1
|
Signorini SG, Munari M, Federico L, Farè F, Fontana M, Caruso D, Freitas R, Paciello S, D'Aniello I, Gambi MC, Della Torre C. Living under natural conditions of ocean acidification entails energy expenditure and oxidative stress in a mussel species. MARINE POLLUTION BULLETIN 2024; 203:116470. [PMID: 38728956 DOI: 10.1016/j.marpolbul.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
We investigated the health conditions of the Mediterranean mussel Mytilus galloprovincialis recruited in the CO2 vents system of Castello Aragonese at Ischia Island (Mediterranean Sea). Individuals of M. galloprovincialis were sampled in three sites along the pH gradient (8.10, 7.7 and up to <7.4). Untargeted metabolomics and biochemical endpoints related to energetic metabolism, oxidative stress/damage, neurotoxicity and immune defense were analyzed. Corrosion of the valves occurred at low pH. A separation of the metabolome was observed along the pH gradient. Metabolites belonging to amino acids, nucleosides, lipids and organic osmolytes were significantly reduced in the organisms from the most acidified sites. The content of reactive oxygen species and the activity of glutathione peroxidase were reduced in organisms from the acidified sites compared to ambient pH, and no oxidative damage was induced. Overall results suggested the presence of an energy cost underpinning long-term survival in acidified conditions for this species.
Collapse
Affiliation(s)
- Silvia Giorgia Signorini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biology, Stazione Idrobiologica Umberto D'Ancona, University of Padova, Chioggia, Venice, Italy
| | - Lorenzo Federico
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Fiorenza Farè
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy
| | - Manuela Fontana
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy; Department of Pharmacological and Molecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rosa Freitas
- CESAM - Centre of Marine and Environmental Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Sofia Paciello
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Département de Sciences Biologiques, Université de Montréal, Montréal, Canada
| | - Ilaria D'Aniello
- Department of Biology, Stazione Idrobiologica Umberto D'Ancona, University of Padova, Chioggia, Venice, Italy
| | | | - Camilla Della Torre
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
2
|
Dong Z, Li H, Wang Y, Lin S, Guo F, Zhao J, Yao R, Zhu L, Wang W, Buttino I, Qi P, Guo B. Transcriptome profiling reveals the strategy of thermal tolerance enhancement caused by heat-hardening in Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165785. [PMID: 37499827 DOI: 10.1016/j.scitotenv.2023.165785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The thick-shell mussel Mytilus coruscus serves as a common sessile intertidal species and holds economic significance as an aquatic organism. M. coruscus often endure higher temperatures than their ideal range during consecutive low tides in the spring. This exposure to elevated temperatures provides them with a thermal tolerance boost, enabling them to adapt to high-temperature events caused by extreme low tides and adverse weather conditions. This phenomenon is referred to as heat-hardening. Some related studies showed the phenomenon of heat-hardening in sessile intertidal species but not reported at the mechanism level based on transcriptome so far. In this study, physiological experiments, gene family identification and transcriptome sequencing were performed to confirm the thermotolerance enhancement based on heat-hardening and explore the mechanism in M. coruscus. A total of 2935 DEGs were identified and the results of the KEGG enrichment showed that seven heat-hardening relative pathways were enriched, including Toll-like receptor signal pathway, Arachidonic acid metabolism, and others. Then, 24 HSP70 members and 36 CYP2 members, were identified, and the up-regulated members are correlated with increasing thermotolerance. Finally, we concluded that the heat-hardening M. coruscus have a better thermotolerance because of the capability of maintaining the integrity and the phenomenon of vasodilation of the gill under thermal stress. Further, the physiological experiments yielded the same conclusions. Overall, this study confirms the thermotolerance enhancement caused by heat-hardening and reveals the survival strategy in M. coruscus. In addition, the conclusion provides a new reference for studying the intertidal species' heat resistance mechanisms to combat extreme heat events and the strategies for dealing with extreme weather in aquaculture under the global warming trend.
Collapse
Affiliation(s)
- Zhenyu Dong
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Hongfei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan 316021, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Shuangrui Lin
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Feng Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Jiemei Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Ronghui Yao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Li Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Weifeng Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research ISPRA, Via del Cedro n.38, 57122 Livorno, Italy
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan 316021, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China.
| |
Collapse
|
3
|
Yang C, Wu H, Chen J, Liao Y, Mkuye R, Deng Y, Du X. Integrated transcriptomic and metabolomic analysis reveals the response of pearl oyster (Pinctada fucata martensii) to long-term hypoxia. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106133. [PMID: 37586225 DOI: 10.1016/j.marenvres.2023.106133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The frequency at which organisms are exposed to hypoxic conditions in aquatic environments is increasing due to coastal eutrophication and global warming. To reveal the effects of long-term hypoxic stress on metabolic changes of pearl oyster, commonly known as Pinctada (Pinctada fucata martensii), the present study performed the integrated analysis of transcriptomics and metabolomics to investigate the global changes of genes and metabolites following 25 days hypoxia challenge. Transcriptome analysis detected 1108 differentially expressed genes (DEGs) between the control group and the hypoxia group. The gene ontology (GO) analysis of DEGs revealed that they are significantly enriched in functions such as "microtubule-based process", "histone (H3-K4, H3-K27, and H4-K20) trimethylation", "histone H4 acetylation", "kinesin complex", and "ATPase activity", and KEGG pathway functions, such as "DNA replication", "Apoptosis", and "MAPK signaling pathways". Metabolome analysis identified 68 significantly different metabolites from all identified metabolites, and associated with 25 metabolic pathways between the control and hypoxia groups. These pathways included aminoacyl-tRNA biosynthesis, arginine and proline metabolism, and phenylalanine metabolism. Our integrated analysis suggested that pearl oysters were subject to oxidative stress, apoptosis, immune inhibition, and neuronal excitability reduction under long-term hypoxic conditions. We also found a remarkable depression in a variety of biological functions under long-term hypoxia, including metabolic rates, biomineralization activities, and the repression of reorganization of the cytoskeleton and cell metabolism. These findings provide a basis for elucidating the mechanisms used by marine bivalves to cope with long-term hypoxic stress.
Collapse
Affiliation(s)
- Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hailing Wu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiayi Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongshan Liao
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China.
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
4
|
Chen J, Qiu J, Yang C, Liao Y, He M, Mkuye R, Li J, Deng Y, Du X. Integrated transcriptomic and metabolomic analysis sheds new light on adaptation of Pinctada fucata martensii to short-term hypoxic stress. MARINE POLLUTION BULLETIN 2023; 187:114534. [PMID: 36587532 DOI: 10.1016/j.marpolbul.2022.114534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Analyses of the transcriptome and metabolome were conducted to clarify alterations of key genes and metabolites in pearl oysters following exposure to short-term hypoxic treatment. We totally detected 209 DEGs between the control and hypoxia groups. Enrichment analysis indicated the enrichment of GO terms including "oxidation-reduction process", "ECM organization", "chaperone cofactor-dependent protein refolding", and "ECM-receptor interaction" KEGG pathway by the DEGs. In addition, between the two groups, a total of 28 SDMs were identified, which were implicated in 13 metabolic pathways, such as "phenylalanine metabolism", "D-amino acid metabolism", and "aminoacyl-tRNA biosynthesis". Results suggest that pearl oysters are exposed to oxidative stress and apoptosis under short-term hypoxia. Also, pearl oysters might adapt to short-term hypoxic treatment by increasing antioxidant activity, modulating immune and biomineralization activities, maintaining protein homeostasis, and reorganizing the cytoskeleton. The results of our study help unveil the mechanisms by which pearl oysters respond adaptively to short-term hypoxia.
Collapse
Affiliation(s)
- Jiayi Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jinyu Qiu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang 524088, China.
| | - Yongshan Liao
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Maoxiao He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Junhui Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang 524088, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang 524088, China
| |
Collapse
|
5
|
Wang X, Zhang Q, Zhang T, Shao S, Wang Q, Dong Z, Zhao J. Evaluation of antioxidant capacity and digestive enzyme activities in Mytilus galloprovincialis exposed to nanoplastics under different patterns of hypoxia. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105849. [PMID: 36565507 DOI: 10.1016/j.marenvres.2022.105849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In the marine environment, plastic pollution may occur simultaneously with hypoxia. However, current ecological risk assessments of nanoplastics have rarely considered the impact of additional environmental factors, such as hypoxia. In this study, we investigated the effect of polystyrene nanospheres (PS-NPs) on the digestive performance (antioxidant system and digestive enzymes) of mussels Mytilus galloprovincialis under different patterns of hypoxia (normoxia, constant hypoxia, and fluctuating hypoxia). The result showed that PS-NPs caused oxidative damage in the digestive glands of mussels, while all patterns of hypoxia exacerbated this oxidative damage. Activities of four digestive enzymes (α-amylase, cellulase, trypsin, and lipase) were examined. Among these, the activity of the α-amylase was inhibited by PS-NPs, and the inhibition was aggravated by all the hypoxia patterns. The cellulase activity and trypsin activity was enhanced by PS-NPs, and the increase was further stimulated by hypoxia. Lipase activity was not affected by PS-NPs alone, but significant inhibition was detected after the coexposure to PS-NPs and hypoxia. Conclusively, the combined stress of hypoxia and nanoplastics can significantly affect the digestive performance of mussels and may alter the mussel nutrient uptake strategy. Our work has provided new insight into the ecological risk assessment of plastics under global climate change.
Collapse
Affiliation(s)
- Xin Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shengyuan Shao
- Yantai Institute of China Agricultural University, Yantai, Shandong, 264670, PR China
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
6
|
Thangal SH, Muralisankar T, Anandhan K, Gayathri V, Yogeshwaran A. Effect of CO 2 driven ocean acidification on the mud crab Scylla serrata instars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119995. [PMID: 36007788 DOI: 10.1016/j.envpol.2022.119995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The decreasing ocean pH seems to adversely affect marine organisms, including crustaceans, which leads to potential threats to seafood safety. The present investigation evaluated the effect of seawater acidification on the edible marine mud crab Scylla serrata instars. The experimental setup was designed using a multi-cell cage based system assembled with 20 pre holed PVC pipes containing 20 individual crabs to avoid cannibalism. The crab instars were exposed to CO2 driven acidified seawater at pH 7.8 (IPCC forecast pH at the end of the 21st century), 7.6, 7.4, 7.2, and 7.0 for 60 days. The crabs reared in seawater without acidification at pH 8.2 served as control. The present study revealed a notable decrease in survival, feed intake, growth, molting, tissue biochemical constituents, minerals, chitin, and alkaline phosphatase in S. serrata instar reared in acidified seawater, denotes the adverse effect of seawater acidification on crabs. The significant elevations in antioxidants, lipid peroxidation, and metabolic enzymes in all acidified seawater compared to ambient pH indicates the physiological stress of the crabs' instars. The changes in the metabolic enzymes reveal the metabolism of protein and glucose for additional energy required by the crabs to tolerate the acidic stress. Hence, the present study provides insight into the seawater acidification can adversely affect the crab S. serrata.
Collapse
Affiliation(s)
- Said Hamid Thangal
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Thirunavukkarasu Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| | - Krishnan Anandhan
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Velusamy Gayathri
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Arumugam Yogeshwaran
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| |
Collapse
|
7
|
Guo Y, Zhou B, Sun T, Zhang Y, Jiang Y, Wang Y. An Explanation Based on Energy-Related Changes for Blue Mussel Mytilus edulis Coping With Seawater Acidification. Front Physiol 2021; 12:761117. [PMID: 34721083 PMCID: PMC8551607 DOI: 10.3389/fphys.2021.761117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
As ocean acidification (OA) is gradually increasing, concerns regarding its ecological impacts on marine organisms are growing. Our previous studies have shown that seawater acidification exerted adverse effects on physiological processes of the blue mussel Mytilus edulis, and the aim of the present study was to obtain energy-related evidence to verify and explain our previous findings. Thus, the same acidification system (pH: 7.7 or 7.1; acidification method: HCl addition or CO2 enrichment; experimental period: 21d) was set up, and the energy-related changes were assessed. The results showed that the energy charge (EC) and the gene expressions of cytochrome C oxidase (COX) reflecting the ATP synthesis rate increased significantly after acidification treatments. What's more, the mussels exposed to acidification allocated more energy to gills and hemocytes. However, the total adenylate pool (TAP) and the final adenosine triphosphate (ATP) in M. edulis decreased significantly, especially in CO2 treatment group at pH 7.1. It was interesting to note that, TAP, ATP, and COXs gene expressions in CO2 treatment groups were all significantly lower than that in HCl treatment groups at the same pH, verifying that CO2-induced acidification exhibited more deleterious impacts on M. edulis, and ions besides H+ produced by CO2 dissolution were possible causes. In conclusion, energy-related changes in M. edulis responded actively to seawater acidification and varied with different acidification conditions, while the constraints they had at higher acidification levels suggest that M. edulis will have a limited tolerance to increasing OA in the future.
Collapse
Affiliation(s)
- Ying Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bin Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tianli Sun
- National Marine Hazard Mitigation Service, Beijing, China
| | - Yaya Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yongshun Jiang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - You Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Thangal SH, Nivetha M, Muttharasi C, Anandhan K, Muralisankar T. Effects of acidified seawater on biological and physiological responses of Artemia franciscana. MARINE POLLUTION BULLETIN 2021; 169:112476. [PMID: 34062325 DOI: 10.1016/j.marpolbul.2021.112476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Ocean acidification is becoming a potential threat to marine animals. The present study investigated the effect of seawater acidification on Artemia franciscana. A. franciscana cysts were allowed to hatch at different pH levels of pH 8.2 (control), 7.8, and 6.8. After 48 h incubation, the hatching percentage was significantly reduced in acidified seawater compared to that in control. Further, the hatched Artemia nauplii from each pH treatment were transferred to freshly acidified seawater for chronic study for 15 days. At the end of the experiment, survival, growth, and biochemical constituents were significantly decreased in Artemia at pH 7.8 and 6.8 compared to that in control, which indicates the adverse effects of acidified seawater on Artemia. The antioxidants, lipid peroxidation, and metabolic enzymes were significantly elevated in A. franciscana exposed to acidified seawater compared to that in control, which shows oxidative and metabolic stress on A. franciscana under acidified environment.
Collapse
Affiliation(s)
- Said Hamid Thangal
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Muthusamy Nivetha
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Chandrasekaran Muttharasi
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Krishnan Anandhan
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | |
Collapse
|
9
|
Wilson-McNeal A, Hird C, Hobbs C, Nielson C, Smith KE, Wilson RW, Lewis C. Fluctuating seawater pCO 2/pH induces opposing interactions with copper toxicity for two intertidal invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141370. [PMID: 32814294 DOI: 10.1016/j.scitotenv.2020.141370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Global ocean pCO2 is increasing as a result of anthropogenic CO2 emissions, driving a decline in seawater pH. However, coastal waters already undergo fluctuations in pCO2/pH conditions over far shorter timescales, with values regularly exceeding those predicted for the open ocean by the year 2100. The speciation of copper, and therefore its potential toxicity, is affected by changing seawater pH, yet little is known concerning how present-day natural fluctuations in seawater pH affect copper toxicity to marine biota. Here, we test the hypothesis that a fluctuating seawater pCO2/pH regime will alter the responses of the mussel Mytilus edulis and the ragworm Alitta virens to sub-lethal copper, compared to a static seawater pCO2/pH scenario. Mussels and worms were exposed to 0.1 and 0.25 μM copper respectively, concentrations determined to produce comparable toxicity responses in these species, for two weeks under a fluctuating 12-hour pCO2/pH cycle (pH 8.14-7.53, pCO2 445-1747 μatm) or a static pH 8.14 (pCO2 432 μatm) treatment. Mussels underwent a haemolymph acidosis of 0.1-0.2 pH units in the fluctuating treatments, alongside two-fold increases in the superoxide dismutase activity and DNA damage induced by copper, compared to those induced by copper under static pH conditions. Conversely, ragworms experienced an alkalosis of 0.3 pH units under fluctuating pH/pCO2, driven by a two-fold increase in coelomic fluid bicarbonate. This mitigated the copper-induced oxidative stress to slightly reduce both antioxidant activity and DNA damage, relative to the static pH + copper treatment. These opposing responses suggest that differences in species acid-base physiology were more important in determining toxicity responses than the pH-induced speciation change. With variability in seawater chemistry predicted to increase as climate change progresses, understanding how fluctuating conditions interact with the toxicity of pH-sensitive contaminants will become more crucial in predicting their risk to coastal biota.
Collapse
Affiliation(s)
- Alice Wilson-McNeal
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| | - Cameron Hird
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Catherine Hobbs
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Clara Nielson
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Kathryn E Smith
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Rod W Wilson
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Ceri Lewis
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
10
|
Liu Y, Yang M, Zheng L, Nguyen H, Ni L, Song S, Sui Y. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to toxic Microcystis aeruginosa and thermal stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140754. [PMID: 32758840 DOI: 10.1016/j.scitotenv.2020.140754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/20/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Harmful algal blooms (HABs) and thermal stress as climate changes become more common in global water ecosystem, especially under eutrophic habitats. Here our study examined the combined impacts of bloom forming cyanobacteria Microcystis aeruginosa and thermal stress on the antioxidant responses of the ecologically important species triangle sail mussel Hyriopsis cumingii. The differential responses of a series of enzymes, e.g. superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST), as well as signal metabolites including reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione (GSH) involved in antioxidant defense mechanisms were analyzed during 14 d exposure to toxic cyanobacterium M. aeruginosa and 7 d depuration period. The activities of SOD and GPx as well as the content of ROS and MDA in H. cumingii increased, while CAT activity reduced due to M. aeruginosa exposure. Thermal stress resulted in decrease of CAT, the accumulation of GSH and the enhance of GST and SOD. Meanwhile, the interactive effects among M. aeruginosa, thermal stress and time were also observed on most parameters except for GST activity. The total amount of microcystins (MC) in sail mussels increased with concentrations of exposed M. aeruginosa, independently of the presence or absence of thermal stress. Although around 50% of MC in mussels dropped in the depuration period, most parameters showed alterations because of cyanobacteria exposure and thermal stress. Overall, these findings suggested that toxic cyanobacteria or thermal stress induces oxidative stress and severely affects the enzymes activities and intermediates level associated with antioxidant defense mechanisms in sail mussels respectively. More importantly, the toxic impacts on sail mussels could be intensified by their combination.
Collapse
Affiliation(s)
- Yimeng Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Min Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liang Zheng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Haidang Nguyen
- Research Institute for Aquaculture No.1, Bac Ninh 16315, Viet Nam
| | - Liangping Ni
- Yueqing Guangyu Biological Technology Co., LTD, Wenzhou 325608, China
| | - Shanshan Song
- King Abdullah University of Science and Technology, Thuwal 239556, Saudi Arabia.
| | - Yanming Sui
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Department of Ocean Technology, College of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|