1
|
Wang Y, Bing Z, Zhao Q, Wang K, Wei L, Jiang J, Ding J, Jiang M, Xue R. Synthesis of MnFe 2O 4-biochar with surficial grafting hydroxyl for the removal of Cd(II)-Pb(II)-Cu(II) pollutants: Competitive adsorption, application prospects and binding orders of functional groups. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124280. [PMID: 39864154 DOI: 10.1016/j.jenvman.2025.124280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/18/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
A novel biochar material with magnetic modification by MnFe2O4 and surficial hydroxyl grafting (h-MFO-BC) was synthesized for capturing HMs (Cd, Pb and Cu) and their competition in composite systems was investigated. The modification of hydroxyl considerably improved the adsorption capacity of HMs. Chemisorption and monolayer and homogeneous reaction dominated adsorption processes. Moreover, a pronounced competitive adsorption effect between HMs was observed in composite systems. The order of selectivity by h-MFO-BC was Pb > Cu ≫ Cd. The distinction in the adsorption of HMs was related to different adsorption pathways and binding sequences of functional groups. Two-dimensional correlation spectroscopy revealed that Pb and Cu preferred to bind to the active sites (Mn/Fe-OH) on h-MFO-BC surface. Moreover, they could generate hydroxide precipitation more easily, which prevented further adsorption of Cd due to the occupation or coverage of binding sites and electrostatic repulsion. Furthermore, h-MFO-BC could be effectively regenerated and recycled and possessed fascinating performance in HMs removal from real water, indicating its potential for widespread applicability. This work provided a novel composite material for the treatment of HMs in wastewater or selective recovery of Pb and Cu and gave a new perspective on understanding the competition mechanisms between HMs on adsorbents.
Collapse
Affiliation(s)
- Yipeng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zetao Bing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ruiyuan Xue
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Liang Z, Xi N, Liu T, Li M, Sang M, Zou C, Chen Z, Yuan G, Pan G, Ma L, Shen Y. A combination of QTL mapping and genome-wide association study revealed the key gene for husk number in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:112. [PMID: 38662228 DOI: 10.1007/s00122-024-04617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
KEY MESSAGE Two key genes Zm00001d021232 and Zm00001d048138 were identified by QTL mapping and GWAS. Additionally, they were verified to be significantly associated with maize husk number (HN) using gene-based association study. As a by-product of maize production, maize husk is an important industrial raw material. Husk layer number (HN) is an important trait that affects the yield of maize husk. However, the genetic mechanism underlying HN remains unclear. Herein, a total of 13 quantitative trait loci (QTL) controlling HN were identified in an IBM Syn 10 DH population across different locations. Among these, three QTL were individually repeatedly detected in at least two environments. Meanwhile, 26 unique single nucleotide polymorphisms (SNPs) were detected to be significantly (p < 2.15 × 10-6) associated with HN in an association pool. Of these SNPs, three were simultaneously detected across multiple environments or environments and best linear unbiased prediction (BLUP). We focused on these environment-stable and population-common genetic loci for excavating the candidate genes responsible for maize HN. Finally, 173 initial candidate genes were identified, of which 22 were involved in both multicellular organism development and single-multicellular organism process and thus confirmed as the candidate genes for HN. Gene-based association analyses revealed that the variants in four genes were significantly (p < 0.01/N) correlated with HN, of which Zm00001d021232 and Zm00001d048138 were highly expressed in husks and early developing ears among different maize tissues. Our study contributes to the understanding of genetic and molecular mechanisms of maize husk yield and industrial development in the future.
Collapse
Affiliation(s)
- Zhenjuan Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Na Xi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Minglin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxiang Sang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Yan X, Liu W, Wen S, Wang L, Zhu L, Wang J, Kim YM, Wang J. Effect of sulfamethazine on the horizontal transfer of plasmid-mediated antibiotic resistance genes and its mechanism of action. J Environ Sci (China) 2023; 127:399-409. [PMID: 36522071 DOI: 10.1016/j.jes.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 06/17/2023]
Abstract
As a new type of environmental pollutant, antibiotic resistance genes (ARGs) pose a huge challenge to global health. Horizontal gene transfer (HGT) represents an important route for the spread of ARGs. The widespread use of sulfamethazine (SM2) as a broad-spectrum bacteriostatic agent leads to high residual levels in the environment, thereby increasing the spread of ARGs. Therefore, we chose to study the effect of SM2 on the HGT of ARGs mediated by plasmid RP4 from Escherichia coli (E. coli) HB101 to E. coli NK5449 as well as its mechanism of action. The results showed that compared with the control group, SM2 at concentrations of 10 mg/L and 200 mg/L promoted the HGT of ARGs, but transfer frequency decreased at concentrations of 100 mg/L and 500 mg/L. The transfer frequency at 200 mg/L was 3.04 × 10-5, which was 1.34-fold of the control group. The mechanism of SM2 improving conjugation transfer is via enhancement of the mRNA expression of conjugation genes (trbBP, trfAP) and oxidative stress genes, inhibition of the mRNA expression of vertical transfer genes, up regulation of the outer membrane protein genes (ompC, ompA), promotion of the formation of cell pores, and improvement of the permeability of cell membrane to promote the conjugation transfer of plasmid RP4. The results of this study provide theoretical support for studying the spread of ARGs in the environment.
Collapse
Affiliation(s)
- Xiaojing Yan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Wenwen Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Shengfang Wen
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Korea
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
4
|
Zhu B, Jia E, Zhang Q, Zhang Y, Zhou H, Tan Y, Deng Z. Titanium Surface-Grafted Zwitterionic Polymers with an Anti-Polyelectrolyte Effect Enhances Osteogenesis. Colloids Surf B Biointerfaces 2023; 226:113293. [PMID: 37028232 DOI: 10.1016/j.colsurfb.2023.113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Zwitterionic polymers have attracted considerable attention because of their anti-adsorption and unique anti-polyelectrolyte effects and was widely used in surface modification. In this study, zwitterionic copolymers (poly (sulfobetaine methacrylate-co-butyl acrylate) (pSB) coating on the surface of a hydroxylated titanium sheet using surface-initiated atom transfer radical polymerization (SI-ATRP) was successfully constructed. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and Water contact angle (WCA) analysis proved the successful preparation of the coating. The swelling effect caused by the anti-polyelectrolyte effect was reflected in the simulation experiment in vitro, and this coating can promote the proliferation and osteogenesis of MC3T3-E1. Therefore, this study provides a new strategy for designing multifunctional biomaterials for implant surface modifications.
Collapse
Affiliation(s)
- Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Erna Jia
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China.
| | - Qimeng Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, PR China
| | - Yanyan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hua Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China
| | - Ying Tan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China.
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
5
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
6
|
Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Zhao Y, Zhao C, Yang Y, Li Z, Qiu X, Gao J, Ji M. Adsorption of sulfamethoxazole on polypyrrole decorated volcanics over a wide pH range: Mechanisms and site energy distribution consideration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Jian N, Dai Y, Liu LE, Wu D, Wu Y. Preparation of molecularly imprinted resin/polydopamine nanofibers mat for the highly efficient extraction and determination of sulfonamides in environmental water. Mikrochim Acta 2021; 188:405. [PMID: 34731318 DOI: 10.1007/s00604-021-05069-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
With polyacrylonitrile nanofibers mat (PAN NFsM) as a template, molecularly imprinted resin/polydopamine nanofibers mat (MIR/PDA NFsM) was synthesized for the extraction of sulfonamides (SAs) in water. The specific surface area and pore volume were increased obviously due to the functionalization of MIR. The adsorption efficiencies of MIR/PDA NFsM under optimized conditions for SAs were 92.3-99.3%. Possible adsorption mechanisms of imprinting recognition and hydrogen bond interactions were also put forward. Compared with MIR particles, the MIR/PDA NFsM exhibited much superior adsorption performance. Particularly, the outstanding mass transfer efficiency of MIR/PDA NFsM was much higher than the other reported adsorbents for SAs. Finally, a new method based on the solid-phase extraction (SPE) of MIR/PDA NFsM was successfully developed for the detection of five SAs in environmental water with HPLC-MS/MS and applied to the analysis of actual samples. Under the selected conditions, the enrichment factors of MIR/PDA NFsM of SCP, SMT, SMZ, SMR, and SMX were between 23.0 and 25.0. Low detection limits (0.26-0.76 ng L-1), broad linear range (1.0 ng L-1 to 10.0 μg L-1), and satisfactory recoveries (82.8-115.6%) and precisions (RSDs < 7.2%) were obtained. Moreover, the excellent reusability properties and storage stability endowed MIR/PDA NFsM with great value for practical applications.
Collapse
Affiliation(s)
- Ningge Jian
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yuanyuan Dai
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-E Liu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongjun Wu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
A Comprehensive Characterization of Different Fractions of Corn Stover and Their Relationships to Multipollutant Sorption Characteristics. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9988938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Corn stover (CS) is mainly composed of three parts: pith (CSP), rind (CSR), and leaf (CSL). These parts have different lignocellulosic constituents and structural properties. Herein, biosorbents derived from individual corn stover constituents were prepared in an effort to determine the significance of each constituent for multipollutant removal. In this study, SEM, BET, XRD, FTIR, XPS, fibre composition, and contact angle measurements were used to characterize and analyse the physical and chemical properties of the three components of CS and to study their adsorption effects, adsorption isotherms, and kinetics. The lignocellulosic compositions of CSP and CSR were similar, the cellulose content in CSP and CSR was significantly higher than that in CSL, and the hemicellulose content of CSL was much higher than those of CSP and CSR. The minimum lignin content was found in CSP, and the maximum lignin content was found in CSR. The results show that each component had a certain adsorption effect on typical organic pollutants (antibiotics, oils, and dyes). CSP had the strongest oil adsorption capacity, CSR was more suitable for adsorbing antibiotics, and CSL had outstanding adsorption capacity for dye. The pseudo-second-order model and the Langmuir adsorption isotherm model could describe the adsorption processes well, and they consisted of monolayer adsorption accompanied by chemical adsorption reactions. The focus of this study was to provide references for selecting effective adsorbent precursors to remove organic pollutants from wastewater.
Collapse
|