1
|
Zhu L, Hajeb P, Fauser P, Vorkamp K. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162374. [PMID: 36828075 DOI: 10.1016/j.scitotenv.2023.162374] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Several chemicals with widespread consumer uses have been identified as endocrine-disrupting chemicals (EDCs), with a potential risk to humans. The occurrence in indoor dust and resulting human exposure have been reviewed for six groups of known and suspected EDCs, including phthalates and non-phthalate plasticizers, flame retardants, bisphenols, per- and polyfluoroalkyl substances (PFAS), biocides and personal care product additives (PCPs). Some banned or restricted EDCs, such as polybrominated diphenyl ethers (PBDEs), di-(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are still widely detected in indoor dust in most countries, even as the predominating compounds of their group, but generally with decreasing trends. Meanwhile, alternatives that are also potential EDCs, such as bisphenol S (BPS), bisphenol F (BPF), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs), and PFAS precursors, such as fluorotelomer alcohols, have been detected in indoor dust with increasing frequencies and concentrations. Associations between some known and suspected EDCs, such as phthalate and non-phthalate plasticizers, FRs and BPs, in indoor dust and paired human samples indicate indoor dust as an important human exposure pathway. Although the estimated daily intake (EDI) of most of the investigated compounds was mostly below reference values, the co-exposure to a multitude of known or suspected EDCs requires a better understanding of mixture effects.
Collapse
Affiliation(s)
- Linyan Zhu
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| | - Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Patrik Fauser
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| |
Collapse
|
2
|
Shi Y, Wan Y, Wang Y, Li Y, Xu S, Xia W. Fipronil and its transformation products in the Yangtze River: Assessment for ecological risk and human exposure. CHEMOSPHERE 2023; 320:138092. [PMID: 36758817 DOI: 10.1016/j.chemosphere.2023.138092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Fipronil (FP), a phenylpyrazole insecticide, is widely used in agricultural, residential, and veterinary settings. It is toxic to ecosystems and humans; moreover, some of its transformation products are more toxic than FP. A comprehensive profile of the contamination of the Yangtze River by FP and its transformation products (FPs) is not yet available. This study aims to fill this data gap. A total of 144 water samples were collected from 72 sampling locations along the river during the wet (June 2021) and dry (December 2020) seasons. High detection rates (85.4-91.7%) of FPs were found, with ΣFPs' median concentration of 0.49 ng/L. The parent compound FP was the most abundant (median: 0.13 ng/L), followed by FP-desulfinyl (0.08), FP-sulfone (0.07), FP-detrifluoromethylsulfinyl (DTF, 0.07), FP-sulfide (0.06) and FP-amide (0.06). Their concentrations increased significantly from the upper to the lower reaches; for approximately every 100 km toward the lower reaches, the level of FPs increased by 13-15%. The urban region and wet season had the higher FPs contamination. Through water ingestion, the human exposure risk posed by FPs in the river was acceptable; however, the ecological risk assessment showed a moderate to high risk posed by FPs. Follow-up studies are warranted to establish integrated ecological risk assessment models and conduct epidemiological risk assessments among population groups with high exposure levels of FPs. Given the high ecological risk of FPs, regular monitoring of them in the Yangtze River is necessary. FP-DTF was reported in surface water for the first time.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430024, China.
| | - Yan Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Xia X, Zheng Y, Tang X, Zhao N, Wang B, Lin H, Lin Y. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances in Cord Blood Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17061-17069. [PMID: 36343112 DOI: 10.1021/acs.est.2c04820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) can penetrate the placental barrier and reach embryos through cord blood, probably causing adverse birth outcomes. Therefore, novel PFASs identification in cord blood and their relationships with birth outcomes are essential to evaluate prenatal exposure risk of PFASs. Herein, 16 legacy and 12 novel PFASs were identified in 326 cord blood samples collected from pregnant women in Jinan, Shandong, China. The presence of perfluoropolyether carboxylic acids, hydrogen-substituted polyfluoroetherpropane sulfate, and 3:3 chlorinated polyfluoroalkyl ether alcohol in cord blood was reported for the first time. Two extensive OECD (Organization for Economic Co-operation and Development)-defined PFASs named fipronil sulfone and 2-chloro-6-(trifluoromethyl)pyridine-3-ol were also identified. Quantification results showed that the emerging and OECD-defined PFASs separately accounted for 9.4 and 9.7% of the total quantified PFASs, while the legacy PFOA, PFOS, and PFHxS were still the most abundant PFASs with median concentrations of 2.12, 0.58, and 0.37 ng/mL, respectively. Several PFASs (C9-C12 PFCAs, C6-C8 PFSAs, and 6:2 Cl-PFESA) showed significantly higher levels for older maternities than younger ones. PFHxS levels were positively associated with birth weight and ponderal index (p < 0.05). The results provide comprehensive information on the presence and exposure risks of several novel PFASs during the early life stage.
Collapse
Affiliation(s)
- Xiaowen Xia
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao266071, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Bing Wang
- Biomedical Centre, Qingdao University, Qingdao266071, China
| | - Huan Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao266071, China
| |
Collapse
|
4
|
Insights into the toxicity and biodegradation of fipronil in contaminated environment. Microbiol Res 2022; 266:127247. [DOI: 10.1016/j.micres.2022.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
5
|
Ren J, Liu Z, Li S, Zhu F, Li L, Zhao Y, Chen D, Zhou Y, Wu Y. Occurrence, fate, and probabilistic risk assessment of fipronil residues in Chinese tea. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Abdelhafez HEDH, Abdallah AA, El-Dahshan AA, Abd El-Baset YA, Morsy OM, Ahmed MBM. Ameliorative effects of the phytochemicals in dates (Phoenix dactylifera) against the toxicological changes induced by fipronil in male albino rats. Toxicology 2022; 480:153313. [PMID: 36113622 DOI: 10.1016/j.tox.2022.153313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022]
Abstract
Scientific evidence has shown that fipronil induces oxidative stress and genotoxicity. Our study aimed to evaluate the potential oxidation in redox parameters and DNA, as well as determine the protective effect of date extract of increasing resistance to cellular damage. 30 Male albino rats were divided into six groups ( n = 5): 1) control group; 2) treatment group with date extract (1 g/kg B.W.); 3) treatment group with 1/20 LD50 of fipronil; 4) treatment group with 1/40 LD50 of fipronil; 5) treatment group with 1/20 LD50 of fipronil + 1 g/kg date extract; and 6) treatment group with 1/40 LD50 of fipronil + 1 g/kg dates extract. Date extract showed a high content of phenolic compounds and antioxidant properties. Fipronil increased 8-hydroxy-2-deoxyguanosine levels and lipid peroxidation by malondialdehyde but decreased the total antioxidant capacity in plasma. Moreover, glutathione, catalase, and superoxide dismutase levels in the liver and kidney decreased, along with histopathological abnormalities. Additionally, tail moment parameters of liver DNA and micronucleus frequencies in the bone marrow increased. This study showed that fipronil-induced various health hazards in vivo, whereas date extract alleviated the said toxicological effects. However, date extract failed to reduce genotoxicity.
Collapse
Affiliation(s)
- Hossam El Din H Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt.
| | - Amr A Abdallah
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box 12618, Dokki, Giza, Egypt
| | - Asmaa A El-Dahshan
- Department of Zoology Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Yasser A Abd El-Baset
- Department Cotton Chemistry and Textile Fibers, Cotton Research Institute, Agricultural Research Center Giza, Egypt
| | - Osama M Morsy
- Basic and Applied Science Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport (AASTMT), P.O. Box 2033, Cairo, Egypt
| | - Mohamed Bedair M Ahmed
- Department of Food Toxicology and Contaminants, National Research Centre, 33 El-Bohouth St., P.O. Box 12622, Dokki, Cairo, Egypt.
| |
Collapse
|
7
|
Liu J, Wan Y, Jiang Y, Xia W, He Z, Xu S. Occurrence of azole and strobilurin fungicides in indoor dust from three cities of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119168. [PMID: 35306091 DOI: 10.1016/j.envpol.2022.119168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Widespread use of fungicides has raised the concern of exposure to them among the general population. However, there are extremely limited studies reporting the occurrence of fungicides in indoor dust in China. This study aimed to determine ten agricultural fungicides in indoor dust samples collected in three cities of China from 2016 to 2019, assess spatial and seasonal variations, and estimate the related exposure via dust ingestion. Six out of ten fungicides including difenoconazole, prochloraz, tebuconazole, tricyclazole, azoxystrobin, and pyraclostrobin were frequently detected in the dust samples (ranged 65.8-97.7%) and the concentrations of some fungicides showed a strong correlation with each other. Difenoconazole was the most abundant one among the selected fungicides. The highest level of the selected fungicides was observed in the indoor dust collected from Wuhan in summer 2019 (median cumulative concentration of the fungicides: 62.6 ng/g), while the relatively low concentrations of fungicides were found in the dust from Taiyuan (2.08 ng/g). Heavier fungicide contamination was observed in urban districts compared to that in rural districts. Seasonal variations in the fungicide residuals were also identified. The exposure assessment suggested that intake of the selected fungicides via dust ingestion was much lower than dietary intake reported in other studies. This study filled the data gap of fungicide residuals in the indoor dust in China and further studies are needed to identify the sources and determinants of indoor fungicide contamination.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, PR China.
| | - Ying Jiang
- Shenzhen Nanshan Centers for Disease Control and Prevention, Shenzhen, Guangdong, 518054, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
8
|
Liu Z, Chen D, Lyu B, Wu Z, Li J, Zhao Y, Wu Y. Occurrence of Phenylpyrazole and Diamide Insecticides in Lactating Women and Their Health Risks for Infants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4467-4474. [PMID: 35357189 DOI: 10.1021/acs.jafc.2c00824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To investigate the exposure of infants to phenylpyrazole and diamide insecticides during lactation, we collected 3467 breast milk samples of lactating women from 100 cities of 24 provinces in China and prepared 100 pooled samples together city-by-city. Among phenylpyrazole insecticides, fipronil and its metabolites (63-100%) were widely detected in breast milk, with total detection concentrations ranging from 178 to 2947 ng/L (median: 921 ng/L). Among diamide insecticides, chlorantraniliprole and flubendiamide were detected in breast milk, but their detection frequencies (20-85%) and concentration levels (nondetected to 89.9 ng/L) were far lower than those of total fipronils. The average estimated daily intake of infants exposed to total fipronils through breast milk is 209 ng/kg-bw/day by upper-bound scenario evaluation, which is higher than the acceptable daily intake (200 ng/kg-bw/day). This study indicates that infants have far higher exposure levels to fipronil than adults, while exposure levels to other types of phenylpyrazoles and diamide insecticides are low.
Collapse
Affiliation(s)
- Zhibin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
- Nanchang Key Laboratory of Detection and Control of Food Safety, Nanchang Inspection and Testing Center, Nanchang 330096, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zeming Wu
- iPhenome Biotechnology (Yun Pu Kang) Inc., Dalian 116085, China
| | - Jingguang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
9
|
Liu Z, Chen D, Lyu B, Li J, Zhao Y, Wu Y. Exposure to Fipronil Insecticide in the Sixth Total Diet Study - China, 2016-2019. China CDC Wkly 2022; 4:185-189. [PMID: 35356410 PMCID: PMC8930414 DOI: 10.46234/ccdcw2022.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/26/2022] [Indexed: 11/14/2022] Open
Abstract
What is already known about this topic? Fipronil is classified as a "possible human carcinogen" by the United States Environmental Protection Agency. Long-term exposure to fipronil may cause damage to liver, thyroid, and kidney. However, fipronil and its metabolites are ubiquitous in the environment and food. What is added by this report? The dietary intake of fipronil in China was within acceptable levels with low health risk. Eggs were the main dietary intake contributor of fipronil for Chinese adult populations (55.3%), followed by vegetables (30.7%), meats (5.90%), cereals (5.30%), and other food categories contributed less than 2%. What are the implications for public health practice? The study results will help health managers understand the health risk of fipronil, and help to better formulate monitoring plans in foods. It is still necessary to strengthen the monitoring of fipronil in foods, especially animal-derived foods.
Collapse
Affiliation(s)
- Zhibin Liu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
- Nanchang Key Laboratory of Detection and Control of Food Safety, Nanchang Inspection and Testing Center, Nanchang, Jiangxi Province, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
10
|
Liu Z, Chen D, Lyu B, Li J, Zhao Y, Wu Y. Generic Enrichment of Organic Contaminants in Human Biomonitoring: Application in Monitoring Early Life Exposures to Fipronil via Breast Milk. Anal Chem 2022; 94:4227-4235. [PMID: 35229604 DOI: 10.1021/acs.analchem.1c04415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In human biomonitoring, a high-throughput extraction and enrichment method for multiple types of organic contaminants at the part-per-trillion level is critical yet challenging, especially in the limited sample volume. When large-scale sample analysis is involved, low cost is often what we should consider. We describe a generic and straightforward cold-induced liquid-liquid extraction (CI-LLE) strategy to meet this need. Current methods for extracting and enriching organic contaminants from biological samples often require multistep sample processing, including specially tailoring the extraction solvent or adsorbents. This method uses cold-induced phase separation to achieve the extraction and enrichment of studied organic contaminants by adjusting the proportion of acetonitrile/water mixture, so as to integrate the extraction and enrichment in one step without additional reagents and adsorbents. In this study, fipronil insecticide was used as a representative compound to determine the key parameters of CI-LLE. The optimized CI-LLE procedure allowed simultaneous extraction and enrichment of studied organic contaminants, providing excellent enrichment factors (especially for lipophilic organic contaminants). CI-LLE was further applied in monitoring early life exposures of fipronil in 109 breast milk samples. This study provided baseline data on fipronil levels in breast milk samples from China. For infants, exposure to fipronil is of concern. In summary, CI-LLE provides a feasible solution for a generic, efficient, and low-cost preparation of biological samples and promotes high-throughput batch analysis of organic contaminants for large-scale human biomonitoring.
Collapse
Affiliation(s)
- Zhibin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China.,NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China.,Nanchang Key Laboratory of Detection and Control of Food Safety, Nanchang Inspection and Testing Center, Nanchang 330096, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China.,NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China.,NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
11
|
Xu Z, Wan Y, Xia W, Zhou L, Wang A, Shi L, Guo Y, He Z, Xu S, Zhang R. Fipronil and its metabolites in human seminal plasma from Shijiazhuang, north China. CHEMOSPHERE 2022; 289:133238. [PMID: 34896427 DOI: 10.1016/j.chemosphere.2021.133238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Fipronil (FP) is an emerging insecticide which could induce reproductive toxicity in male rats at very low dosage, but the occurrence of FP and its transformation products (FPs) in human seminal plasma and their impacts on human semen quality have not been documented. In this study, FPs including FP, fipronil desulfinyl (FP-DES), fipronil sulfone (FP-SFO), fipronil amide (FP-AM), and fipronil sulfide (FP-SFI), were measured in seminal plasma samples (n = 200), which were collected from Shijiazhuang, north China. The cumulative concentration of FPs (ΣFPs), in the seminal plasma samples ranged from 0.003 to 0.180 ng/mL (median: 0.043 ng/mL). FP-SFO was the major target analyte (median: 0.040 ng/mL), accounting for approximately 42.3-100.0% of the ΣFPs. Significantly higher exposure levels of FPs were found in the overweight or obese group (≥25 kg/m2) vs. the normal BMI group (18.5-25 kg/m2) (ΣFPs: 0.047 vs. 0.033 ng/mL), never smoking group vs. current smoking group (ΣFPs: 0.057 vs. 0.037 ng/mL), and low sexual frequency group (<1 time/week) vs. high sexual frequency group (≥3 times/week) (ΣFPs: 0.048 vs. 0.030 ng/mL). No significant association between FPs and impaired semen quality parameter was found in this study. This is the first time to report FPs' occurrence in human seminal plasma and variations in their concentrations among people with different demographic and behavioral characteristics. Further studies on adverse effects of exposure to FPs on reproductive function are needed.
Collapse
Affiliation(s)
- Ziyuan Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Lisha Shi
- Division of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, PR China.
| | - Yinsheng Guo
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| |
Collapse
|
12
|
Chen D, Li J, Zhao Y, Wu Y. Human Exposure of Fipronil Insecticide and the Associated Health Risk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:63-71. [PMID: 34971309 DOI: 10.1021/acs.jafc.1c05694] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fipronil, as an emerging phenylpyrazole insecticide, is ubiquitous in the environment and food due to its broad spectrum and persistent characteristics, but the research on pathways of human exposure to fipronil and the associated health risk is relatively unclear. In this regard, we summarize potential human exposures to fipronil through ingestion and inhalation, as well as results of human biomonitoring studies. This scientific information will contribute to future assessment of fipronil exposure and subsequent characterization of human health risks. Additionally, this Perspective highlights the lack of epidemiological studies and total diet studies for the general population on fipronil.
Collapse
Affiliation(s)
- Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
13
|
Yang J, Ching YC, Kadokami K. Occurrence and exposure risk assessment of organic micropollutants in indoor dust from Malaysia. CHEMOSPHERE 2022; 287:132340. [PMID: 34826953 DOI: 10.1016/j.chemosphere.2021.132340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Indoor dust is an important source of human exposure to hazardous organic micropollutants (OMPs) because humans spend about 90 % of their time in the indoor environments. This study initially analyzed the concentrations and compositions of OMPs in the dust of different indoor environments from Kuala Lumpur, Malaysia. A total of 57 OMPs were detected and assigned to 7 chemical classes in this study. The total concentration of OMPs ranged from 5980 to 183,000 ng/g, with the median concentration of 46,400 ng/g. Personal care products, organophosphate esters, and pesticides were the dominant groups, with their median concentrations at 12,000, 10,000, and 5940 ng/g, respectively. The concentrations and compositions of influential OMPs varied in different microenvironments, suggesting different sources and usage patterns in the house. Then, the noncarcinogenic and carcinogenic risks of exposure to these substances for diverse age groups were assessed based on the median concentration. Cumulative noncarcinogenic risks of these OMPs via ingestion pathway were estimated to be negligible (1.41 × 10-4 - 1.87 × 10-3). The carcinogenic risks of these OMPs were higher than 10-6 (1.63 × 10-6 - 6.17 × 10-6) and should be noted. Theobromine accounted for more than 89 % of the cumulative cancer risk, implying that the carcinogenic risk of theobromine needs further monitoring in the future. Toddler was the most affected group for cancer risk among all the age groups, regardless of the microenvironments. These findings from this study may provide a benchmark for future efforts to ensure the safety of indoor dust for the local residents.
Collapse
Affiliation(s)
- Jianlei Yang
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| |
Collapse
|
14
|
El-Nahhal I, El-Nahhal Y. Pesticide residues in drinking water, their potential risk to human health and removal options. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113611. [PMID: 34526283 DOI: 10.1016/j.jenvman.2021.113611] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The application of pesticides in agricultural and public health sectors has resulted in substantially contaminated water resources with residues in many countries. Almost no reviews have addressed pesticide residues in drinking water globally; calculated hazard indices for adults, children, and infants; or discussed the potential health risk of pesticides to the human population. The objectives of this article were to summarize advances in research related to pesticide residues in drinking water; conduct health risk assessments by estimating the daily intake of pesticide residues consumed only from drinking water by adults, children, and infants; and summarize options for pesticide removal from water systems. Approximately 113 pesticide residues were found in drinking water samples from 31 countries worldwide. There were 61, 31, and 21 insecticide, herbicide, and fungicide residues, respectively. Four residues were in toxicity class IA, 14 residues were in toxicity class IB, 55 residues were in toxicity class II, 17 residues were in toxicity class III, and 23 residues were in toxicity class IV. The calculated hazard indices (HIs) exceeded the value of one in many cases. The lowest HI value (0.0001) for children was found in Canada, and the highest HI value (30.97) was found in Egypt, suggesting a high potential health risk to adults, children, and infants. The application of advanced oxidation processes (AOPs) showed efficient removal of many pesticide classes. The combination of adsorption followed by biodegradation was shown to be an effective and efficient purification option. In conclusion, the consumption of water contaminated with pesticide residues may pose risks to human health in exposed populations.
Collapse
Affiliation(s)
| | - Yasser El-Nahhal
- Dept. of Earth and Environmental Science Faculty of Science, The Islamic University, Gaza, Palestine.
| |
Collapse
|
15
|
Zhou Z, Wu X, Lin Z, Pang S, Mishra S, Chen S. Biodegradation of fipronil: current state of mechanisms of biodegradation and future perspectives. Appl Microbiol Biotechnol 2021; 105:7695-7708. [PMID: 34586458 DOI: 10.1007/s00253-021-11605-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/02/2023]
Abstract
Fipronil is a broad-spectrum phenyl-pyrazole insecticide that is widely used in agriculture. However, in the environment, its residues are toxic to aquatic animals, crustaceans, bees, termites, rabbits, lizards, and humans, and it has been classified as a C carcinogen. Due to its residual environmental hazards, various effective approaches, such as adsorption, ozone oxidation, catalyst coupling, inorganic plasma degradation, and microbial degradation, have been developed. Biodegradation is deemed to be the most effective and environmentally friendly method, and several pure cultures of bacteria and fungi capable of degrading fipronil have been isolated and identified, including Streptomyces rochei, Paracoccus sp., Bacillus firmus, Bacillus thuringiensis, Bacillus spp., Stenotrophomonas acidaminiphila, and Aspergillus glaucus. The metabolic reactions of fipronil degradation appear to be the same in different bacteria and are mainly oxidation, reduction, photolysis, and hydrolysis. However, the enzymes and genes responsible for the degradation are somewhat different. The ligninolytic enzyme MnP, the cytochrome P450 enzyme, and esterase play key roles in different strains of bacteria and fungal. Many unanswered questions exist regarding the environmental fate and degradation mechanisms of this pesticide. The genes and enzymes responsible for biodegradation remain largely unexplained, and biomolecular techniques need to be applied in order to gain a comprehensive understanding of these issues. In this review, we summarize the literature on the degradation of fipronil, focusing on biodegradation pathways and identifying the main knowledge gaps that currently exist in order to inform future research. KEY POINTS: • Biodegradation is a powerful tool for the removal of fipronil. • Oxidation, reduction, photolysis, and hydrolysis play key roles in the degradation of fipronil. • Possible biochemical pathways of fipronil in the environment are described.
Collapse
Affiliation(s)
- Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Shi L, Wan Y, Liu J, He Z, Xu S, Xia W. Insecticide fipronil and its transformation products in human blood and urine: Assessment of human exposure in general population of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147342. [PMID: 33964773 DOI: 10.1016/j.scitotenv.2021.147342] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/03/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Fipronil (FP) is widely used as a highly effective insecticide worldwide, thereby raising concern about environmental contamination and risk for human health. However, data on the occurrence of FP and its transformation products (FPs) in human blood and urine are limited. In this study, 39 pairs of serum, plasma, blood cells (BCs), and urine samples were collected from adults in Wuhan, central China (2020), in order to characterize the concentration profiles of FPs in different matrices. FPs were also determined in serum samples (n = 226, including 57, 56, 56, and 57 samples for Wuhan, Huangshi, Nanjing, and Zhenjiang, respectively) collected from four cities of China (2015) to characterize the exposure levels of FPs among the general population and potential spatial variations. Fipronil sulfone (FP-SFO) was 100% detectable in blood samples, and it was the predominant metabolite (accounting for 86-95% of the cumulative concentrations of FPs [ΣFPs]), with the median concentrations (ng/mL) of 0.17, 0.16, and 0.03 in serum (range: 0.07-1.53), plasma (range: 0.06-1.41), and BCs (range: 0.01-0.24), respectively. The compositional profiles of FPs in serum, plasma, and BCs were similar; very strong positive correlations were observed between different blood matrices for FP-SFO (r = 0.94-0.97, p < 0.01) but not between blood and urine. The median ΣFPs (ng/mL) in the serum (0.20; range: 0.09-1.56) and the plasma samples (0.19; range: 0.09-1.43) was higher than that in BCs samples (0.04; range: 0.01-0.24). In the urine samples, only the major metabolite FP-SFO was detectable in approximately 10% of the samples. Additionally, the highest median ΣFPs (ng/mL) in the serum samples was found in Nanjing (0.56; range: 0.13-1.88), followed by Wuhan (0.34; range: 0.06-1.02), Huangshi (0.10; range: 0.03-0.60), and Zhenjiang (0.08; range: 0.02-0.42). The level of ΣFPs seemed to increase with city sizes and urbanization scale, though further studies are needed to confirm the variations with larger sample size. The estimated daily intake of ΣFPs based on the median concentration of samples from Nanjing (18.5 ng/kg-bw/d) was higher than that of Wuhan (11.3), Huangshi (3.40), and Zhenjiang (2.80). Dietary intake should be the major exposure route for the general population, while water or indoor dust accounted for <1% of the ΣFPs intake. This pilot study provided the first data on the profiles of FPs in paired human serum, plasma, BCs, and urine samples, and potential spatial variations of ΣFPs in China. FP-SFO and FP desulfinyl should be considered among priority substances worthy to be bio-monitored in China due to its moderated persistence and ubiquitous occurrence in human blood.
Collapse
Affiliation(s)
- Lisha Shi
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yanjian Wan
- Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China.
| | - Juan Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zhenyu He
- Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
17
|
Vishnu Sreejith M, Aradhana KS, Varsha M, Cyrus MK, Aravindakumar CT, Aravind UK. ATR-FTIR and LC-Q-ToF-MS analysis of indoor dust from different micro-environments located in a tropical metropolitan area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147066. [PMID: 34088116 DOI: 10.1016/j.scitotenv.2021.147066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Indoor dust is an important matrix that exposes humans to a broad spectrum of chemicals. The information on the occurrence of contaminants of emerging concern (CECs), their metabolites, and re-emerging contaminants in indoor dust is rather limited. As the indoor environment is exposed to various chemicals from personal care products, furniture, building materials, machineries and cooking/cleaning products, there is a high chance of the presence of hazardous contaminants in indoor dust. In the present study, dust samples were collected from four different micro indoor environments (photocopying centres, residential houses, classrooms, and ATM cabins) located in an urban environment located in India's southwestern part. The collected samples were subjected to ATR - FTIR and LC-Q-ToF-MS analyses. The ATR - FTIR analysis indicated the presence of aldehydes, anhydrides, carboxylic acids, esters, sulphonic acids, and asbestos - a re-emerging contaminant. A total of 19 compounds were identified from the LC-Q-ToF-MS analysis. These compounds belonged to various classes such as plasticisers, plasticiser metabolites, photoinitiators, personal care products, pharmaceutical intermediates, surfactants, and pesticides. To the best of our knowledge, this is the first report regarding the presence of CECs in indoor environments in Kerala and also the suspected occurrence of pesticides (metaldehyde and ethofumesate) in classroom dust in India. Another important highlight of this work is the demonstration of ATR-FTIR as a complementary technique for LC-Q-ToF-MS in the analysis of indoor pollution while dealing with totally unknown pollutants. These results further highlight the occurrence of probable chemically modified metabolites in the tropical climatic conditions in a microenvironment.
Collapse
Affiliation(s)
- M Vishnu Sreejith
- Schoool of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India
| | - K S Aradhana
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - M Varsha
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - M K Cyrus
- Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India
| | - C T Aravindakumar
- Schoool of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India..
| |
Collapse
|
18
|
Bhatt P, Rene ER, Kumar AJ, Gangola S, Kumar G, Sharma A, Zhang W, Chen S. Fipronil degradation kinetics and resource recovery potential of Bacillus sp. strain FA4 isolated from a contaminated agricultural field in Uttarakhand, India. CHEMOSPHERE 2021; 276:130156. [PMID: 34088081 DOI: 10.1016/j.chemosphere.2021.130156] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the potential role of Bacillus sp. FA4 for the bioremediation of fipronil in a contaminated environment and resource recovery from natural sites. The degradation parameters for fipronil were optimized using response surface methodology (RSM): pH - 7.0, temperature - 32 °C, inocula - 6.0 × 108 CFU mL-1, and fipronil concentration - 50 mg L-1. Degradation of fipronil was confirmed in the mineral salt medium (MSM), soil, immobilized agar discs, and sodium alginate beads. The significant reduction of the half-life of fipronil suggested that the strain FA4 could be used for the treatment of large-scale fipronil degradation from contaminated environments. The kinetic parameters, such as qmax, Ks, and Ki for fipronil degradation with strain FA4, were 0.698 day-1, 12.08 mg L-1, and 479.35 mg L-1, respectively. Immobilized FA4 cells with sodium alginate and agar disc beads showed enhanced degradation with reductions in half-life at 7.83 and 7.34 days, respectively. The biodegradation in soil further confirmed the degradation potential of strain FA4 with a half-life of 7.40 days as compared to the sterilized soil control's 169.02 days. The application of the strain FA4 on fipronil degradation, under different in vitro conditions, showed that the strain could be used for bioremediation and resource recovery of contaminated wastewater and soil in natural contaminated sites.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China; Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S. Nagar, Uttarakhand, 263145, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands
| | | | - Saurabh Gangola
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S. Nagar, Uttarakhand, 263145, India; Department of School of Agriculture, Graphic Era Hill University, Bhimtal, 263136, Uttarakhand, India
| | - Govind Kumar
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S. Nagar, Uttarakhand, 263145, India; Indian Council of Agriculture Research-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, 226101, India
| | - Anita Sharma
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S. Nagar, Uttarakhand, 263145, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|