1
|
Gao C, Liu C, Chen C, Liu N, Liu F, Su X, Huang Q. Genetic Evaluation of Water Use Efficiency and Nutrient Use Efficiency in Populus deltoides Bartr. ex Marsh. Seedlings in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:2228. [PMID: 39204664 PMCID: PMC11359723 DOI: 10.3390/plants13162228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Populus deltoides Bartr. ex Marsh. represents a valuable genetic resource for fast-growing plantations in temperate regions. It holds significant cultivation and breeding potential in northern China. To establish an efficient breeding population of poplar, we studied the genetic variation of P. deltoides from different provenances. Our focus was on genotypes exhibiting high growth rates and efficient water and nutrient use efficiency (WUE and NUE). We evaluated 256 one-year-old seedlings from six provenances, measuring height, ground diameter, total biomass, and leaf carbon and nitrogen isotope abundance (δ13C and δ15N). Our analytical methods included variance analysis, multiple comparisons, mixed linear models, correlation analysis, and principal component analysis. The results showed that the coefficient of variation was highest for δ15N and lowest for δ13C among all traits. Except for δ15N, the effects of intra- and inter-provenance were highly significant (p < 0.01). The rates of variation for all traits ranged from 78.36% to 99.49% for intra-provenance and from 0.51% to 21.64% for inter-provenance. The heritability of all traits in AQ provenance was over 0.65, and all exhibited the highest level except for seedling height. All traits were significantly positively correlated with each other (p < 0.05), while ground diameter, total biomass, and WUE were highly significantly negatively correlated with latitude (p < 0.01). After a comprehensive evaluation, two provenances and eight genotypes were selected. The genetic gains for seedling height, ground diameter, total biomass, WUE, and NUE were 27.46 cm (178-2-106), 3.85 mm (178-2-141), 16.40 g (178-2-141), 0.852‱ (LA05-N15), and 3.145‱ (174-1-2), respectively. Overall, we revealed that the abundant genetic variation in P. deltoides populations mainly comes from intra-provenance differences and evaluated provenances and genotypes. The results of this study will contribute to optimizing and enhancing the breeding process of Chinese poplar and improving the productivity of fast-growing plantations.
Collapse
Affiliation(s)
- Chengcheng Gao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Chenggong Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Cun Chen
- School of Life Sciences, Qilu Normal University, Jinan 250013, China;
| | - Ning Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- UGent-Woodlab (Laboratory of Wood Technology), Department of Environment, Ghent University, 9000 Ghent, Belgium
| | - Fenfen Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| |
Collapse
|
2
|
Traditional Subsistence Farming of Smallholder Agroforestry Systems in Indonesia: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14148631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Agroforestry has been practiced for decades and is undoubtedly an important source of income for Indonesian households living near forests. However, there are still many cases of poverty among farmers due to a lack of ability to adopt advanced technology. This literature review aims to identify the characteristics and factors causing the occurrence of agricultural subsistence and analyze its implications for the level of farmer welfare and the regional forestry industry. The literature analysis conducted reveals that small land tenure, low literacy rates, and lack of forest maintenance are the main causes of the subsistence of small agroforestry farmers. Another reason is that subsistence-oriented agroforestry practices are considered a strong form of smallholder resilience. All of these limitations have implications for low land productivity and high-sawn timber waste from community forests. To reduce the subsistence level of farmers, government intervention is needed, especially in providing managerial assistance packages, capital assistance, and the marketing of forest products. Various agroforestry technologies are available but have not been implemented consistently by farmers. Therefore, it is necessary to develop an integrated collaboration between researchers, farmers, and regionally owned enterprises (BUMD) to increase access to technology and markets. Although it is still difficult to realize, forest services, such as upstream–downstream compensation and carbon capture, have the potential to increase farmer income.
Collapse
|
3
|
Understory Plant Abundance Is More Important than Species Richness in Explaining Soil Nutrient Variation Following Afforestation on the Eastern Loess Plateau, China. FORESTS 2022. [DOI: 10.3390/f13071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Afforestation plays an important role in controlling soil erosion and nutrient loss on the Loess Plateau in China. However, previous studies on soil nutrient changes have mainly focused on the effects of tree species, whereas little is known about how changes in shrubs and herbs caused by afforestation drive soil nutrient changes. In this study, we examined the variation characteristics of understory vegetation and soil nutrients for different vegetation types. The results showed that compared to abandoned farmland, plantations significantly increased soil organic carbon and total nitrogen but had no significant effect on total phosphorus. Robinia pseudoacacia L. forests were more effective than Pinus tabuliformis Carr. forests in increasing soil nutrient content. In addition, herbaceous vegetation in the R. pseudoacacia forest better explained the soil nutrient variation, and herb abundance was the best explanatory variable; however, shrub vegetation contributed more to soil nutrient variation in the P. tabuliformis forest, and shrub abundance contributed the most. Accordingly, we determined that understory plant abundance, rather than species richness, may be the most important factor driving soil nutrient changes. Specifically, herb abundance in the R. pseudoacacia forest may drive soil nutrient changes mainly by regulating herb biomass and litter biomass. By contrast, shrub abundance in the P. tabuliformis forest indirectly affected soil organic carbon mainly by altering shrub biomass. Furthermore, although the phylogenetic relationships had less effect on soil nutrients than species composition, they also made important contributions. Therefore, the phylogenetic relationships should also be considered in addition to species composition when assessing the impact of vegetation on soil properties in the future.
Collapse
|
4
|
Camponi L, Cardelli V, Cocco S, Serrani D, Salvucci A, Cutini A, Agnelli A, Fabbio G, Bertini G, Roggero PP, Corti G. Effect of coppice conversion into high forest on soil organic C and nutrients stock in a Turkey oak (Quercus cerris L.) forest in Italy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114935. [PMID: 35378467 DOI: 10.1016/j.jenvman.2022.114935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In forest ecosystems, a variety of abiotic and biotic soil forming factors drives soil organic matter (SOM) and nutrients cycling with a profitable outcome on climate change mitigation. As a consequence, type and intensity of forest management, through its impact on carbon (C) and nutrient soil stocks, can be considered as an additional soil forming force. In this study, we investigated the influence of the coppice conversion into high forest on pedogenesis and on soil C and nutrient (N, P, Ca, Mg, and K) stocks, fifty years later the beginning of the conversion-cycle. The trial was established in a Turkey oak forest historically managed under the coppice system in central Italy. Specifically, we considered tree population density (natural evolution - control, moderate thinning, heavy thinning) where soil samples were collected according to genetic horizon to estimate C, N, and P stocks both in the forest floor and at fixed depth intervals (0-30, 30-50 and 50-75 cm). Further, the stocks of exchangeable Ca, Mg, and K were also assessed for the mineral layers. The results showed that litter and the upper layer of mineral soil (0-30 cm) contained a similar quantity of C (about 74-83 Mg ha-1), independently of the trials and no differences were observed also in the whole soil stocks (about 192-213 Mg ha-1). The comparison of the mean stocks calculated per 1-cm of thickness of organic (O), organo-mineral (OM), and mineral (M) layers, although it did not display any difference among trials (excepted for P and Mg), showed a similar capability of the organo-mineral horizons to store C and nutrients compared with the organic ones (e.g., about 6-12 Mg ha-1, 0.3-0.5 Mg ha-1 and 0.5-1.5 kg ha-1 for C, N and P, respectively). Our findings showed that thinning operated on Turkey oak coppice did not affect soil capacity to store C and nutrients. These results suggested that the forest ecosystem itself is the main soil forming force and this is consistent with the target of adopting forest management able to control the global C cycle through the storage of SOM in the mineral soil rather than in forest floor, where SOM turnover is faster.
Collapse
Affiliation(s)
- Lorenzo Camponi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Valeria Cardelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| | - Stefania Cocco
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Dominique Serrani
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Salvucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Cutini
- CREA-Research Centre for Forestry and Wood, Arezzo, Italy
| | - Alberto Agnelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy; Research Institute on Terrestrial Ecosystems (IRET-CNR), Sesto Fiorentino, Italy
| | | | - Giada Bertini
- CREA-Research Centre for Forestry and Wood, Arezzo, Italy
| | - Pier Paolo Roggero
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Giuseppe Corti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; CREA-Council for Agricultural Research and Economics, Rome, Italy
| |
Collapse
|
5
|
Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities. FORESTS 2022. [DOI: 10.3390/f13040556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies have highlighted the benefit of implementing agroforestry for rural communities. From the perspective of socio-economic, agroforestry can potentially improve smallholders’ income, increase food security, promote gender equality and stimulate cultural activities in rural areas. Furthermore, agroforestry can enhance ecosystem service through improved soil structure, increased carbon sequestration and higher water retention. Despite having many advantages, the adoption of agroforestry among rural communities, particularly among smallholder farmers in developing countries remains limited. The absence of agroforestry in public policy causes little recognition of this system to tackle the climate crisis as well as to improve rural livelihood. This may be due to, among others, a less comprehensive evidence on impacts that simultaneously touch upon social, economic as well as environmental aspects of agroforestry on the community. This review gives a special emphasis on the current evidence depicting the characteristics of agroforestry adoption, its benefits and potential drawbacks, as well as challenges for the adoption in some developing countries. The outcomes might help related stakeholders to make appropriate decisions to improve rural livelihood.
Collapse
|
6
|
Jing J, Zhang L, Han L, Wang J, Zhang W, Liu Z, Gao A. Polystyrene micro-/nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota, metabolites, and cytokines. ENVIRONMENT INTERNATIONAL 2022; 161:107131. [PMID: 35149446 DOI: 10.1016/j.envint.2022.107131] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Micro-/nanoplastics (MNPLs), novel environmental pollutants, widely exist in the environment and life and bring health risks. Previous studies have shown that NMPLs can penetrate bone marrow, but whether they cause hematopoietic damage remains uncertain. In this study, C57BL/6J mice were treated with polystyrene MNPLs (PS-MNPLs, 10 μm, 5 μm and 80 nm) at 60 μg doses for 42 days by intragastric administration. We evaluated the hematopoietic toxicity induced by MNPLs and potential mechanisms via combining 16S rRNA, metabolomics, and cytokine chips. The results demonstrated that PS-MNPLs induced hematopoietic toxicity, which was manifested by the disorder of bone marrow cell arrangement, the reduction in colony-forming, self-renewal and differentiation capacity, and the increased proportion of lymphocytes. PS-MNPLs also disrupted the homeostasis of the gut microbiota, metabolism, and inflammation, all of which were correlated with hematotoxicity, suggesting that abnormal gut microbiota-metabolite-cytokine axes might be the crucial pathways in MNPLs-induced hematopoietic injury. In conclusion, our study systematically demonstrated that multi-scale PS-MNPLs induced hematopoietic toxicity via the crosstalk of gut microbiota, metabolites, and cytokines and provided valuable insights into MNPLs toxicity, which was conducive to health risk assessment and informed policy decisions regarding PS-MNPLs.
Collapse
Affiliation(s)
- Jiaru Jing
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 10069, PR China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
7
|
Wang Z, Zhou M, Liu H, Huang C, Ma Y, Ge HX, Ge X, Fu S. Pecan agroforestry systems improve soil quality by stimulating enzyme activity. PeerJ 2022; 10:e12663. [PMID: 35036087 PMCID: PMC8740511 DOI: 10.7717/peerj.12663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Forest and plantation intercropping are efficient agroforestry systems that optimize land use and promote agroforestry around the world. However, diverse agroforestry systems on the same upper-plantation differently affect the physical and chemical properties of the soil. METHODS The treatments for this study included a single cultivation (CK) pecan control and three agroforestry systems (pecan + Paeonia suffruticosa + Hemerocallis citrina, pecan + Paeonia suffruticosa, and pecan + Paeonia lactiflora). Soil samples were categorized according to the sampling depth (0-20 cm, 20-40 cm, 40-60 cm). RESULTS The results demonstrated that the bulk density (BD) of soil under the pecan agroforestry system (PPH and PPL) was reduced by 16.13% and 7.10%, respectively, and the soil moisture content (MC) and total soil porosity (TPO) increased. Improvements in the physical properties of the soil under the PPS agroforestry system were not obvious when compared with the pecan monoculture. The soil total phosphorus (TP), total nitrogen (TN), available potassium (AK), and total carbon (TC) increased significantly, while the soil urease (S-UE), alkaline phosphatase (S-AKP), and 1,4-β-N-acetylglucosamines (S-NAG) enzyme activity also increased significantly, following agroforestry. Overall, the pecan agroforestry system significantly improved the physical properties of the pecan plantation soil, enriched the soil nutrients, and increased the activity of soil enzymes related to TC, TN, and TP cycles.
Collapse
Affiliation(s)
- Zhaocheng Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Mengyu Zhou
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Hua Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Cheng Huang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Yuhua Ma
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Hao xin Ge
- Fuyang Xinfeng Seed Industry Co., Ltd., Fuyang, Anhui, China
| | - Xiang Ge
- Fuyang Xinfeng Seed Industry Co., Ltd., Fuyang, Anhui, China
| | - Songling Fu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
8
|
Singh AK, Liu W, Zakari S, Wu J, Yang B, Jiang XJ, Zhu X, Zou X, Zhang W, Chen C, Singh R, Nath AJ. A global review of rubber plantations: Impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148948. [PMID: 34273842 DOI: 10.1016/j.scitotenv.2021.148948] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The growing global need for latex is driving rubber plantation (RP) expansion since the last century, with >2 Mha of cultivation area being established in the last decade. Southeast Asia is the hotspot for rubber cultivation at other land-use costs. Although rubber cultivation has improved the economic status of farmers, it has altered the habitat's ecology and ecosystem functions (EF). However, studies on the impacts of RP on EF are limited, and a clear overview is not available. To bridge this gap, we conducted an inclusive review of the EF of RP, including soil carbon storage, aboveground biomass (AGB) and belowground biomass (BGB), litter production and decomposition, respiration, and biodiversity (plants, animals, soil fauna, and microbes). We compared the EF in RP (monoculture) with those in forests because the conversion of forests to RP is prevalent in the tropics and because most RP studies used forests as reference ecosystems. We found RP generally have lower EF than forests. The impacts of RP on some EF are more severe (e.g., AGB, BGB, and plant diversity), causing decreases of >55%, and the effects are consistently negative irrespective of plantation age. However, including agroforestry or polyculture, integrated pest management, cover cropping, mulching, and composting can improve the EF in RP to some extent. We highlighted research gaps, particularly substantial research gaps concerning the influence of plant diversity treatments (i.e., agroforestry) performed in RP on EF. Additionally, more empirical data on the significance of spatial and temporal levels are required, such as how the impact on EF could vary with climate and RP age, as we showed some examples where EF differs spatially and temporally. More importantly, further research on plantation management to offset EF losses is needed. Finally, we emphasized knowledge gaps and suggested future directions and policies for improving EF in RP.
Collapse
Affiliation(s)
- Ashutosh Kumar Singh
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Wenjie Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Sissou Zakari
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Laboratory of Hydraulics and Environmental Modeling (HydroModE-Lab), Faculté d'Agronomie, Université de Parakou, 03 BP 351 Parakou, Benin
| | - Junen Wu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Xiao Jin Jiang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Xiai Zhu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Xin Zou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Wanjun Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Chunfeng Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Rishikesh Singh
- Integrative Ecology Laboratory (IEL), Institute of Environment & Sustainable Development (IESD), Banaras Hindu University, Varanasi 221005, India
| | - Arun Jyoti Nath
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, India
| |
Collapse
|
9
|
Kim Y, Lee YS, Wee J, Hong J, Lee M, Kim JG, Bae YJ, Cho K. Process-based modeling to assess the nutrient removal efficiency of two endangered hydrophytes: Linking nutrient-cycle with a multiple-quotas approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144223. [PMID: 33373786 DOI: 10.1016/j.scitotenv.2020.144223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Hydrophytes have been widely used to reduce nutrient levels in aquatic ecosystems, but only limited species with high nutrient removal efficiencies have been implemented. Thus, it is necessary to continually explore new candidate species with high nutrient removal efficiencies. To effectively explore the nutrient removal ability of hydrophytes, a new process-based model combining the multiple-quotas approach and nutrient-cycle model was developed. The multiple-quotas approach provides a theoretical framework to conceptually explain the uptake and response of autotrophs to multiple nutrients. The developed process-based model was validated using observational data from microcosm experiments with two emergent hydrophytes, Menyanthes trifoliata and Cicuta virosa. The results showed that both M. trifoliata and C. virosa effectively reduced nitrogen (N) and phosphorus (P) in both water and sediment layers, but M. trifoliata showed a higher removal efficiency for both nutrients than C. virosa, particularly for total ammonia + ammonium-nitrogen (NHx-N) and nitrate-nitrogen (NO3-N) in the sediment layer (M. trifoliata: 0.579-0.976 for NHx-N, 0.567-0.702 for NO3-N; C. virosa: 0.212-0.501 for NHx-N, 0.466-0.560 for NO3-N). In addition, M. trifoliata achieved the maximum removal efficiency for N and P at higher nutrient exposure levels than C. virosa (M. trifoliata: exposure level of 0.725-0.775; C. virosa: exposure level of 0.550-0.575). The developed model well simulated the species-specific growth patterns of hydrophytes depending on the nutrient exposure level as well as the N and P dynamics in the water and sediment layers. The approach adopted in this study provides a useful tool for discovering candidate species to improve hydrophyte diversity and effectively remove nutrients from aquatic ecosystems.
Collapse
Affiliation(s)
- Yongeun Kim
- Ojeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Yun-Sik Lee
- Ojeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - June Wee
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinsol Hong
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minyoung Lee
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Jae Bae
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kijong Cho
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|