1
|
Wang S, Yan Y, Zhang J, Yang J, Chai F, Li S. Enhancing removal performance of ortho xylene by adding polydimethylsiloxane into two-stage biofilter. BIORESOURCE TECHNOLOGY 2024; 414:131625. [PMID: 39414165 DOI: 10.1016/j.biortech.2024.131625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
A two-stage biofilter was built, augmented with polydimethylsiloxane (PDMS), to enhance the degradation of ortho xylene (o-xylene), and evaluate the feasibility of different PDMS concentrations for improving the removal effect. The results showed that PDMS concentration of 0.50 % significantly enhanced the purification efficiency and mineralization rate of o-xylene to 85(±1)% and 81 %, respectively. Simultaneously, the surface tension of the circulating liquid was reduced by 31.91 mN/m. Furthermore, the polysaccharide concentration of biofilters were increased by 6.90 mg/g and 7.38 mg/g, respectively, while the protein concentration was enhanced by 7.98 mg/g and 9.29 mg/g, respectively. It is worth noting that Sphingomonas and Sphingobium emerged as the dominant bacterial genera after intensification. Fusarium and Cladosporium became the predominant fungal genera in BTF1 and BTF2, respectively. Therefore, the two-stage biofilter containing bacteria and fungi combined with the addition of PDMS can effectively improve the degradation effect.
Collapse
Affiliation(s)
- Shu Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxi Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Jing Zhang
- Minquan County Water Conservancy Bureau, Minquan County People's Government, Shangqiu 476000, China
| | - Jiao Yang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Fengguang Chai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Shunyi Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Lv JA, Tang ZL, Liu YH, Zhao RC, Xie LH, Liu XM, Li JR. Interior and Exterior Surface Modification of Zr-Based Metal-Organic Frameworks for Trace Benzene Removal. Inorg Chem 2024; 63:4249-4259. [PMID: 38364203 DOI: 10.1021/acs.inorgchem.3c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The emission of volatile organic compounds (VOCs) significantly contributes to air pollution and poses a serious threat to human health. Benzene, one of the most toxic VOCs, is difficult for the human body to metabolize and is classified as a Group 1 carcinogen. The development of efficient adsorbents for removing trace amounts of benzene from ambient air is thus of great importance. In this work, we studied the benzene adsorption properties of four Zr-based metal-organic frameworks (Zr-MOFs) through static volumetric and dynamic breakthrough experiments. Two previously reported Zr-MOFs, BUT-12 and STA-26, were prepared with a tritopic carboxylic acid ligand (H3L1) functionalized with three methyl groups, and STA-26 is a 2-fold interpenetrated network of BUT-12. Two new isoreticular Zr-MOFs, BUT-12-Et and STA-26-Et, were synthesized using a similar ligand, H3L2, where the methyl groups are replaced with ethyl groups. There are mesopores in BUT-12 and BUT-12-Et and micropores in STA-26 and STA-26-Et. The four Zr-MOFs all showed high stability in liquid water and acidic aqueous solutions. The microporous STA-26 and STA-26-Et showed much higher benzene uptakes than mesoporous BUT-12 and BUT-12-Et at room temperature under low pressures. Particularly, the benzene adsorption capacity of STA-26-Et was high up to 2.21 mmol/g at P/P0 = 0.001 (P0 = 12.78 kPa), higher than those of the other three Zr-MOFs and most reported solid adsorbents. Breakthrough experiments confirmed that STA-26-Et could effectively capture trace benzene (10 ppm) from dry air; however, its benzene capture capacity was reduced by 90% under humid conditions (RH = 50%). Coating of the crystals of STA-26-Et with polydimethylsiloxane (PDMS) increased the hydrophobicity of the exterior MOF surfaces, leading to a more than 2-fold improvement in its benzene capture capacity in the breakthrough experiment under humid condition. PDMS coating of STA-26-Et likely slowed down the water adsorption process, and thus, the adsorbent afforded more efficient capture of benzene. This work demonstrates that modifying both the interior and exterior surfaces of MOFs can effectively enhance their performance in capturing trace benzene from ambient air, even under humid conditions. This finding is meaningful for the development of new adsorbents for effective air purification applications.
Collapse
Affiliation(s)
- Jia-Ao Lv
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhen-Ling Tang
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yu-Hui Liu
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Rui-Chao Zhao
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiao-Min Liu
- Institute of Circular Economy, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Park S, Lee JI, Na CK, Kim D, Kim JJ, Kim DY. Evaluation of the adsorption performance and thermal treatment-associated regeneration of adsorbents for formaldehyde removal. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:131-144. [PMID: 38059786 DOI: 10.1080/10962247.2023.2292205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Indoor air pollution remains a major concern, with formaldehyde (HCHO) a primary contributor due to its long emission period and associated health risks, including skin allergies, coughing, and bronchitis. This study evaluated the adsorption performance and economic efficiency of various adsorbents (biochar, activated carbon, zeolites A, X, and Y) selected for HCHO removal. The impact of thermal treatment on adsorbent regeneration was also assessed. The experimental apparatus featured an adsorption column and HCHO concentration meter with an electrochemical sensor designed for adsorption analysis. Zeolite X exhibited the highest adsorption performance, followed by zeolite A, zeolite Y, activated carbon, and biochar. All adsorbents displayed increased HCHO removal rates with an extended length/diameter (L/D) ratio of the adsorption column. Zeolite A demonstrated the highest economic efficiency, followed by zeolite X, activated carbon, zeolite Y, and biochar. Higher L/D ratios improved economic efficiency and prolonged the replacement cycle (the optimal timing for adsorbent replacement to maintain high adsorption performance). Sensitivity analysis of adsorbent regeneration under varying thermal treatment conditions (150, 120, and 80°C) and durations (60, 45, and 30 min) revealed minimal changes in adsorption efficiency (±3%). The results indicated the potential of adsorbent regeneration under energy-efficient thermal treatment conditions (80°C, 30 min). In conclusion, this study underscores the importance of a comprehensive assessment, considering factors such as adsorption performance, replacement cycle, economic efficiency, and regeneration performance for the selection of optimal adsorbents for HCHO adsorption and removal.Implications: This study underscores the importance of adsorption technology for the removal of formaldehyde and similar volatile organic compounds (VOCs), highlighting the potential of alternative adsorbents, such as environmentally friendly biochar, in addition to traditional strategies, such as activated carbon and zeolites. Our findings demonstrate the feasibility of adsorbent regeneration under energy-efficient thermal treatment conditions. These results hold promise for improving indoor air quality, reducing environmental pollutants, and enhancing responses to air contaminants like fine dust and VOCs.
Collapse
Affiliation(s)
- Seri Park
- Department of Environmental Engineering, Mokpo National University, Muan, Republic of Korea
- Koenlife Inc, Gwangju, Republic of Korea
| | - Jeong-In Lee
- Department of Environmental Engineering, Mokpo National University, Muan, Republic of Korea
| | - Choon-Ki Na
- Department of Environmental Engineering, Mokpo National University, Muan, Republic of Korea
| | - Daegi Kim
- Department of Environmental Technology Engineering, Daegu University, Kyeongsan, Republic of Korea
| | - Jae-Jin Kim
- Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, Republic of Korea
| | - Do-Yong Kim
- Department of Environmental Engineering, Mokpo National University, Muan, Republic of Korea
| |
Collapse
|
4
|
Ding H, Xue L, Cui J, Wang Y, Zhao D, Zhi X, Liu R, Fu J, Liu S, Fu B, Shi J, Xu X, Li GK. Catalytic degradation of benzene at room temperature over FeN 4O 2 sites embedded in porous carbon. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132520. [PMID: 37703730 DOI: 10.1016/j.jhazmat.2023.132520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Benzene and its aromatic derivatives are typical volatile organic compounds for indoor and outdoor air pollution, harmful to human health and the environment. It has been considered extremely difficult to break down benzene rings at ambient conditions without external energy input, due to the extraordinary stability of the aromatic structure. Here, we show one such solution that can thoroughly degrade benzene to basically water and carbon dioxide at 25 °C in air using atomically dispersed Fe in N-doped porous carbon, with almost 100% benzene conversion. Further experimental studies combined with molecular simulations reveal the mechanism of this catalytic reaction. Hydroxyl radicals (·OH) evolved on the atomically dispersed FeN4O2 catalytic centers were found responsible for initiating and completing the oxidation of benzene. This work provides a new chemistry to degrade aromatics at ambient conditions and also a pathway to generate active ·OH oxidant for generic remediation of organic pollutants.
Collapse
Affiliation(s)
- Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| | - Lingxiao Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, China
| | - Jiahao Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yongqiang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Dan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xing Zhi
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jianfeng Fu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Bingfeng Fu
- Shenzhen Yuanqi Environmental Energy Technology Co., Ltd., Futian District, Shenzhen, China
| | - Jiahui Shi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Ximeng Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Gang Kevin Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
Wang R, Luan X, Yaseen M, Bao J, Li J, Zhao Z, Zhao Z. Swellable Array Strategy Based on Designed Flexible Double Hypercross-linked Polymers for Synergistic Adsorption of Toluene and Formaldehyde. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6682-6694. [PMID: 37053562 DOI: 10.1021/acs.est.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
High-capacity adsorption and removal of complex volatile organic compounds (VOCs) from real-world environments is a tough challenge for researchers. Herein, a swellable array adsorption strategy was proposed to realize the synergistic adsorption of toluene and formaldehyde on the flexible double hypercross-linked polymers (FD-HCPs). FD-HCPs exhibited multiple adsorption sites awarded by a hydrophobic benzene ring/pyrrole ring and a hydrophilic hydroxyl structural unit. The array benzene ring, hydroxyl, and pyrrole N sites in FD-HCPs effectively captured toluene and formaldehyde molecules through π-π conjugation and electrostatic interaction and weakened their mutual competitive adsorption. Interestingly, the strong binding force of toluene molecules to the skeleton deformed the pore structure of FD-HCPs and generated new adsorption microenvironments for the other adsorbate. This behavior significantly improved the adsorption capacity of FD-HCPs for toluene and formaldehyde by 20% under multiple VOCs. Moreover, the pyrrole group in FD-HCPs greatly hindered H2O molecule diffusion in the pore, thus efficiently weakening the competitive adsorption of H2O toward VOCs. These fascinating properties enabled FD-HCPs to achieve synergistic adsorption for multicomponent VOC vapor under a highly humid environment and overcame single-species VOC adsorption properties on state-of-the-art porous adsorbents. This work provides the practical feasibility of synergistic adsorption to remove complex VOCs in real-world environments.
Collapse
Affiliation(s)
- Ruimeng Wang
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xinqi Luan
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Muhammad Yaseen
- Institute of Chemical Science, University of Peshawar, Peshawar 25120, KP, Pakistan
| | - Jingyu Bao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jing Li
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhongxing Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Azizi M, Abdulrahman YJ, Abdessamad NH, Azzaz AA, Naguib DM. Valorization and characterization of bio-oil from Salvadora persica seed for air pollutant adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53397-53410. [PMID: 36854946 DOI: 10.1007/s11356-023-25566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Salvadora persica (SP) is an important medicinal plant. Numerous articles have been conducted on the leaf, the roots, and the stem of the plant, but there is little information about the seed. Thus, the present work tries to identify the chemical composition of SP seed bio-oil and investigates its use as an adsorbent for cyclohexane removal. This study extracted bio-oil from seeds using different polar and non-polar organic solvents. Two techniques have been used to determine the chemical composition of the bio-oil extracted: FTIR and GC-MS. Results show that the extracted bio-oil presented 13 new major organic bio-compounds in n-hexane and ethanol SP seed extracts. Moreover, the analytical results showed that the two extracts are complex and contained thiocyanic acid, benzene, 3-pyridine carboxaldehyde, benzyl nitrile, ethyl tridecanoate, ethyl oleate, and dodecanoic acid ethyl ester. Additionally, each technique of analysis showed that the extracted bio-oils from SP seeds are rich in non-polar compounds. Indeed, the major fatty acids obtained are pentadecylic acid, myristic acid, lauric acid, oleic acid, margaric acid, and tricosanoic acid. This work provides guidelines for identifying these compounds, among others, and offers a platform for using SP seeds as a herbal alternative for various chemical, industrial, and medical applications. Furthermore, the capacity of SP extracts for air pollution treatment, namely, the removal of cyclohexane in batch mode, was investigated. Results showed that cyclohexane adsorption could be a chemical process involving both monolayer and multilayer adsorption mechanisms. The pores and the grooves on the surface of the SP bio-oil extract helped in adsorbing the cyclohexane with an outstanding maximum removal capacity of about 674.23 mg/g and 735.75 mg/g, respectively, for the ethanol and hexane SP extracts, which is superior to many other recent adsorbents.
Collapse
Affiliation(s)
- Mohamed Azizi
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia.
- Laboratory Desalination and Water Treatment Valorisation (LaDVEN), Water Research and Technologies Center (WRTC), BP 273, 8020, Soliman, Tunisia.
| | - Yousif Jumaa Abdulrahman
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- College of Science Elobied, University of Kordofan, El Obeid, Sudan
| | - NourEl-Houda Abdessamad
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- Laboratory of Wastewater and Environment, Center for Water Research and Technologies (CWRT), BP 273-8020, Soliman, Tunisia
| | - Ahmed Amine Azzaz
- Environnements Dynamiques Et Territoires de La Montagne, Université Savoie Mont-Blanc, EDYTEM, Boulevard de La Mer Caspienne, 73370, Le Bourget-du-Lac, France
| | - Deyala M Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Biology Department, Faculty of Science and Arts in Qilwah, Albaha University (BU), Qilwah, Saudi Arabia
| |
Collapse
|
7
|
Bao T, Jing Y, Wang H, Shan R, Wang N. Using Waste Tire-Derived Particles to Remove Benzene and n-Hexane by Dynamic and Static Adsorption. ACS OMEGA 2023; 8:4899-4905. [PMID: 36777605 PMCID: PMC9909788 DOI: 10.1021/acsomega.2c07203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Scrap tire rubber particles were used and evaluated to adsorb some gaseous volatile organic compounds (VOCs), such as benzene and n-hexane. The results present that the adsorption capacities were 0.18 and 0.072 mg/g for n-hexane and benzene, respectively, in the static adsorption mode; the effective adsorption may be attributed to the carbon black of the tire. The adsorption process is in accordance with the Freundlich isothermal model and Lagergren pseudo-first-order kinetic equation. Correspondingly, the adsorption process is multilayer adsorption analyzed by the intramolecular diffusion model. In the dynamic adsorption mode, the maximum adsorption efficiencies of n-hexane and benzene were 80.7 and 81%, respectively, at flow velocities of 0.1 L/min n-hexane and 0.2 L/min benzene.
Collapse
Affiliation(s)
- Tonghui Bao
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, P.R.
China
| | - Yuming Jing
- School
of Environment Science and Engineering, Shandong University, Qingdao266237, P.R. China
- Shandong
Huankeyuan Environmental Engineering Co., Ltd, Jinan250013, P.R.
China
| | - Hongbo Wang
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, P.R.
China
- Resources
and Environment Innovation Institute, Shandong
Jianzhu University, Jinan250101, P.R. China
| | - Rui Shan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, P.R. China
| | - Ning Wang
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan250101, P.R.
China
- Resources
and Environment Innovation Institute, Shandong
Jianzhu University, Jinan250101, P.R. China
| |
Collapse
|
8
|
Wang R, Luan X, Bao J, Muhammad Y, Jalil Shah S, Wang G, Li J, Lin G, Ji H, Zhao Z. Cr-N bridged MIL-101@tubular calcined N-doped polymer enhanced adsorption of vaporous toluene under high humidity. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Yu S, Wang X, Liu F, Xiao K, Kang C. Adsorption of acetone, ethyl acetate and toluene by beta zeolite/diatomite composites: preparation, characterization and adsorbability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80646-80656. [PMID: 35723824 DOI: 10.1007/s11356-022-21308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The hierarchical porous composites (Beta/Dt) were prepared by secondary growth method using natural diatomite and beta zeolite. Moreover, XRD, SEM, and BET characterize the composite's composition, surface structure, and pore structure. The adsorbability of Beta/Dt was evaluated by adsorption of three common volatile organic compounds (VOCs) of the printing industry: acetone, ethyl acetate, and toluene. The results show that under the optimum preparation condition, the adsorption capacities of the three VOCs on Beta/Dt were about 3.5 times those of pure beta zeolite and 4.7-35.3 times those of diatomite, respectively. It indicates the synergistic adsorption effect between beta zeolite and diatomite. The superior adsorption capacity of Beta/Dt can be attributed to the suitable micropore size, the increase of the diffusion channels, and the chemical adsorption on modification diatomite. The adsorption of acetone, ethyl acetate, and toluene on Beta/Dt conformed to the pseudo-second-order kinetic model. In contrast, adsorption isotherms conformed to the Langmuir model, meaning that both physical and chemical adsorption occurred simultaneously during the adsorption process, and the adsorption belonged to the monolayer adsorption. The chemical adsorption mechanism can be ascribed to the nucleophilic reaction between the three VOCs (acetone, ethyl acetate, and toluene) and Beta/Dt with positive charges resulting from the modification diatomite. Furthermore, the composite could still keep more than 90% of the adsorption capacity of the original adsorbent after five regeneration cycles.
Collapse
Affiliation(s)
- Shuyi Yu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Xiaoyu Wang
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Fang Liu
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Kunkun Xiao
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Chunli Kang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
- College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| |
Collapse
|
10
|
Tang Q, Deng W, Chen D, Liu D, Guo L. Comparative studies on the VOC sorption performances over hierarchical and conventional ZSM-5 zeolites. Dalton Trans 2021; 50:16694-16702. [PMID: 34761767 DOI: 10.1039/d1dt02869c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sorption behaviors of hexane, toluene and mesitylene as probe volatile organic compounds (VOCs) over hierarchical and conventional zeolite ZSM-5 were investigated by a series of experiments, such as dynamic adsorption, temperature-programmed desorption and cycle adsorption tests. The results showed that hierarchical ZSM-5 exhibited better adsorption capacity for toluene and mesitylene, better diffusion of VOCs and superior cycle adsorption efficiency. As we believe, these findings will offer valuable information for the development of zeolite based adsorbents for VOC elimination or recycling.
Collapse
Affiliation(s)
- Qianxi Tang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Wei Deng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Donghang Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Dongqi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Limin Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
11
|
Yu H, Lin F, Li K, Wang W, Yan B, Song Y, Chen G. Triple combination of natural microbial action, etching, and gas foaming to synthesize hierarchical porous carbon for efficient adsorption of VOCs. ENVIRONMENTAL RESEARCH 2021; 202:111687. [PMID: 34273370 DOI: 10.1016/j.envres.2021.111687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Fungi residue, vinasse, and biogas residue differ from general biomass waste due to natural microbial action. Microbial fermentation helps create natural channels for the permeation of activators and produces proteins for natural nitrogen doping. Inspired by these advantages on porous carbon synthesis, this study adopted dual activators of KOH and KHCO3 to synthesize porous carbon with different pore ratios for efficient adsorption of volatile organic compounds (VOCs). The fungi residue possessed the least lignin due to the most severe microbial action, contributing to the best pore structures after activation. The etching effect from potassium compounds and gas foaming from the carbonate decomposition contributed to creating hierarchical porous carbon with ultra-high surface area, ca. 1536.8-2326.5 m2/g. However, KHCO3 addition also caused nitrogen erosion, such that lower adsorption capacity was attained even with a higher surface area when the mass ratio of KOH/KHCO3 decreased from 2.5:0.5 to 2:1. The maximum adsorption capacities of chlorobenzene (CB) and benzene (PhH) reached 594.0 and 394.3 mg/g, respectively. Pore structure variations after adsorption were evaluated by freeze treatment to discover the adsorption mechanism. The surface area after CB and PhH adsorption decreased 40.3% and 34.5%, respectively. Most of the mesopores might transform into micropores due to the mono/multilayer stacking of adsorbates. The VOC adsorption kinetics were simulated by the Pseudo-first- and -second-order models and Y-N model. This paper provides a new approach for high-value biomass waste utilization after microbial action to synthesize efficient adsorbents for VOCs.
Collapse
Affiliation(s)
- Hongdi Yu
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, PR China
| | - Fawei Lin
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, PR China.
| | - Kai Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, PR China
| | - Wenjun Wang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, PR China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, PR China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, PR China
| |
Collapse
|
12
|
Ma X, Wang W, Sun C, Li H, Sun J, Liu X. Adsorption performance and kinetic study of hierarchical porous Fe-based MOFs for toluene removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148622. [PMID: 34328958 DOI: 10.1016/j.scitotenv.2021.148622] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
In light of the promising merits of large surface area, uniform pore size, and tunable functional groups, metal-organic frameworks (MOFs) have great potential to be utilized for adsorbing volatile organic compounds (VOCs). In this study, three Fe-based MOFs, MIL-100(Fe), MIL-101(Fe), and MIL-53(Fe), were synthesized systematically and used to adsorb a typical VOC, toluene. Static adsorption, dynamic breakthrough curves, and adsorption kinetics were conducted to assess the adsorption performance. Additionally, the surface functional groups, pore structure, and morphology were systematically characterized by means of XRD, SEM, XPS, FTIR and N2 adsorption-desorption analyses to reveal the cause of the difference in adsorption of these Fe-based MOFs. The results revealed that the maximum equilibrium adsorption capacity of 663 mg/g was achieved by MIL-100(Fe) with the highest specific surface area and pore volume. The dynamic adsorption of toluene on MIL-100(Fe) was in accordance with the pseudo-first order kinetic model and the Langmuir isothermal model. The formed π-π stacking interaction between organic ligands and the benzene ring in the MIL-100(Fe) cluster is the primary adsorption mechanism based on XPS analysis. Moreover, MIL-100(Fe) was easily regenerated via microwave irradiation with a negligible adsorption capacity decrease after three cycles. This work highlights the feasibility of hierarchical porous Fe-based MOFs as toluene adsorbents and promotes the application of MOFs in the field of pollution control.
Collapse
Affiliation(s)
- Xiaoling Ma
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Wenlong Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, PR China.
| | - Chenggong Sun
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Hui Li
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jing Sun
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Xin Liu
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
13
|
Liu H, Wang L, Zhang J, Liang X, Long C. Mechanistic insights into and modeling the effects of relative humidity on low-concentration VOCs adsorption on hyper-cross-linked polymeric resin by inverse gas chromatography. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126335. [PMID: 34329011 DOI: 10.1016/j.jhazmat.2021.126335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Water vapor is very common in contaminated streams, which has a great influence on the adsorption of low-concentration volatile organic compounds (VOCs) due to the competition between water and VOCs. Understanding adsorption mechanisms and predicting adsorption of VOCs under different relative humidity (RH) are of great importance to design effective adsorption unit. In this study, we comprehensively investigated the effects of RH on the surface properties of hyper-cross-linked polymeric resin (HPR) and adsorption of 18 VOCs at low concentration on HPR under five levels of RH using inverse gas chromatography (IGC). Further, a promising RH-dependent poly-parameter linear free energy relationships (PP-LFERs) model was developed. It was found that water vapor caused the decrease of surface free energy (γst) of HPR due to the occupation of active sites by water molecules, resulting in the decrease of adsorption partition coefficients (K). Moreover, the γst could accurately quantify the effects of RH on the surface properties of HPR. Therefore, the RH-dependent PP-LFERs model was established by correlating RH and γst. The developed model overcame the limited predictive ability of existing models only under a specific RH level, and excellently predicted the lnK values of VOCs (R2 = 0.944, RMSEt = 0.36 and RMSEv = 0.47) under various RH.
Collapse
Affiliation(s)
- Huijuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lisha Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoshan Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou 362000, China.
| |
Collapse
|