from multiple aspects including immune response, intestinal barrier, gut microbiota, and differential metabolites. The results showed that the supplementation of PA and BG improved the colitis symptoms including atrophy of the colon, body weight loss, and organ index increase. Additionally, inflammatory cytokine levels and oxidative stress status were significantly regulated with the intake of PA and BG. Moreover, PA and BG intervention improved intestinal permeability and promoted the expression of barrier proteins. The microbiome and metabolic profile of cecal contents showed that PA and BG supplementation increased the abundance of anti-inflammatory bacteria and decreased the abundance of pro-inflammatory bacteria. Furthermore, some beneficial metabolites involved in amino acid metabolism, carbohydrate metabolism, and biosynthesis of other secondary metabolite pathways were increased. Overall, these findings have demonstrated the regulation of the inflammatory response and remodel of metabolite profiles by PA and BG complexes, indicating that it may serve as a new strategy for inflammatory bowel disease treatment in the future.
Collapse
Affiliation(s)
- Pengkui Xia
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Li X, Fu J, Guan M, Shi H, Pan W, Lou X. Biochanin A attenuates spinal cord injury in rats during early stages by inhibiting oxidative stress and inflammasome activation. Neural Regen Res 2024; 19:2050-2056. [PMID: 38227535 DOI: 10.4103/1673-5374.390953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/10/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00038/figure1/v/2024-01-16T170235Z/r/image-tiff Previous studies have shown that Biochanin A, a flavonoid compound with estrogenic effects, can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury; however, its effect on spinal cord injury is still unclear. In this study, a rat model of spinal cord injury was established using the heavy object impact method, and the rats were then treated with Biochanin A (40 mg/kg) via intraperitoneal injection for 14 consecutive days. The results showed that Biochanin A effectively alleviated spinal cord neuronal injury and spinal cord tissue injury, reduced inflammation and oxidative stress in spinal cord neurons, and reduced apoptosis and pyroptosis. In addition, Biochanin A inhibited the expression of inflammasome-related proteins (ASC, NLRP3, and GSDMD) and the Toll-like receptor 4/nuclear factor-κB pathway, activated the Nrf2/heme oxygenase 1 signaling pathway, and increased the expression of the autophagy markers LC3 II, Beclin-1, and P62. Moreover, the therapeutic effects of Biochanin A on early post-spinal cord injury were similar to those of methylprednisolone. These findings suggest that Biochanin A protected neurons in the injured spinal cord through the Toll-like receptor 4/nuclear factor κB and Nrf2/heme oxygenase 1 signaling pathways. These findings suggest that Biochanin A can alleviate post-spinal cord injury at an early stage.
Collapse
Affiliation(s)
- Xigong Li
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jing Fu
- Department of Stomatology, Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Ming Guan
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Haifei Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wenming Pan
- Department of Orthopedics, and Spine Surgery, the Affiliated Hospital of Xuzhou Medical School, the Second People's Hospital of Changshu, Changshu, Jiangsu Province, China
| | - Xianfeng Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
11
|
Karaaslanli A, Aşir F, Gürsoy GT, Tuncer MC. Biochanin A restored the blood-brain barrier in cerebral ischemia-reperfusion in rats. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240025. [PMID: 39045961 PMCID: PMC11288263 DOI: 10.1590/1806-9282.20240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE Blood-brain barrier is a protective layer that regulates the influx and efflux of biological materials for cerebral tissue. The aim of this study was to investigate the effects of Biochanin A on cerebral histopathology and blood-brain barrier immunohistochemically. METHODS A total of 24 rats were assigned to three groups: sham, ischemia-reperfusion, and ischemia-reperfusion+Biochanin A. Ischemia-reperfusion was performed by occluding the left carotid artery for 2/24 h. Notably, 20 mg/kg Biochanin A was administered to rats for 7 days after ischemia-reperfusion. Blood was collected for malondialdehyde and total oxidant/antioxidant status analysis. Cerebral tissues were processed for histopathology and further for immunohistochemical analysis. RESULTS Malondialdehyde content with total oxidant status value was significantly increased and total antioxidant status values were significantly decreased in the ischemia-reperfusion group compared with the sham group. Biochanin A treatment significantly improved scores in the ischemia-reperfusion+Biochanin A group. The normal histological appearance was recorded in the cerebral sections of the sham group. Degenerated neurons and vascular structures with disrupted integrity of the cerebral cortex were observed after ischemia-reperfusion. Biochanin A alleviated the histopathology in the cerebrum in the ischemia-reperfusion+Biochanin A group. Ischemia-reperfusion injury decreased the expression of blood-brain barrier in the ischemia-reperfusion group compared to the sham group. Administration of Biochanin A upregulated the blood-brain barrier immunoreactivity in the cerebrum by restoring blood-brain barrier. CONCLUSION Cerebral ischemia-reperfusion caused an increase in oxidative stress and pathological lesions in the cerebrum. Biochanin A treatment restored the adverse effects of ischemia-reperfusion injury by restoring blood-brain barrier.
Collapse
Affiliation(s)
| | - Fırat Aşir
- Dicle University, Faculty of Medicine, Department of Histology and Embryology – Diyarbkır, Turkey
| | | | - Mehmet Cudi Tuncer
- Dicle University, Faculty of Medicine, Department of Anatomy – Diyarbakir, Turkey
| |
Collapse
|
12
|
Saehlee S, Seetaha S, Klankaew W, Srathong P, Choowongkomon K, Choengpanya K. Anti-Human Immunodeficiency Virus-1 Property of Thai Herbal Extract Kerra™. Pharmaceuticals (Basel) 2024; 17:917. [PMID: 39065767 PMCID: PMC11279832 DOI: 10.3390/ph17070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Kerra™, a Thai traditional herbal medicine derived from the "Tak-Ka-Si-La Scripture" and composed of nine medicinal plants, has demonstrated potential antiviral properties against HIV. This study investigated the inhibitory effects of Kerra™ on HIV-1 reverse transcriptase (RT) and its ability to prevent pseudo-HIV viral infection in HEK293 cells. The results showed that Kerra™ extract achieved a 95.73 ± 4.24% relative inhibition of HIV-1 RT, with an IC50 value of 42.66 ± 8.74 µg/mL. Docking studies revealed that key phytochemicals in Kerra™, such as oleamide, formononetin, and biochanin A, interact with several residues in the RT non-nucleoside binding pocket, contributing to their inhibitory effects. Furthermore, Kerra™ was able to reduce pseudo-HIV infection in HEK293 cells at a concentration of 10 µg/mL, suggesting its potential as a supplementary treatment for HIV.
Collapse
Affiliation(s)
- Siriwan Saehlee
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (S.S.)
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (S.S.)
| | - Wiwat Klankaew
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Pussadee Srathong
- Faculty of Nursing, Praboromarajchanok Institute, Nonthaburi 11000, Thailand;
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (S.S.)
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | | |
Collapse
|
13
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
14
|
Thakkar AB, Subramanian RB, Thakkar SS, Thakkar VR, Thakor P. Biochanin A - A G6PD inhibitor: In silico and in vitro studies in non-small cell lung cancer cells (A549). Toxicol In Vitro 2024; 96:105785. [PMID: 38266663 DOI: 10.1016/j.tiv.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Secondary metabolites from medicinal plants have a well-established therapeutic potential, with many of these chemicals having specialized medical uses. Isoflavonoids, a type of secondary metabolite, have little cytotoxicity against healthy human cells, making them interesting candidates for cancer treatment. Extensive research has been conducted to investigate the chemo-preventive benefits of flavonoids in treating various cancers. Biochanin A (BA), an isoflavonoid abundant in plants such as red clover, soy, peanuts, and chickpeas, was the subject of our present study. This study aimed to determine how BA affected glucose-6-phosphate dehydrogenase (G6PD) in human lung cancer cells. The study provides meaningful insight and a significant impact of BA on the association between metastasis, inflammation, and G6PD inhibition in A549 cells. Comprehensive in vitro tests revealed that BA has anti-inflammatory effects. Molecular docking experiments shed light on BA's high binding affinity for the G6PD receptor. BA substantially decreased the expression of G6PD and other inflammatory and metastasis-related markers. In conclusion, our findings highlight the potential of BA as a therapeutic agent in cancer treatment, specifically by targeting G6PD and related pathways. BA's varied effects, which range from anti-inflammatory capabilities to metastasis reduction, make it an appealing option for future investigation in the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Anjali B Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India; P. G. Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Ramalingam B Subramanian
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Sampark S Thakkar
- AKASHGANGA, Shree Kamdhenu Electronics Pvt. Ltd., Vallabh Vidyanagar, Gujarat, India
| | - Vasudev R Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India.
| |
Collapse
|
15
|
Liu J, Lin C, Li B, Huang Q, Chen X, Tang S, Luo X, Lu R, Liu Y, Liao S, Ding X. Biochanin A inhibits endothelial dysfunction induced by IL‑6‑stimulated endothelial microparticles in Perthes disease via the NFκB pathway. Exp Ther Med 2024; 27:137. [PMID: 38476892 PMCID: PMC10928846 DOI: 10.3892/etm.2024.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/15/2023] [Indexed: 03/14/2024] Open
Abstract
Endothelial dysfunction caused by the stimulation of endothelial microparticles (EMPs) by the inflammatory factor IL-6 is one of the pathogenic pathways associated with Perthes disease. The natural active product biochanin A (BCA) has an anti-inflammatory effect; however, whether it can alleviate endothelial dysfunction in Perthes disease is not known. The present in vitro experiments on human umbilical vein endothelial cells showed that 0-100 pg/ml IL-6-EMPs could induce endothelial dysfunction in a concentration-dependent manner, and the results of the Cell Counting Kit 8 assay revealed that, at concentrations of <20 µM, BCA had no cytotoxic effect. Reverse transcription-quantitative PCR demonstrated that BCA reduced the expression levels of the endothelial dysfunction indexes E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) in a concentration-dependent manner. Immunofluorescence and western blotting illustrated that BCA increased the expression levels of zonula occludens-1 and decreased those of ICAM-1. Mechanistic studies showed that BCA inhibited activation of the NFκB pathway. In vivo experiments demonstrated that IL-6 was significantly increased in the rat model of ischemic necrosis of the femoral head, whereas BCA inhibited IL-6 production. Therefore, in Perthes disease, BCA may inhibit the NFκB pathway to suppress IL-6-EMP-induced endothelial dysfunction, and could thus be regarded as a potential treatment for Perthes disease.
Collapse
Affiliation(s)
- Jianhong Liu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chengsen Lin
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Boxiang Li
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, P.R. China
| | - Qian Huang
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xianxiang Chen
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shengping Tang
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaolin Luo
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rongbin Lu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun Liu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shijie Liao
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaofei Ding
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
16
|
Drużyńska B, Łukasiewicz J, Majewska E, Wołosiak R. Optimization of the Extraction Conditions of Polyphenols from Red Clover (Trifolium pratense L.) Flowers and Evaluation of the Antiradical Activity of the Resulting Extracts. Antioxidants (Basel) 2024; 13:414. [PMID: 38671862 PMCID: PMC11047408 DOI: 10.3390/antiox13040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of this study was to analyze the effect of the type of extraction solution (water, different concentrations of ethanol), temperature and time on the polyphenol content and antioxidant properties of red clover extracts and the effect of the addition of selected extracts on the antioxidant properties of enriched blackcurrant beverages. In both the extractions carried out under different conditions and in the enriched beverages, the content of selected polyphenols was determined by HPLC. This study confirmed the significant effect of the alcohol content of the extract, extraction time and temperature on the antioxidant properties of clover extracts. Ethanolic extracts had better antioxidant properties than aqueous extracts. The addition of ethanol extracts had a significant effect on the antioxidant properties of the fortified beverages. Increasing the temperature, time or ethanol content in the extracts mostly resulted in an increase in the total polyphenol content in the obtained extracts. Based on the analysis of the response surface, it was found that for the DPPH radical, the best activity was obtained by extraction for 20 min with a solution of approximately 65% at low temperatures. In the case of the ABTS radical, the best antiradical activity was obtained after extraction for 60 min at 80 °C with a solution of approximately 50% ethanol. It was also found that the use of a solution of approximately 60% ethanol after extraction for 60 min at 80 °C would provide an extract with high antiradical activity against both radicals.
Collapse
Affiliation(s)
- Beata Drużyńska
- Institute of Food Sciences, Department of Food Technology and Assessment, Division of Food Quality Assessment, Warsaw University of Life Sciences (WULS-SGGW), 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (J.Ł.); (E.M.); (R.W.)
| | | | | | | |
Collapse
|
17
|
Ge W, Yuan G, Wang D, Dong L. Exploring the therapeutic mechanisms and prognostic targets of Biochanin A in glioblastoma via integrated computational analysis and in vitro experiments. Sci Rep 2024; 14:3783. [PMID: 38360888 PMCID: PMC10869694 DOI: 10.1038/s41598-024-53442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor and is characterized by a poor prognosis and high recurrence and mortality rates. Biochanin A (BCA) exhibits promising clinical anti-tumor effects. In this study, we aimed to explore the pharmacological mechanisms by which BCA acts against GBM. Network pharmacology was employed to identify overlapping target genes between BCA and GBM. Differentially expressed genes from the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database were visualized using VolcaNose. Interactions among these overlapping genes were analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins database. Protein-protein interaction networks were constructed using Cytoscape 3.8.1. The Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology enrichment analyses were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Survival analyses for these genes were performed using the GEPIA2 database. The Chinese Glioma Genome Atlas database was used to study the correlations between key prognostic genes. Molecular docking was confirmed using the DockThor database and visualized with PyMol software. Cell viability was assessed via the CCK-8 assay, apoptosis and the cell cycle stages were examined using flow cytometry, and protein expression was detected using western blotting. In all, 63 genes were initially identified as potential targets for BCA in treating GBM. Enrichment analysis suggested that the pharmacological mechanisms of BCA primarily involved cell cycle inhibition, induction of cell apoptosis, and immune regulation. Based on these findings, AKT1, EGFR, CASP3, and MMP9 were preliminarily predicted as key prognostic target genes for BCA in GBM treatment. Furthermore, molecular docking analysis suggested stable binding of BCA to the target protein. In vitro experiments revealed the efficacy of BCA in inhibiting GBM, with an IC50 value of 98.37 ± 2.21 μM. BCA inhibited cell proliferation, induced cell apoptosis, and arrested the cell cycle of GBM cells. Furthermore, the anti-tumor effects of BCA on U251 cells were linked to the regulation of the target protein. We utilized integrated bioinformatics analyses to predict targets and confirmed through experiments that BCA possesses remarkable anti-tumor activities. We present a novel approach for multi-target treatment of GBM using BCA.
Collapse
Affiliation(s)
- Wanwen Ge
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Guoqiang Yuan
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Dongping Wang
- Gansu Provincial Hospital, Lanzhou, 730000, China.
- Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Li Dong
- Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
18
|
Sohel M. Comprehensive exploration of Biochanin A as an oncotherapeutics potential in the treatment of multivarious cancers with molecular insights. Phytother Res 2024; 38:489-506. [PMID: 37905329 DOI: 10.1002/ptr.8050] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 11/02/2023]
Abstract
Cancer is considered a leading cause of mortality. This rising cancer death rate and several existing limitations like side effects, poor efficacies, and high cost of the present chemotherapeutic agents have increased the demand for more potent and alternative cancer treatments. This review elucidated a brief overview of Biochanin A (BCA) and its potentiality on various cancers with details of anticancer mechanism. According to our review, a number of studies including in silico, in vitro, pre-clinical, and clinical trials have tested to evaluate the efficacy of BCA. This compound is effective against 15 types of cancer, including breast, cervical, colorectal, gastric, glioblastoma, liver, lung, melanoma, oral, osteosarcoma, ovarian, pancreatic, pharynx, prostate, and umbilical vein cancer. The general anticancer activities of this compound are mediated via several molecular processes, including regulation of apoptosis, cell proliferation, metastasis and angiogenesis, signaling, enzymatic pathways, and other mechanisms. Targeting both therapeutic and oncogenic proteins, as well as different pathways, makes up the molecular mechanism underlying the anticancer action. Many signaling networks and their components, such as EFGR, PI3K/Akt/mTOR, MAPK, MMP-2, MMP-9, PARP, Caspase-3/8/9, Bax, Bcl2, PDL-1, NF-κB, TNF-α, IL-6, JAK, STAT3, VEGFR, VEGF, c-MY, Cyclin B1, D1, E1 and CDKs, Snail, and E-cadherin proteins, can be regulated in cancer cells by BCA. Such kind of anticancer properties of BCA could be a result of its correct structural chemistry. The use of BCA-based therapies as nano-carriers for the delivery of chemotherapeutic medicines has the potential to be very effective. This natural compound synergises with other natural compounds and standard drugs, including sorafenib, 5-fluorouracil, temozolomide, doxorubicin, apigenin, and genistein. Moreover, proper use of this compound can reverse multidrug resistance through numerous mechanisms. BCA has better drug-likeness and pharmacokinetic properties and is nontoxic (eye, liver, kidney, skin, cardio) in human bodies. As having a wide range of cancer-fighting mechanisms, synergistic effects, and good pharmacokinetic properties, BCA can be used as a supplementary food until standard drugs are available at pharma markets.
Collapse
Affiliation(s)
- Md Sohel
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, Bangladesh
- Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| |
Collapse
|
19
|
Hu SJ, Cheng G, Chen GC, Zhou H, Zhang Q, Zhao QM, Lian CX, Zhao ZH, Zhang QL, Han T, Zhang QY, Qin LP. Cannabinoid receptors type 2: Function and development in agonist discovery from synthetic and natural sources with applications for the therapy of osteoporosis. ARAB J CHEM 2024; 17:105536. [DOI: 10.1016/j.arabjc.2023.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
20
|
Diksha, Singh L, Bhatia D. Mechanistic interplay of different mediators involved in mediating the anti-depressant effect of isoflavones. Metab Brain Dis 2024; 39:199-215. [PMID: 37855935 DOI: 10.1007/s11011-023-01302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Depression is one of the most prevalent severe CNS disorders, which negatively affects social lives, the ability to work, and the health of people. As per the World Health Organisation (WHO), it is a psychological disorder that is estimated to be a leading disease by 2030. Clinically, various medicines have been formulated to treat depression but they are having a setback due to their side effects, slow action, or poor bioavailability. Nowadays, flavonoids are regarded as an essential component in a variety of nutraceutical, pharmaceutical and medicinal. Isoflavones are a distinctive and important subclass of flavonoids that are generally obtained from soybean, chickpeas, and red clover. The molecules of this class have been extensively explored in various CNS disorders including depression and anxiety. Isoflavones such as genistein, daidzein, biochanin-A, formononetin, and glycitein have been reported to exert an anti-depressant effect through the modulation of different mediators. Fatty acid amide hydrolase (FAAH) mediated depletion of anandamide and hypothalamic-pituitary-adrenal (HPA) axis-mediated modulation of brain-derived neurotrophic factor (BDNF), monoamine oxidase (MAO) mediated depletion of biogenic amines and inflammatory signaling are the important underlying pathways leading to depression. Upregulation in the levels of BDNF, anandamide, antioxidants and monoamines, along with inhibition of MAO, FAAH, HPA axis, and inflammatory stress are the major modulations produced by different isoflavones in the observed anti-depressant effect. Therefore, the present review has been designed to explore the mechanistic interplay of various mediators involved in mediating the anti-depressant action of different isoflavones.
Collapse
Affiliation(s)
- Diksha
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Deepika Bhatia
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
21
|
Karunakaran K, Muniyan R. Identification of allosteric inhibitor against AKT1 through structure-based virtual screening. Mol Divers 2023; 27:2803-2822. [PMID: 36522517 DOI: 10.1007/s11030-022-10582-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
AKT (serine/threonine protein kinase) is a potential therapeutic target for many types of cancer as it plays a vital role in cancer progression. Many AKT inhibitors are already in practice under single and combinatorial therapy. However, most of these inhibitors are orthosteric / pan-AKT that are non-selective and non-specific to AKT kinase and their isoforms. Hence, researchers are searching for novel allosteric inhibitors that bind in the interface between pH and kinase domain. In this study, we performed structure-based virtual screening from the afroDB (a diverse natural compounds library) to find the potential inhibitor targeting the AKT1. These compounds were filtered through Lipinski, ADMET properties, combined with a molecular docking approach to obtain the 8 best compounds. Then we performed molecular dynamics simulation for apoprotein, AKT1 with 8 complexes, and AKT1 with the positive control (Miransertib). Molecular docking and simulation analysis revealed that Bianthracene III (hit 1), 10-acetonyl Knipholonecyclooxanthrone (hit 2), Abyssinoflavanone VII (hit 5) and 8-c-p-hydroxybenzyldiosmetin (hit 6) had a better binding affinity, stability, and compactness than the reference compound. Notably, hit 1, hit 2 and hit 5 had molecular features required for allosteric inhibition.
Collapse
Affiliation(s)
- Keerthana Karunakaran
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
22
|
Liao X, Han Y, Shen C, Liu J, Wang Y. Targeting the NLRP3 inflammasome for the treatment of hypertensive target organ damage: Role of natural products and formulations. Phytother Res 2023; 37:5622-5638. [PMID: 37690983 DOI: 10.1002/ptr.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIM Hypertension is a major global health problem that causes target organ damage (TOD) in the heart, brain, kidney, and blood vessels. The mechanisms of hypertensive TOD are not fully understood, and its treatment is challenging. This review provides an overview of the current knowledge on the role of Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in hypertensive TOD and the natural products and formulations that inhibit it. METHODS We searched PubMed, Web of Science, Google Scholar, and CNKI for relevant articles using the keywords "hypertension," "target organ damage," "NLRP3 inflammasome," "natural products," and "formulations." We reviewed the effects of the NLRP3 inflammasome on hypertensive TOD in different organs and discussed the natural products and formulations that modulate it. KEY RESULTS In hypertensive TOD, the NLRP3 inflammasome is activated by various stimuli such as oxidative stress and inflammation. Activation of NLRP3 inflammasome leads to the production of pro-inflammatory cytokines that exacerbate tissue damage and dysfunction. Natural products and formulations, including curcumin, resveratrol, triptolide, and allicin, have shown protective effects against hypertensive TOD by inhibiting the NLRP3 inflammasome. CONCLUSIONS AND IMPLICATIONS The NLRP3 inflammasome is a promising therapeutic target in hypertensive TOD. Natural products and formulations that inhibit the NLRP3 inflammasome may provide novel drug candidates or therapies for hypertensive TOD. Further studies are needed to elucidate the molecular mechanisms and optimize the dosages of these natural products and formulations and evaluate their clinical efficacy and safety.
Collapse
Affiliation(s)
- Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshan Han
- Scientific Research Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chuanpu Shen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University Hefei, Hefei, China
| | - Jianjun Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
23
|
Sha Y, Guo X, He Y, Li W, Liu X, Zhao S, Hu J, Wang J, Li S, Zhao Z, Hao Z. Synergistic Responses of Tibetan Sheep Rumen Microbiota, Metabolites, and the Host to the Plateau Environment. Int J Mol Sci 2023; 24:14856. [PMID: 37834304 PMCID: PMC10573510 DOI: 10.3390/ijms241914856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Plateau adaptation in animals involves genetic mechanisms as well as coevolutionary mechanisms of the microbiota and metabolome of the animal. Therefore, the characteristics of the rumen microbiome and metabolome, transcriptome, and serum metabolome of Tibetan sheep at different altitudes (4500 m, 3500 m, and 2500 m) were analyzed. The results showed that the rumen differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and carbohydrate metabolism, and there was a significant correlation with microbiota. The differentially expressed genes and metabolites at middle and high altitudes were coenriched in asthma, arachidonic acid metabolism, and butanoate and propanoate metabolism. In addition, the serum differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and metabolism of xenobiotics by cytochrome P450, and they were also related to microbiota. Further analysis revealed that rumen metabolites accounted for 7.65% of serum metabolites. These common metabolites were mainly enriched in metabolic pathways and were significantly correlated with host genes (p < 0.05). This study found that microbiota, metabolites, and epithelial genes were coenriched in pathways related to lipid metabolism, energy metabolism, and immune metabolism, which may be involved in the regulation of Tibetan sheep adaptation to plateau environmental changes.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Xinyu Guo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand;
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Shengguo Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Shaobin Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Zhidong Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Zhiyun Hao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| |
Collapse
|
24
|
Tan H, Wang F, Hu J, Duan X, Bai W, Wang X, Wang B, Su Y, Hu J. Inhibitory interaction of flavonoids with organic cation transporter 2 and their structure-activity relationships for predicting nephroprotective effects. J Appl Toxicol 2023; 43:1421-1435. [PMID: 37057715 DOI: 10.1002/jat.4474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Organic cation transporter 2 (OCT2) is mainly responsible for the renal secretion of various cationic drugs, closely associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OCT2 inhibitors with little toxicity in natural products in reducing OCT2-mediated AKI is of great value. Flavonoids are enriched in various vegetables, fruits, and herbal products, and some were reported to produce transporter-mediated drug-drug interactions. This study aimed to screen potential inhibitors of OCT2 from 96 flavonoids, assess the nephroprotective effects on cisplatin-induced kidney injury, and clarify the structure-activity relationships of flavonoids with OCT2. Ten flavonoids exhibited significant inhibition (>50%) on OCT2 in OCT2-HEK293 cells. Among them, the six most potent flavonoid inhibitors, including pectolinarigenin, biochanin A, luteolin, chrysin, 6-hydroxyflavone, and 6-methylflavone markedly decreased cisplatin-induced cytotoxicity. Moreover, in cisplatin-induced renal injury models, they also reduced serum blood urea nitrogen (BUN) and creatinine levels to different degrees, the best of which was 6-methylflavone. The pharmacophore model clarified that the aromatic ring, hydrogen bond acceptors, and hydrogen bond donors might play a vital role in the inhibitory effect of flavonoids on OCT2. Thus, our findings would pave the way to predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans and optimizing flavonoid structure to alleviate OCT2-related AKI.
Collapse
Affiliation(s)
- Huixin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fenghe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wanting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinbo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yan Su
- Department of Health Management and Service, Cangzhou Medical College, Hebei, 061001, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
25
|
Zhou N, Zheng D, You Q, Chen T, Jiang J, Shen W, Zhang D, Liu J, Chen D, Hu K. Therapeutic Potential of Biochanin A in Herpes Simplex Keratitis. Pharmaceuticals (Basel) 2023; 16:1240. [PMID: 37765049 PMCID: PMC10536220 DOI: 10.3390/ph16091240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Herpes simplex keratitis (HSK) is a blinding eye disease that is initiated by the herpes simplex virus type 1 (HSV-1). Resistance to acyclovir (ACV) and the side effects of corticosteroid drugs have become concerning issues, so it is crucial to develop new antivirals for treating HSK. In this study, we report that biochanin A (BCA), a naturally occurring flavonoid compound, provides multifaceted protective effects with anti-viral, anti-inflammatory, anti-oxidative stress and anti-apoptotic activities to alleviate HSK. The results show that BCA significantly inhibited HSV-1 replication in vitro and further proved that BCA principally influenced the early stage of virus infection. We reveal that BCA downregulated the expression of pro-inflammatory factors triggered by HSV-1, including TNF-α, RANTES, IL-1β and IL-6. Furthermore, BCA treatment alleviated oxidative stress and apoptotic arising from HSV-1 infection. Lastly, we induced HSK in male C57BL/6 mice and treated them with either BCA or phosphate buffer solution (PBS) eye drops. We observed the ocular surface lesions; determined the virus load in the tear fluid, corneas as well as trigeminal ganglions (TGs); and detected the levels of inflammation and apoptosis in the corneas simultaneously. These results show that BCA inhibits HSV-1 and alleviates the corneal lesion degree. Our study illustrates that BCA is a promising therapeutic approach for application in treating HSK.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Deyuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| | - Taige Chen
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Jiaxuan Jiang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Wenhao Shen
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Di Zhang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Junpeng Liu
- Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| | - Kai Hu
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| |
Collapse
|
26
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
27
|
Gligor O, Clichici S, Moldovan R, Decea N, Vlase AM, Fizeșan I, Pop A, Virag P, Filip GA, Vlase L, Crișan G. An In Vitro and In Vivo Assessment of Antitumor Activity of Extracts Derived from Three Well-Known Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091840. [PMID: 37176897 PMCID: PMC10180766 DOI: 10.3390/plants12091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
One of the objectives of this study consists of the assessment of the antitumor activity of several extracts from three selected plant species: Xanthium spinosum L., Trifolium pratense L., and Coffea arabica L. and also a comparative study of this biological activity, with the aim of establishing a superior herbal extract for antitumor benefits. The phytochemical profile of the extracts was established by HPLC-MS analysis. Further, the selected extracts were screened in vitro for their antitumor activity and antioxidant potential on two cancer cell lines: A549-human lung adenocarcinoma and T47D-KBluc-human breast carcinoma and on normal cells. One extract per plant was selected for in vivo assessment of antitumor activity in an Ehrlich ascites mouse model. The extracts presented high content of antitumor compounds such as caffeoylquinic acids in the case of X. spinosum L. (7.22 µg/mL-xanthatin, 4.611 µg/mL-4-O-caffeoylquinic acid) and green coffee beans (10.008 µg/mL-cafestol, 265.507 µg/mL-4-O-caffeoylquinic acid), as well as isoflavones in the case of T. pratense L. (6806.60 ng/mL-ononin, 102.78 µg/mL-biochanin A). Concerning the in vitro results, the X. spinosum L. extracts presented the strongest anticancerous and antioxidant effects. In vivo, ascites cell viability decreased after T. pratense L. and green coffee bean extracts administration, whereas the oxidative stress reduction potential was important in tumor samples after T. pratense L. Cell viability was also decreased after administration of cyclophosphamide associated with X. spinosum L. and T. pratense L. extracts, respectively. These results suggested that T. pratense L. or X. spinosum L. extracts in combination with chemotherapy can induce lipid peroxidation in tumor cells and decrease the tumor viability especially, T. pratense L. extract.
Collapse
Affiliation(s)
- Octavia Gligor
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Piroska Virag
- Department of Radiobiology and Tumor Biology, Oncology Institute "Prof. Dr. Ion Chiricuță", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| |
Collapse
|
28
|
Essono Mintsa M, Kumulungui BS, Obiang CS, Dussert E, Choque E, Herfurth D, Ravallec R, Ondo JP, Mesnard F. Cytotoxicity and Identification of Antibacterial Compounds from Baillonella toxisperma Bark Using a LC-MS/MS and Molecular Networking Approach. Metabolites 2023; 13:metabo13050599. [PMID: 37233640 DOI: 10.3390/metabo13050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Baillonella toxisperma is a medicinal plant used in northern Gabon to treat microbial diseases. It is a plant well-known by local populations, but very few studies have focused on the molecules responsible for the antibacterial activities of B. toxisperma. This study proposes a dereplication strategy based on molecular networking generated from HPLC-ESI-Q/TOF data, allowing investigation of the molecules responsible for the antibacterial activity of B. toxisperma. From this strategy, eighteen compounds were putatively identified. All of these compounds belonged mainly to five families of natural compounds, including phenylpropanolamines, stilbenes, flavonoids, lignans and phenolic glycosides. The chemical study carried out from the bark of B. toxisperma allowed us to identify, for the first time, compounds such as resveratrol and derivatives, epicatechin, epigallocatechin and epigallocatechin gallate. In addition, antibacterial activity (diffusion method and microdilution) and cytotoxicity (Cell Counting Kit-8 (CCK-8 Assay)) in vitro were evaluated. The crude ethanolic extract, as well as the fractions of B. toxisperma, showed significant antibacterial activity. However, the ethanolic fractions F2 and F4 presented high antibacterial activity compared to the crude extract. Cytotoxicity studies on colon-cancer cells (Caco-2) and human keratinocyte cells (HaCaT) showed moderate cytotoxicity in both cell types. This study clearly shows the therapeutic potential of the ethanolic extract of the bark of B. toxisperma and provides information on the phytochemical composition and bioactive compounds of the plant.
Collapse
Affiliation(s)
- Morel Essono Mintsa
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville P.O. Box 769, Gabon
- Laboratoire Innovation Matériau Bois Habitat (LIMBHA), Ecole Supérieure du Bois, 7 Rue Christian Pauc, 44306 Nantes, France
| | - Brice Serge Kumulungui
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville P.O. Box 769, Gabon
| | - Cédric Sima Obiang
- Laboratoire de Recherches en Biochimie (LAREBIO), Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon
| | - Elodie Dussert
- UMRt BioEcoAgro 1158-INRAE, Institut Charles Violette, Université de Lille, 59655 Lille, France
| | - Elodie Choque
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France
| | - Damien Herfurth
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France
| | - Rozenn Ravallec
- UMRt BioEcoAgro 1158-INRAE, Institut Charles Violette, Université de Lille, 59655 Lille, France
| | - Joseph-Privat Ondo
- Laboratoire de Recherches en Biochimie (LAREBIO), Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon
| | - François Mesnard
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France
| |
Collapse
|
29
|
Singh L, Kaur N, Bhatti R. Neuroprotective potential of biochanin-A and review of the molecular mechanisms involved. Mol Biol Rep 2023; 50:5369-5378. [PMID: 37039995 DOI: 10.1007/s11033-023-08397-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
Biochanin-A is a naturally occurring plant phytoestrogen, which mimics specific the agonistic activity of estrogens. Biochanin-A is known to possess numerous activities, including neuroprotective, anti-diabetic, hepatoprotective, anti-inflammatory, antioxidant, and antimicrobial activities, along with the anticancer activity. Neuroinflammation is thought to play a pivotal pathological role in neurodegenerative disease. Sustained neuroinflammatory processes lead to progressive neuronal damage in Parkinson's and Alzheimer's disease. Activation of PI3K/Akt cascade and inhibition of MAPK signaling cascade have been observed to be responsible for conferring protection against neuroinflammation in neurodegenerative diseases. An increased oxidative stress promotes neuronal apoptosis via potentiating the TLR-4/NF-κB and inhibiting PI3K/Akt signaling mediated increase in pro-apoptotic and decreases in antiapoptotic proteins. Various authors have explored biochanin-A's neuroprotective effect by using various cell lines and animal models. Biochanin-A has been reported to mediate its neuroprotective via reducing the level of oxidants, inflammatory mediators, MAPK, TLR-4, NF-κB, NADPH oxidase, AchE, COX-2 and iNOS. Whereas, it has been observed to increase the level of anti-oxidants, along with phosphorylation of PI3K and Akt proteins. The current review has been designed to provide insights into the neuroprotective effect of biochanin-A and possible signaling pathways leading to protection against neuroinflammation and apoptosis in the central nervous system. This review will be helpful in guiding future researchers to further explore biochanin A at a mechanistic level to obtain useful lead molecules.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Navneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
30
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
31
|
Pan X, Ye L, Ren Z, Li J, Li B, Pan LL, Sun J. Biochanin A ameliorates caerulein-induced acute pancreatitis and associated intestinal injury in mice by inhibiting TLR4 signaling. J Nutr Biochem 2023; 113:109229. [PMID: 36435290 DOI: 10.1016/j.jnutbio.2022.109229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Acute pancreatitis (AP) is an acute inflammatory abdominal disease frequently associated with intestinal barrier dysfunction. Biochanin A (BCA), a dietary isoflavone, has gained increasing interest with its pronounced biological activities. However, its potential beneficial effects on AP have not been demonstrated. Herein, we explored the protective effect of BCA on caerulein-induced AP in BALB/c mice and underlying mechanisms. BCA alleviated AP as evidenced by reduced serum amylase and lipase levels, pancreatic edema, pancreatic myeloperoxidase activity, and improved pancreatic morphology. Amelioration of pancreatic damage by BCA was associated with reduced levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and monocyte chemotactic protein-1 in both pancreas and colon. Moreover, BCA attenuated AP-associated barrier damage by upregulating the expression of tight junction proteins zonulin occluding (ZO)-1, ZO-2, occludin, and claudin-1. Concomitantly, the translocation of pathogenic bacteria Escherichia coli (E. coli) to pancreas was reduced by BCA. More importantly, reduction of E. coli dissemination by BCA inhibited the TLR4-MAPK/NF-κB signaling and NLRP3 inflammasome activation, thereby protecting against AP and related intestinal injury. Consistently, TLR4 inhibition by TAK-242 pre-treatment counteracted the anti-inflammatory effects of BCA in acinar cells. Taken together, our study extends beneficial effects of BCA to AP prevention, and dietary BCA supplement may be a potential strategy to safeguard AP.
Collapse
Affiliation(s)
- Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liya Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Binbin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, China.
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
32
|
Biochanin A in murine Schistosoma mansoni infection: effects on inflammation, oxidative stress and fibrosis. J Helminthol 2023; 97:e16. [PMID: 36740983 DOI: 10.1017/s0022149x22000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biochanin A (BCA) is a multifunctional natural compound that possesses anti-infective, anti-inflammatory, anti-oxidative and hepatoprotective effects. The aim of the study was to assess the therapeutic efficacy of BCA on Schistosoma mansoni-infected mice. Fifty mice were divided into six different groups as non-infected, non-infected BCA-treated, infected untreated, early infected BCA-treated (seven days post-infection (dpi)), late infected BCA-treated 60 dpi and infected praziquantel (PZQ)-treated groups. Parasitological, histopathological examination and immunohistochemical staining of transforming growth factor (TGF)-β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) were investigated in liver sections. Cytochrome P450 (CYP450) gene expression of S. mansoni was evaluated by quantitative real-time polymerase chain reaction (RT-qPCR). A single dose of BCA significantly reduced worm burden in early (82.14%) and late infection (77.74%), mean tissue egg load in early (7.27 ± 0.495) and late BCA administration (7.63 ± 0.435) and decreased granuloma size. CYP450 mRNA expression was significantly reduced in early BCA treatment as compared to late treatment which emphasizes that early administration of BCA had more pronounced effects on worms than late administration. Both early and late BCA administration led to significant reduction in inflammatory cytokines as TGF and iNOS. Although the reduction of TGF and iNOS in BCA-treated mice was superior to PZQ, no statistically significant differences were noted. However, a significant downregulation of COX2 was noted in hepatocytes as compared to both infected control and PZQ-treated mice. BCA has schistosomicidal, anti-inflammatory, antioxidant and anti-fibrotic effects and could be regarded as a potential drug in schistosomiasis treatment.
Collapse
|
33
|
Anticancer Mechanism of Flavonoids on High-Grade Adult-Type Diffuse Gliomas. Nutrients 2023; 15:nu15040797. [PMID: 36839156 PMCID: PMC9964830 DOI: 10.3390/nu15040797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
High-grade adult-type diffuse gliomas are the most common and deadliest malignant adult tumors of the central nervous system. Despite the advancements in the multimodality treatment of high-grade adult-type diffuse gliomas, the five-year survival rates still remain poor. The biggest challenge in treating high-grade adult-type diffuse gliomas is the intra-tumor heterogeneity feature of the glioma tumors. Introducing dietary flavonoids to the current high-grade adult-type diffuse glioma treatment strategies is crucial to overcome this challenge, as flavonoids can target several molecular targets. This review discusses the anticancer mechanism of flavonoids (quercetin, rutin, chrysin, apigenin, naringenin, silibinin, EGCG, genistein, biochanin A and C3G) through targeting molecules associated with high-grade adult-type diffuse glioma cell proliferation, apoptosis, oxidative stress, cell cycle arrest, migration, invasion, autophagy and DNA repair. In addition, the common molecules targeted by the flavonoids such as Bax, Bcl-2, MMP-2, MMP-9, caspase-8, caspase-3, p53, p38, Erk, JNK, p38, beclin-1 and LC3B were also discussed. Moreover, the clinical relevance of flavonoid molecular targets in high-grade adult-type diffuse gliomas is discussed with comparison to small molecules inhibitors: ralimetinib, AMG232, marimastat, hydroxychloroquine and chloroquine. Despite the positive pre-clinical results, further investigations in clinical studies are warranted to substantiate the efficacy and safety of the use of flavonoids on high-grade adult-type diffuse glioma patients.
Collapse
|
34
|
García-Beltrán O, Urrutia PJ, Núñez MT. On the Chemical and Biological Characteristics of Multifunctional Compounds for the Treatment of Parkinson's Disease. Antioxidants (Basel) 2023; 12:214. [PMID: 36829773 PMCID: PMC9952574 DOI: 10.3390/antiox12020214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Protein aggregation, mitochondrial dysfunction, iron dyshomeostasis, increased oxidative damage and inflammation are pathognomonic features of Parkinson's disease (PD) and other neurodegenerative disorders characterized by abnormal iron accumulation. Moreover, the existence of positive feed-back loops between these pathological components, which accelerate, and sometimes make irreversible, the neurodegenerative process, is apparent. At present, the available treatments for PD aim to relieve the symptoms, thus improving quality of life, but no treatments to stop the progression of the disease are available. Recently, the use of multifunctional compounds with the capacity to attack several of the key components of neurodegenerative processes has been proposed as a strategy to slow down the progression of neurodegenerative processes. For the treatment of PD specifically, the necessary properties of new-generation drugs should include mitochondrial destination, the center of iron-reactive oxygen species interaction, iron chelation capacity to decrease iron-mediated oxidative damage, the capacity to quench free radicals to decrease the risk of ferroptotic neuronal death, the capacity to disrupt α-synuclein aggregates and the capacity to decrease inflammatory conditions. Desirable additional characteristics are dopaminergic neurons to lessen unwanted secondary effects during long-term treatment, and the inhibition of the MAO-B and COMPT activities to increase intraneuronal dopamine content. On the basis of the published evidence, in this work, we review the molecular basis underlying the pathological events associated with PD and the clinical trials that have used single-target drugs to stop the progress of the disease. We also review the current information on multifunctional compounds that may be used for the treatment of PD and discuss the chemical characteristics that underlie their functionality. As a projection, some of these compounds or modifications could be used to treat diseases that share common pathology features with PD, such as Friedreich's ataxia, Multiple sclerosis, Huntington disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730002, Colombia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Pamela J. Urrutia
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Marco T. Núñez
- Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago 7800024, Chile
| |
Collapse
|
35
|
He Q, Yang J, Pan Z, Zhang G, Chen B, Li S, Xiao J, Tan F, Wang Z, Chen P, Wang H. Biochanin A protects against iron overload associated knee osteoarthritis via regulating iron levels and NRF2/System xc-/GPX4 axis. Biomed Pharmacother 2023; 157:113915. [PMID: 36379122 DOI: 10.1016/j.biopha.2022.113915] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Iron homeostasis plays a positive role in articular cartilage health. Excessive iron or iron overload can induce oxidative stress damage in chondrocytes and ferroptosis cell death, advancing knee osteoarthritis (KOA). However, up to date, few effective agents treat iron overload-induced KOA (IOKOA). Chinese herbal medicine (CHM) provides abundant resources for drug selection to manage bone metabolic conditions, including osteoporosis. Biochanin A (BCA) is a novel bioactive multifunctional natural compound isolated from Huangqi, which has protective effects on bone loss. Nevertheless, the function and mechanism of BCA in treating IOKOA are still elusive. PURPOSE This study seeks to uncover the potential therapeutic targets and mechanisms of BCA in the management of KOA with iron accumulation. METHODS Iron dextrin (500 mg/kg) was intraperitoneally injected into mice to establish the iron overloaded mice model. OA was induced through surgery, and the progression was evaluated eight weeks following surgery. OA severity was evaluated with micro-CT and Safranin-O/Fast green staining in vivo. Iron deposition in the knee joint and synovium was assessed using Perl's Prussian blue staining. Ferric ammonium citrate (FAC) was then administered to primary chondrocytes to evaluate iron regulators mediated iron homeostasis. Toluidine blue staining was utilized to identify chondrocytes in vitro. The vitality of the cells was assessed using the CCK-8 test. The apoptosis rate of cells was measured using Annexin V-FITC/PI assay. The intracellular iron level was detected utilizing the calcein-AM test. Reactive oxygen species (ROS), lipid-ROS, and mitochondrial membrane potentiality were reflected via fluorescence density. Utilizing RT-qPCR and western blotting, the expression level was determined. RESULTS Micro-CT and histological staining of knee joints showed greater cartilage degradation and higher iron buildup detected in iron-overloaded mice. BCA can reduce iron deposition and the severity of KOA. Toluidine blue staining and the CCK-8 assay indicated that BCA could rescue chondrocytes killed by iron. Cell apoptosis rates were increased due to iron overload but improved by BCA. Further, the intracellular content of iron, ROS, and lipid-ROS was increased with ferric ammonium citrate (FAC) treatment but restored after treatment with different concentrations of BCA. JC-1 staining revealed that BCA could reduce mitochondrial damage induced by iron overload. CONCLUSION Iron overload was shown to promote chondrocyte ferroptosis in vivo and in vitro. Moreover, iron overload suppressed the expression of collagen II and induced MMP expression by catalyzing ROS generation with mitochondrial dysfunction. Our results showed that BCA could directly reduce intracellular iron concentration by inhibiting TfR1 and promoting FPN but also target the Nrf2/system xc-/GPX4 signaling pathway to scavenge free radicals and prevent lipid peroxidation. The results of this research indicate that BCA regulates iron homeostasis during the progression of osteoarthritis, which can open a new field of treatment for KOA.
Collapse
Affiliation(s)
- Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Junzheng Yang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zhaofeng Pan
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Gangyu Zhang
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Baihao Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Shaocong Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Fengjin Tan
- Orthopedics and Traumatology, Yantai Hospital of Traditional Chinese Medicine, 39, Happy Road, Yantai City 264000, PR China
| | - Zihao Wang
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Maths, University of Bristol, Bristol, UK
| | - Peng Chen
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, PR China.
| | - Haibin Wang
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou 510405, PR China.
| |
Collapse
|
36
|
Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I. Int J Mol Sci 2022; 24:ijms24010534. [PMID: 36613977 PMCID: PMC9820816 DOI: 10.3390/ijms24010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a metabolic genetic disease caused by the deficiency of a lysosomal enzyme involved in glycosaminoglycans (GAGs) degradation. MPS I cells have a constant level of GAG synthesis, but disturbed degradation means that GAGs accumulate progressively, impairing cell metabolism. GAG metabolism can be modulated by flavonoids, and these are being studied as therapeutics for MPS. We have optimised the protocol for obtaining fibroblasts and hepatocytes from the MPS I murine model and characterised the cells for their suitability as an in vitro model for testing compounds with therapeutic potential. Methods: Murine primary hepatocytes and fibroblasts were used as a cellular model to study the effect of genistein, biochanin A, and kaempferol on the modulation of the GAG synthesis process. Flavonoids were used individually as well as in two-component mixtures. There were no statistically significant differences in GAG synthesis levels from cell types obtained from either wild-type or MPS I mice. We also showed that MPS I fibroblasts and hepatocytes store GAGs, which makes them useful in vitro models for testing the effectiveness of substrate reduction therapies. Furthermore, tested flavonoids had a different impact on GAG synthesis depending on cell type and whether they were used alone or in a mixture. The tested flavonoids reduce GAG synthesis more effectively in fibroblasts than in hepatocytes, regardless of whether they are used individually or in a mixture. Flavonoids modulate the level of GAG synthesis differently depending on cell types, therefore in vitro experiments performed to assess the effectiveness of potential therapies for metabolic diseases should be carried out using more than one cell model, and only such an approach will allow for full answering scientific questions.
Collapse
|
37
|
Galanty A, Zagrodzki P, Miret M, Paśko P. Chickpea and Lupin Sprouts, Stimulated by Different LED Lights, As Novel Examples of Isoflavones-Rich Functional Food, and Their Impact on Breast and Prostate Cells. Molecules 2022; 27:molecules27249030. [PMID: 36558162 PMCID: PMC9781113 DOI: 10.3390/molecules27249030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Among all legumes sprouts' active compounds, isoflavones seem to be the most important; nevertheless, their high content is not always associated with beneficial effects. These compounds may prevent or stimulate hormone-dependent cancers due to their estrogen-like activity. Different LED light quality can change the synthesis of active compounds and significantly influence the biological activity of the sprouts. This study aimed to evaluate the effects of LED light (red, blue, green, yellow), as well as total darkness, and natural light conditions (as reference), on isoflavones content, determined by HPLC-UV-VIS, during 10 days of harvesting of chickpea and lupin sprouts. Due to the ambiguous estrogenic potential of isoflavones, the impact of these sprouts on normal and cancer prostate and breast cells was evaluated. Yellow LED light resulted in the highest sum of isoflavones in chickpea sprouts (up to 1 g/100 g dw), while for green LED light, the isoflavones sum was the lowest. The exact opposite effect was noted for lupin sprouts, with the predominance of green over the yellow LED light. The examined sprouts were of high safety to non-neoplastic breast and prostate cells, with interesting cytotoxic effects on breast MCF7 and prostate DU145 cancer cells. No clear relationship was observed between the activity and isoflavones content.
Collapse
Affiliation(s)
- Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Medical College Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Medical College Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marina Miret
- Faculty of Pharmacy and Food Science, University of Barcelona, Campus Diagonal, Av. de Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Medical College Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
- Correspondence:
| |
Collapse
|
38
|
Red Clover and the Importance of Extraction Processes—Ways in Which Extraction Techniques and Parameters Affect Trifolium pratense L. Extracts’ Phytochemical Profile and Biological Activities. Processes (Basel) 2022. [DOI: 10.3390/pr10122581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to gain an insight into the manner in which several extraction processes (both classical as well as innovative) affected bioactive compound yield, and subsequently to assess several of their biological activities. Red clover extracts were obtained using maceration, Soxhlet extraction, turbo-extraction, ultrasound-assisted extraction, and a combination of the last two. The resulting extracts were analyzed for total phenolic and flavonoid content. The extracts presenting the best results were subjected to a phytochemical assessment by way of HPLC-MS analysis. After a final sorting based on the phytochemical profiles of the extracts, the samples were assessed for their antimicrobial activity, anti-inflammatory activity, and oxidative stress reduction potential, using animal inflammation models. The Soxhlet extraction yielded the most satisfactory results both qualitatively and quantitatively. The ultrasound-assisted extraction offered comparable yields. The extracts showed a high potential against gram-negative bacteria and induced a modest antioxidant effect on the experimental inflammation model in Wistar rats.
Collapse
|
39
|
Anti-cancer activity of Biochanin A against multiple myeloma by targeting the CD38 and cancer stem-like cells. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Zhou P, Zhao XN, Ma YY, Tang TJ, Wang SS, Wang L, Huang JL. Virtual screening analysis of natural flavonoids as trimethylamine (TMA)-lyase inhibitors for coronary heart disease. J Food Biochem 2022; 46:e14376. [PMID: 35945702 DOI: 10.1111/jfbc.14376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and progression of CHD. The gut microbial metabolite, trimethylamine-N-oxide (TMAO), is intimately linked to the pathophysiology of CHD. TMAO is formed when trimethylamine (TMA) is converted by flavin-containing monooxygenases in the hepatocytes. Therefore, inhibition of TMA production is essential to reduce TMAO levels. Flavonoids may reduce the risk of death from cardiovascular disease. In this article, we reviewed and evaluated twenty-two flavonoids for the therapy of CHD based on their inhibition of TMA-lyase by molecular docking. Docking results revealed that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had a good binding effect with TMA-lyase. This indicates that these chemicals were the most active and could be used as lead compounds for structural modification in the future. PRACTICAL APPLICATIONS: Flavonoids are a large class of polyphenolic compounds found in fruits, vegetables, flowers, tea, and herbal medicines, which are inexorably metabolized and transformed into bioactive metabolites by α-rhamnosidase, β-glucuronidase, β-glucosidase, and nitroreductase produced by the gut microbiota, which plays a beneficial role in the prevention and treatment of cardiovascular diseases. Because flavonoids protect the cardiovascular system and regulate the gut microbiota, and the gut microbiota is directly connected to TMAO, thus, reducing TMAO levels involves blocking the transition of TMA to TMAO, which may be performed by reducing TMA synthesis. Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had good binding effects on TMA-lyase, which were the most active and could be used as lead compounds for structural modification.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
| | - Xiao-Ni Zhao
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yao-Yao Ma
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Tong-Juan Tang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shu-Shu Wang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Liang Wang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
| | - Jin-Ling Huang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
| |
Collapse
|
41
|
Haridevamuthu B, Guru A, Murugan R, Sudhakaran G, Pachaiappan R, Almutairi MH, Almutairi BO, Juliet A, Arockiaraj J. Neuroprotective effect of Biochanin a against Bisphenol A-induced prenatal neurotoxicity in zebrafish by modulating oxidative stress and locomotory defects. Neurosci Lett 2022; 790:136889. [PMID: 36179902 DOI: 10.1016/j.neulet.2022.136889] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Exogenous toxicants cause oxidative stress and damage to brain cells, resulting in inflammation. Neuroinflammation is important in the pathobiology of various neurological illnesses, including Alzheimer's disease (AD). In this context, Bisphenol A (BPA), a common toxin, causes oxidative damage and has been linked to neurological problems. An O-methylated isoflavone known as Biochanin A (5,7-dihydroxy-4'-methoxy-isoflavone, BCA) is considered to be a phytoestrogen, which is abundant in some legume plants and soy which have preventive effects against cancer, osteoporosis, menopausal symptoms and oxidative stress. However, the mechanism by which BCA protected the prenatal neurological stress are not known. So that, in this study we investigated the BCA neuroprotective effect against BPA-induced neuroinflammation in zebrafish embryo models. For this study, fertilized zebrafish embryos are exposed to BPA (1 µM) with or without BCA. Our finding suggested that BCA co-exposure prevented the depletion of antioxidant defense enzymes by BPA and reduced the production of intracellular ROS production, superoxide anion (O2-), lipid peroxidation (LPO), lactate dehydrogenase (LDH) and nitric oxide (NO) levels in the head that aided in safeguarding neuronal development. Baseline locomotion was rendered and a total distance was calculated to assess the motor function. Exposure to BCA increased acetylcholinestrase (AChE) and improved motor neuron functions. It also reduced the pro-inflammatory response expression and prevented neuroinflammation. Our study suggests that BCA has a positive role in the attenuation or amelioration of neuronal oxidative damage and locomotory behaviour induced by BPA.
Collapse
Affiliation(s)
- B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, University Station A4800, Austin TX 78712, USA
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
42
|
Yue J, Guo P, Jin Y, Li M, Hu X, Wang W, Wei X, Qi S. Momordica charantia polysaccharide ameliorates D-galactose-induced aging through the Nrf2/β-Catenin signaling pathway. Metab Brain Dis 2022; 38:1067-1077. [PMID: 36287355 DOI: 10.1007/s11011-022-01103-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022]
Abstract
Aging is widely thought to be associated with oxidative stress. Momordica charantia (MC) is a classic vegetable and traditional herbal medicine widely consumed in Asia, and M. charantia polysaccharide (MCP) is the main bioactive ingredient of MC. We previously reported an antioxidative and neuroprotective effect of MCP in models of cerebral ischemia/reperfusion and hemorrhage injury. However, the role played by MCP in neurodegenerative diseases, especially during aging, remains unknown. In this study, we investigated the protective effect of MCP against oxidative stress and brain damage in a D-galactose-induced aging model (DGAM). The Morris water maze test was performed to evaluate the spatial memory function of model rats. The levels of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were measured and telomerase activity was determined. The results showed that MCP treatment attenuated spatial memory dysfunction induced by D-galactose. In addition, MCP increased antioxidant capacity by decreasing MDA and increasing SOD and GSH levels. MCP treatment also improved telomerase activity in aging rats. Mechanistically, MCP promoted the entry of both Nrf2 and β-Catenin into the nucleus, which is the hallmark of antioxidation signaling pathway activation. This study highlights a role played by MCP in ameliorating aging-induced oxidative stress injury and reversing the decline in learning and memory capacity. Our work provides evidence that MCP administration might be a potential antiaging strategy.
Collapse
Affiliation(s)
- Jun Yue
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
- Department of Laboratory Medicine, Jinhu County People's Hospital, 211600, Huaian, People's Republic of China
| | - Yuexinzi Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, People's Republic of China
| | - Ming Li
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xiaotong Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
- National Experimental Teaching and Demonstration Center of Basic Medicine, 221004, Xuzhou, People's Republic of China
| | - Wan Wang
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, 221004, Xuzhou, People's Republic of China
| | - Xuewen Wei
- Department of Laboratory Medicine, Xuzhou First People's Hospital, 221000, Xuzhou, People's Republic of China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China.
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, 221004, Xuzhou, People's Republic of China.
| |
Collapse
|
43
|
Shah MA, Hamid A, Faheem HI, Rasul A, Baokbah TAS, Haris M, Yousaf R, Saleem U, Iqbal S, Alves MS, Khan Z, Hussain G, Alsharfi I, Khan H, Jeandet P. Uncovering the Anticancer Potential of Polydatin: A Mechanistic Insight. Molecules 2022; 27:7175. [PMID: 36364001 PMCID: PMC9656535 DOI: 10.3390/molecules27217175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin or 3-O-β-d-resveratrol-glucopyranoside (PD), a stilbenoid component of Polygonum cuspicadum (Polygonaceae), has a variety of biological roles. In traditional Chinese medicine, P. cuspicadum extracts are used for the treatment of infections, inflammation, and cardiovascular disorders. Polydatin possesses a broad range of biological activities including antioxidant, anti-inflammatory, anticancer, and hepatoprotective, neuroprotective, and immunostimulatory effects. Currently, a major proportion of the population is victimized with cervical lung cancer, ovarian cancer and breast cancer. PD has been recognized as a potent anticancer agent. PD could effectively inhibit the migration and proliferation of ovarian cancer cells, as well as the expression of the PI3K protein. The malignancy of lung cancer cells was reduced after PD treatments via targeting caspase 3, arresting cancer cells at the S phase and inhibiting NLRP3 inflammasome by downregulation of the NF-κB pathway. This ceases cell cycle, inhibits VEGF, and counteracts ROS in breast cancer. It also prevents cervical cancer by regulating epithelial-to-mesenchymal transition (EMT), apoptosis, and the C-Myc gene. The objective of this review is thus to unveil the polydatin anticancer potential for the treatment of various tumors, as well as to examine the mechanisms of action of this compound.
Collapse
Affiliation(s)
| | - Ayesha Hamid
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hafiza Ishmal Faheem
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Tourki A. S. Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Universiteit Gent, Ghent 9000, Belgium
| | - Rimsha Yousaf
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Uzma Saleem
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Shabnoor Iqbal
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Zahid Khan
- Department of Pharmacognosy, Faculty of Pharmacy, Federal Urdu University of Arts, Science & Technology, Karachi 75300, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ifat Alsharfi
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection, University of Reims Champagne-Ardenne, USC INRAe 1488, 51100 Reims, France
| |
Collapse
|
44
|
Therapeutic Potential and Mechanisms of Novel Simple O-Substituted Isoflavones against Cerebral Ischemia Reperfusion. Int J Mol Sci 2022; 23:ijms231810394. [PMID: 36142301 PMCID: PMC9498989 DOI: 10.3390/ijms231810394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Isoflavones have been widely studied and have attracted extensive attention in fields ranging from chemotaxonomy and plant physiology to human nutrition and medicine. Isoflavones are often divided into three subgroups: simple O-substituted derivatives, prenylated derivatives, and glycosides. Simple O-substituted isoflavones and their glycosides, such as daidzein (daidzin), genistein (genistin), glycitein (glycitin), biochanin A (astroside), and formononetin (ononin), are the most common ingredients in legumes and are considered as phytoestrogens for daily dietary hormone replacement therapy due to their structural similarity to 17-β-estradiol. On the basis of the known estrogen-like potency, these above isoflavones possess multiple pharmacological activities such as antioxidant, anti-inflammatory, anticancer, anti-angiogenetic, hepatoprotective, antidiabetic, antilipidemic, anti-osteoporotic, and neuroprotective activities. However, there are very few review studies on the protective effects of these novel isoflavones and their related compounds in cerebral ischemia reperfusion. This review primarily focuses on the biosynthesis, metabolism, and neuroprotective mechanism of these aforementioned novel isoflavones in cerebral ischemia reperfusion. From these published works in in vitro and in vivo studies, simple O-substituted isoflavones could serve as promising therapeutic compounds for the prevention and treatment of cerebral ischemia reperfusion via their estrogenic receptor properties and neuron-modulatory, antioxidant, anti-inflammatory, and anti-apoptotic effects. The detailed mechanism of the protective effects of simple O-substituted isoflavones against cerebral ischemia reperfusion might be related to the PI3K/AKT/ERK/mTOR or GSK-3β pathway, eNOS/Keap1/Nrf-2/HO-1 pathway, TLRs/TIRAP/MyD88/NFκ-B pathway, and Bcl-2-regulated anti-apoptotic pathway. However, clinical trials are needed to verify their potential on cerebral ischemia reperfusion because past studies were conducted with rodents and prophylactic administration.
Collapse
|
45
|
Li H, Lyv Y, Zhou S, Yu S, Zhou J. Microbial cell factories for the production of flavonoids-barriers and opportunities. BIORESOURCE TECHNOLOGY 2022; 360:127538. [PMID: 35777639 DOI: 10.1016/j.biortech.2022.127538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Flavonoids are natural plant products with important nutritional value, health-promoting benefits, and therapeutic potential. The use of microbial cell factories to generate flavonoids is an appealing option. The microbial biosynthesis of flavonoids is compared to the classic plant extract approach in this review, and the pharmaceutical applications were presented. This paper summarize approaches for effective flavonoid biosynthesis from microorganisms, and discuss the challenges and prospects of microbial flavonoid biosynthesis. Finally, the barriers and strategies for industrial bio-production of flavonoids are highlighted. This review offers guidance on how to create robust microbial cell factories for producing flavonoids and other relevant chemicals.
Collapse
Affiliation(s)
- Hongbiao Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyv
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
46
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
47
|
Soluble Free, Esterified and Insoluble-Bound Phenolic Antioxidants from Chickpeas Prevent Cytotoxicity in Human Hepatoma HuH-7 Cells Induced by Peroxyl Radicals. Antioxidants (Basel) 2022; 11:antiox11061139. [PMID: 35740036 PMCID: PMC9219979 DOI: 10.3390/antiox11061139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chickpeas are rich sources of bioactive compounds such as phenolic acids, flavonoids, and isoflavonoids. However, the contribution of insoluble-bound phenolics to their antioxidant properties remains unclear. Four varieties of chickpeas were evaluated for the presence of soluble (free and esterified) and insoluble-bound phenolics as well as their antiradical activity, reducing power and inhibition of peroxyl-induced cytotoxicity in human HuH-7 cells. In general, the insoluble-bound fraction showed a higher total phenolic content. Phenolic acids, flavonoids, and isoflavonoids were identified and quantified by UPLC-MS/MS. Taxifolin was identified for the first time in chickpeas. However, m-hydroxybenzoic acid, taxifolin, and biochanin A were the main phenolics found. Biochanin A was mostly found in the free fraction, while m-hydroxybenzoic acid was present mainly in the insoluble-bound form. The insoluble-bound fraction made a significant contribution to the reducing power and antiradical activity towards peroxyl radical. Furthermore, all extracts decreased the oxidative damage of human HuH-7 cells induced by peroxyl radicals, thus indicating their hepatoprotective potential. This study demonstrates that the antioxidant properties and bioactive potential of insoluble-bound phenolics of chickpeas should not be neglected.
Collapse
|
48
|
Hodel KVS, Machado BAS, Sacramento GDC, Maciel CADO, Oliveira-Junior GS, Matos BN, Gelfuso GM, Nunes SB, Barbosa JDV, Godoy ALPC. Active Potential of Bacterial Cellulose-Based Wound Dressing: Analysis of Its Potential for Dermal Lesion Treatment. Pharmaceutics 2022; 14:pharmaceutics14061222. [PMID: 35745794 PMCID: PMC9228207 DOI: 10.3390/pharmaceutics14061222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The use of innate products for the fast and efficient promotion of healing process has been one of the biomedical sector's main bets for lesion treatment modernization process. The aim of this study was to develop and characterize bacterial cellulose-based (BC) wound dressings incorporated with green and red propolis extract (2 to 4%) and the active compounds p-coumaric acid and biochanin A (8 to 16 mg). The characterization of the nine developed samples (one control and eight active wound dressings) evidenced that the mechanics, physics, morphological, and barrier properties depended not only on the type of active principle incorporated onto the cellulosic matrix, but also on its concentration. Of note were the results found for transparency (28.59-110.62T600 mm-1), thickness (0.023-0.046 mm), swelling index (48.93-405.55%), water vapor permeability rate (7.86-38.11 g m2 day-1), elongation (99.13-262.39%), and antioxidant capacity (21.23-86.76 μg mL-1). The wound dressing based on BC and red propolis was the only one that presented antimicrobial activity. The permeation and retention test revealed that the wound dressing containing propolis extract presented the most corneal stratum when compared with viable skin. Overall, the developed wound dressing showed potential to be used for treatment against different types of dermal lesions, according to its determined proprieties.
Collapse
Affiliation(s)
- Katharine Valéria Saraiva Hodel
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| | - Bruna Aparecida Souza Machado
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
- Correspondence: ; Tel.: +55-(71)-3879-5624
| | - Giulia da Costa Sacramento
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
| | - Carine Assunção de Oliveira Maciel
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| | - Gessualdo Seixas Oliveira-Junior
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| | - Breno Noronha Matos
- Laboratory of Medicines, Food and Cosmetics (LTMAC), University of Brasília, Brasilia 70910-900, Brazil; (B.N.M.); (G.M.G.)
| | - Guilherme Martins Gelfuso
- Laboratory of Medicines, Food and Cosmetics (LTMAC), University of Brasília, Brasilia 70910-900, Brazil; (B.N.M.); (G.M.G.)
| | - Silmar Baptista Nunes
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
| | - Josiane Dantas Viana Barbosa
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
| | - Ana Leonor Pardo Campos Godoy
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| |
Collapse
|
49
|
Jadimurthy R, Mayegowda SB, Nayak S, Mohan CD, Rangappa KS. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00728. [PMID: 35686013 PMCID: PMC9171455 DOI: 10.1016/j.btre.2022.e00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The microorganisms that have developed resistance to available therapeutic agents are threatening the globe and multidrug resistance among the bacterial pathogens is becoming a major concern of public health worldwide. Bacteria develop protective mechanisms to counteract the deleterious effects of antibiotics, which may eventually result in loss of growth-inhibitory potential of antibiotics. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens display multidrug resistance and virulence through various mechanisms and it is the need of the hour to discover or design new antibiotics against ESKAPE pathogens. In this article, we have discussed the mechanisms acquired by ESKAPE pathogens to counteract the effect of antibiotics and elaborated on recently discovered secondary metabolites derived from bacteria and plant sources that are endowed with good antibacterial activity towards pathogenic bacteria in general, ESKAPE organisms in particular. Abyssomicin C, allicin, anthracimycin, berberine, biochanin A, caffeic acid, daptomycin, kibdelomycin, piperine, platensimycin, plazomicin, taxifolin, teixobactin, and thymol are the major metabolites whose antibacterial potential have been discussed in this article.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shilpa Borehalli Mayegowda
- Dayananda Sagar University, School of Basic and Applied Sciences, Shavige Malleswara Hills, Kumaraswamy layout, Bengaluru 560111, India
| | - S.Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | | | | |
Collapse
|
50
|
Hou Y, Zhao W, Yu H, Zhang F, Zhang HT, Zhou Y. Biochanin A alleviates cognitive impairment and hippocampal mitochondrial damage in ovariectomized APP/PS1 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154056. [PMID: 35338989 DOI: 10.1016/j.phymed.2022.154056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/27/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Estrogen deficiency leads to mitochondrial defects that precede Alzheimer's disease (AD)-associated pathological changes in a postmenopausal mouse model. Biochanin A (BCA) is a phytoestrogen isolated from Trifolium pratense L. used to relieve postmenopausal problems in women. In previous work, we observed that oral BCA treatment led to neuroprotection in an ovariectomized rat model. The objective of this study was to investigate whether and how BCA protects against hippocampal mitochondrial damage in a postmenopausal model of AD. METHOD APP/PS1 mice underwent bilateral ovariectomy and then, seven days later, received oral BCA at 20 or 40 mg/kg, or oral estradiol at 0.5 mg/kg, daily for 90 days. Sham animals were not ovariectomized and received no additional treatments. Cognitive function was examined using the passive avoidance task, novel object recognition test, and Morris water maze test. The level of circulating estrogen in vivo was assessed indirectly by measuring the wet weight of the uterus. We detected Aβ deposition and PGC-1α in brain by immunohistochemistry; p62, by immunofluorescence; and ERα, ERβ, PGC-1α, NRF1, mtTFA, Drp1, OPA1, Mfn2, Beclin1, LC3B, Pink1, and Parkin by immunoblotting. RESULTS BCA treatment rescued cognitive decline and reduced Aβ deposition and BACE1 expression in the hippocampus of ovariectomized APP/PS1 mice. BCA reversed the imbalance of mitochondrial dynamics caused by ovariectomy by increasing the expression of phospho-Drp1 (ser637), OPA1, and Mfn2. BCA reversed abnormal mitophagy induced by ovariectomy by increasing the expression of Beclin1, LC3B, Pink1, and Parkin, as well as by reducing the expression of p62. CONCLUSIONS BCA treatment enhances learning and memory abilities and alleviates AD symptoms in a postmenopausal model of AD. A possible mechanism is that BCA rescues the reduction of mitochondrial biogenesis, imbalance of mitochondrial dynamics, and abnormal mitophagy caused by ovariectomy. This study supports further research on BCA to develop treatments for postmenopausal women with AD.
Collapse
Affiliation(s)
- Yue Hou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China
| | - Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China
| | - Fangfang Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao 266011, China.
| | - Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China.
| |
Collapse
|