1
|
Mabato BG, Li YJ, Huang DD, Chan CK. Aqueous-Phase Photoreactions of Mixed Aromatic Carbonyl Photosensitizers Yield More Oxygenated, Oxidized, and less Light-Absorbing Secondary Organic Aerosol (SOA) than Single Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7924-7936. [PMID: 38652049 PMCID: PMC11080053 DOI: 10.1021/acs.est.3c10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Aromatic carbonyls have been mainly probed as photosensitizers for aqueous secondary organic aerosol (aqSOA) and light-absorbing organic aerosol (i.e., brown carbon or BrC) formation, but due to their organic nature, they can also undergo oxidation to form aqSOA and BrC. However, photochemical transformations of aromatic carbonyl photosensitizers, particularly in multicomponent systems, are understudied. This study explored aqSOA formation from the irradiation of aromatic carbonyl photosensitizers in mixed and single systems under cloud/fog conditions. Mixed systems consisting of phenolic carbonyls only (VL + ActSyr + SyrAld: vanillin [VL] + acetosyringone [ActSyr] + syringaldehyde [SyrAld]) and another composed of both nonphenolic and phenolic carbonyls (DMB + ActSyr + SyrAld: 3,4-dimethoxybenzaldehyde [DMB], a nonphenolic carbonyl, + ActSyr + SyrAld) were compared to single systems of VL (VL*) and DMB (DMB*), respectively. In mixed systems, the shorter lifetimes of VL and DMB indicate their diminished capacity to trigger the oxidation of other organic compounds (e.g., guaiacol [GUA], a noncarbonyl phenol). In contrast to the slow decay and minimal photoenhancement for DMB*, the rapid photodegradation and significant photoenhancement for VL* indicate efficient direct photosensitized oxidation (i.e., self-photosensitization). Relative to single systems, the increased oxidant availability promoted functionalization in VL + ActSyr + SyrAld and accelerated the conversion of early generation aqSOA in DMB + ActSyr + SyrAld. Moreover, the increased availability of oxidizable substrates countered by stronger oxidative capacity limited the contribution of mixed systems to aqSOA light absorption. This suggests a weaker radiative effect of BrC from mixed photosensitizer systems than BrC from single photosensitizer systems. Furthermore, more oxygenated and oxidized aqSOA was observed with increasing complexity of the reaction systems (e.g., VL* < VL + ActSyr + SyrAld < VL + ActSyr + SyrAld + GUA). This work offers new insights into aqSOA formation by emphasizing the dual role of organic photosensitizers as oxidant sources and oxidizable substrates.
Collapse
Affiliation(s)
- Beatrix
Rosette Go Mabato
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Yong Jie Li
- Department
of Civil and Environmental Engineering, and Centre for Regional Ocean,
Faculty of Science and Technology, University
of Macau, Macau 999078, China
| | - Dan Dan Huang
- Shanghai
Academy of Environmental Sciences, Shanghai 200233, China
| | - Chak K. Chan
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Kingdom
of Saudi Arabia
| |
Collapse
|
2
|
Li F, Zhou S, Du L, Zhao J, Hang J, Wang X. Aqueous-phase chemistry of atmospheric phenolic compounds: A critical review of laboratory studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158895. [PMID: 36130630 DOI: 10.1016/j.scitotenv.2022.158895] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds (PhCs) are crucial atmospheric pollutants typically emitted by biomass burning and receive particular concerns considering their toxicity, light-absorbing properties, and involvement in secondary organic aerosol (SOA) formation. A comprehensive understanding of the transformation mechanisms on chemical reactions in atmospheric waters (i.e., cloud/fog droplets and aerosol liquid water) is essential to predict more precisely the atmospheric fate and environmental impacts of PhCs. Laboratory studies play a core role in providing the fundamental knowledge of aqueous-phase chemical transformations in the atmosphere. This article critically reviews recent laboratory advances in SOA formation from the aqueous-phase reactions of PhCs. It focuses primarily on the aqueous oxidation of PhCs driven by two atmospheric reactive species: OH radicals and triplet excited state organics, including the important chemical kinetics and mechanisms. The effects of inorganic components (i.e., nitrate and nitrite) and transition metal ions (i.e., soluble iron) are highlighted on the aqueous-phase transformation of PhCs and on the properties and formation mechanisms of SOA. The review is concluded with the current knowledge gaps and future perspectives for a better understanding of the atmospheric transformation and SOA formation potential of PhCs.
Collapse
Affiliation(s)
- Fenghua Li
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Shengzhen Zhou
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China.
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jun Zhao
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Jian Hang
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Xuemei Wang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510000, China
| |
Collapse
|
3
|
Luo W, Chen Y, Hu P, Ruan W, Ye Y, Zheng Z, Li S, Wang D, Wang D. Feasibility analysis of extracting and purifying 4-ethylguaiacol using the intermediate product of the reaction between 4-ethylguaiacol and Ca2+ as the extracting agent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Liu C, Chen D, Chen X. Atmospheric Reactivity of Methoxyphenols: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2897-2916. [PMID: 35188384 DOI: 10.1021/acs.est.1c06535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
Collapse
Affiliation(s)
- Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Dandan Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Xiao'e Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| |
Collapse
|
5
|
Liu S, Wang Y, Wang G, Zhang S, Li D, Du L, Wu C, Du W, Ge S. Enhancing effect of NO 2 on the formation of light-absorbing secondary organic aerosols from toluene photooxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148714. [PMID: 34225141 DOI: 10.1016/j.scitotenv.2021.148714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 05/24/2023]
Abstract
Aromatic hydrocarbons are one of the major precursors of atmospheric brown carbon (BrC) and both abundantly co-exist with NOx in the urban atmosphere especially in winter haze period. However, the impact of NOx on the formation of BrC derived from aromatic hydrocarbons is still not fully understood. In this study, the yield and light absorption of secondary organic aerosols (SOA) from toluene photooxidation under various nitrogen oxides (NO2) levels were investigated by using a 5 m3 photooxidation smog chamber. A trend of increase at first and then decrease in the SOA yield with an increasing NO2 concentration was observed. The acid-catalyzed heterogeneous reactions lead to the increase of SOA yield in the low-NO2 regime. The formation of low-volatility species might be suppressed at high-NO2 conditions is responsible for the decreased SOA yield. In contrast, light absorption and mass absorption coefficient (MAC) of the toluene-derived SOA continuously increased with the increasing NO2 concentrations. HR-ToF-AMS results showed that nitrogen-containing organic compounds (NOCs) are the main species that lead to the increase of the SOA light absorption. The ratio of CHN family to the total NOCs, which are derived from the nitro compounds, also increased dominantly with the increasing NO2 levels and accounted for more than half of the total NOCs when the NO2 concentration increased to 495 ppbv, indicating that nitro compounds rather than organic nitrates are the major light-absorbing species and preferably formed in the toluene oxidation process.
Collapse
Affiliation(s)
- Shijie Liu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 210062, China
| | - Yiqian Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 210062, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 210062, China; Institute of Eco-Chongming, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Si Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 210062, China
| | - Dapeng Li
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 210062, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Can Wu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 210062, China
| | - Wei Du
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 210062, China
| | - Shuangshuang Ge
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| |
Collapse
|
6
|
Characterization of Products from the Aqueous-Phase Photochemical Oxidation of Benzene-Diols. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical processing in atmospheric aqueous phases, including cloud and fog drops, might be significant in reconciling the gap between observed and modeled secondary organic aerosol (SOA) properties. In this work, we conducted a relatively comprehensive investigation of the reaction products generated from the aqueous-phase photochemical oxidation of three benzene-diols (resorcinol, hydroquinone, and methoxyhydroquinone) by hydroxyl radical (·OH), triplet excited state (3C*) 3,4-dimethoxybenzaldehyde (3,4-DMB), and direct photolysis without any added oxidants. The results show that OH-initiated photo-degradation is the fastest of all the reaction systems. For the optical properties, the aqueous oxidation products generated under different reaction conditions all exhibited photo-enhancement upon illumination by simulated sunlight, and the light absorption was wavelength dependent on and increased as a function of the reaction time. The oxygen-to-carbon (O/C) ratio of the products also gradually increased against the irradiation time, indicating the persistent formation of highly oxygenated low-volatility products throughout the aging process. More importantly, aqueous-phase products from photochemical oxidation had an increased oxidative potential (OP) compared with its precursor, indicating they may more adversely impact health. The findings in this work highlight the importance of aqueous-phase photochemical oxidation, with implications for aqueous SOA formation and impacts on both the chemical properties and health effects of OA.
Collapse
|
7
|
Jiang W, Misovich MV, Hettiyadura APS, Laskin A, McFall AS, Anastasio C, Zhang Q. Photosensitized Reactions of a Phenolic Carbonyl from Wood Combustion in the Aqueous Phase-Chemical Evolution and Light Absorption Properties of AqSOA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5199-5211. [PMID: 33733745 DOI: 10.1021/acs.est.0c07581] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Guaiacyl acetone (GA) is a phenolic carbonyl emitted in significant quantities by wood combustion that undergoes rapid aqueous-phase oxidation to produce aqueous secondary organic aerosol (aqSOA). We investigate the photosensitized oxidation of GA by an organic triplet excited state (3C*) and the formation and aging of the resulting aqSOA in wood smoke-influenced fog/cloud water. The chemical transformations of the aqSOA were characterized in situ using a high-resolution time-of-flight aerosol mass spectrometer. Additionally, aqSOA samples collected over different time periods were analyzed using high-performance liquid chromatography coupled with a photodiode array detector and a high-resolution Orbitrap mass spectrometer (HPLC-PDA-HRMS) to provide details on the molecular composition and optical properties of brown carbon (BrC) chromophores. Our results show efficient formation of aqSOA from GA, with an average mass yield around 80%. The composition and BrC properties of the aqSOA changed significantly over the course of reaction. Three generations of aqSOA products were identified via positive matrix factorization analysis of the aerosol mass spectrometry data. Oligomerization and functionalization dominated the production of the first-generation aqSOA, whereas fragmentation and ring-opening reactions controlled the formation of more oxidized second- and third-generation products. Significant formation of BrC was observed in the early stages of the photoreaction, while organic acids were produced throughout the experiment. High-molecular weight molecules (m/z > 180) with high aromaticity were identified via HPLC-PDA-HRMS and were found to account for a majority of the UV-vis absorption of the aqSOA.
Collapse
Affiliation(s)
- Wenqing Jiang
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| | - Maria V Misovich
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Anusha P S Hettiyadura
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Alexander S McFall
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616-5270, United States
| | - Cort Anastasio
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616-5270, United States
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| |
Collapse
|
8
|
Yin J, Wang D, Zheng Z, Ye Y, Li S, Jia X. Development of a New Route for Separating and Purifying 4-Ethyl-2-methoxyphenol Based on the Reaction Mechanism between the Chemical and Calcium Ion. ACS OMEGA 2021; 6:2206-2214. [PMID: 33521460 PMCID: PMC7841953 DOI: 10.1021/acsomega.0c05483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Based on the characteristic that Ca2+ can react with 4-ethyl-2-methoxyphenol (EMP) to form a complexation with a phenol-calcium ratio of 4:1, a new extraction and purification method of EMP is developed for the first time in this work. At an optimum purification condition, 99.60% purity of EMP can be obtained through a reaction and decomposition operation. By combining a variety of characterizations, which consist of in situ Fourier transform infrared spectrometer (FTIR), nuclear magnetic resonance (NMR), inductively coupled plasma optical emission spectrometer (ICP-OES), gas chromatography-mass spectrometry (GC-MS)/flame ionization detector (FID), elemental analysis, and thermogravimetric analysis, the reaction mechanism of the coordination process is studied. It is demonstrated that there are three stages of the coordination reaction between Ca2+ and EMP. A neutralization reaction occurs in the first stage, while the second stage is a mixing reaction stage including neutralization and coordination reaction. When the reaction proceeds to the third stage, another coordination reaction occurs. Furthermore, phenol and ethanol are added as impurities in EMP. EMP with a purity of more than 99.50% can be obtained using this purification method. It confirms that this efficient method can achieve a good purification effect even for EMP solutions with complicated components.
Collapse
Affiliation(s)
- Junjun Yin
- Fujian
Engineering and Research Center of Clean and High-valued Technologies
for Biomass, College of Energy, Xiamen University, Xiamen 361102, P. R. China
| | - Duo Wang
- Fujian
Engineering and Research Center of Clean and High-valued Technologies
for Biomass, College of Energy, Xiamen University, Xiamen 361102, P. R. China
| | - Zhifeng Zheng
- Fujian
Engineering and Research Center of Clean and High-valued Technologies
for Biomass, College of Energy, Xiamen University, Xiamen 361102, P. R. China
| | - Yueyuan Ye
- Fujian
Engineering and Research Center of Clean and High-valued Technologies
for Biomass, College of Energy, Xiamen University, Xiamen 361102, P. R. China
| | - Shuirong Li
- Fujian
Engineering and Research Center of Clean and High-valued Technologies
for Biomass, College of Energy, Xiamen University, Xiamen 361102, P. R. China
| | - Xingyong Jia
- Graduate
School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|