1
|
Zhang Z, Li H, Duan C, Chen G, Liu Y, Lu M. A high-performance electrochemical sensor based on dendritic Au/Zn modified carbon cloth for the determination of nitrite in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175346. [PMID: 39117201 DOI: 10.1016/j.scitotenv.2024.175346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Nitrite is a common nitrogen-containing compound that possesses high biological toxicity, thereby posing a serious threat to aquatic organisms. Therefore, it is imperative to develop a rapid and quantitative determination approach for nitrite. In this study, the aim was to prepare a novel electrochemical sensor to determine nitrite. This was achieved by synthesizing Au/Zn dendritic complexes on a carbon cloth self-supported electrode after plasma treated by a stepwise strategy of electrodeposition and in-situ corrosion. In accordance with the optimal experimental conditions, the electrode exhibited remarkable catalytic activity for the electrooxidation of nitrite ions (pH = 8.0), accompanied by a considerable enhancement in peak anodic current in comparison to the unmodified electrode. The sensor exhibited a wide linear range (1-833 μM, 833-8330 μM), high sensitivity (3506 μA mM-1 cm-2, 538 μA mM-1 cm-2), a low detection limit (0.43 μM), and excellent selectivity, reproducibility, and stability for the determination of nitrite. Furthermore, the prepared sensor was successfully applied to the detection of nitrite in tap water, fish holding pond water and duck pond water, demonstrating good recovery and no significant difference from the spectrophotometric results. The results suggest that the electrochemical sensor developed in this study represents a straightforward yet efficacious approach to the development of advanced portable sensors for aquaculture applications.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- State Key Laboratory of Resource Insects, Southwest University, 400716 Chongqing, PR China; College of Sericulture, Textile and Biomass Sciences, Southwest University, 400716 Chongqing, PR China
| | - Hao Li
- State Key Laboratory of Resource Insects, Southwest University, 400716 Chongqing, PR China; College of Sericulture, Textile and Biomass Sciences, Southwest University, 400716 Chongqing, PR China
| | - Chao Duan
- State Key Laboratory of Resource Insects, Southwest University, 400716 Chongqing, PR China; College of Sericulture, Textile and Biomass Sciences, Southwest University, 400716 Chongqing, PR China; Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Guo Chen
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China
| | - Yiping Liu
- State Key Laboratory of Resource Insects, Southwest University, 400716 Chongqing, PR China; College of Sericulture, Textile and Biomass Sciences, Southwest University, 400716 Chongqing, PR China
| | - Ming Lu
- State Key Laboratory of Resource Insects, Southwest University, 400716 Chongqing, PR China; College of Sericulture, Textile and Biomass Sciences, Southwest University, 400716 Chongqing, PR China; Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, 312000 Zhejiang, PR China.
| |
Collapse
|
2
|
Wang S, Chen Y, Long M, Li W, Huang Y, Lai S, Yang G, Song Y, Chen J, Yu G. Fabrication of well-aligned Co-MOF arrays through a controlled and moderate process for the development of a flexible tetrabromobisphenol A sensor. Analyst 2024; 149:1807-1816. [PMID: 38334483 DOI: 10.1039/d3an01950k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Tetrabromobisphenol A (TBBPA) has attracted a great deal of attention due to its side effects and potential bioaccumulation properties. It is of great importance to construct and develop novel electrochemical sensors for the sensitive and selective detection of TBBPA. In the present study, cobalt (Co) based metal-organic frameworks (MOFs) were synthesized on carbon cloth (CC) by using cobalt nitrate hexahydrate and 2-methylimidazole. The morphological characterization was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The results showed that Co-MOFs/CC have a leaf-like structure and abundant surface functional groups. The electrochemical properties of the sensor were investigated by differential pulse voltammetry (DPV). The effects of different ratios of metal ions to organic ligands, reaction temperature, time, concentration, pH value of the electrolyte, and incubation time on the oxidation peak current of TBBPA were studied. Under the optimal conditions, the linear range of the designed sensor was 0.1 μM-100 μM, and the limit of detection was 40 nM. The proposed sensor is simple, of low cost and efficient, which can greatly facilitate the detection tasks of environmental monitoring workers.
Collapse
Affiliation(s)
- Shiyuan Wang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yao Chen
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Mei Long
- Department of Cardiology, ZiBo Central Hospital, Zibo, China
| | - Wanyu Li
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yiran Huang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Shiyi Lai
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Guiping Yang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yang Song
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Jinfa Chen
- The Center of Laboratory, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Guangxia Yu
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
3
|
Valsalakumar VC, Vasudevan S. Zirconium Phosphate-Incorporated Polyaniline-Graphene Oxide Composite Modified Electrodes for Effective and Selective Detection of Nitrite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15730-15739. [PMID: 37890029 DOI: 10.1021/acs.langmuir.3c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nitrite contamination in food, water, and environmental samples poses a substantial health hazard, owing to its capacity for transformation into carcinogenic compounds. Given the profound ecological and physiological implications, precise and highly sensitive surveillance of nitrite has emerged as an imperative area of concern, addressing the substantial detrimental impact that it can have on both terrestrial and aquatic ecosystems. The novel electroactive polyaniline-graphene oxide composite, incorporating hexagonal zirconium phosphate discs (PGZrP), was systematically engineered as a foundation for an advanced electrochemical sensor, enabling precise nitrite detection in diverse aqueous and biological matrices. At a specific potential peak of +0.85 V, observed within a pH 7.0 phosphate buffer solution, the PGZrP-modified glassy carbon electrode (GCE) exhibited exceptional electrocatalytic proficiency in the sensing nitrite ions (NO2-), surpassing the performance of alternative electrode configurations, including the zirconium phosphate-modified GCE (ZrP/GCE), graphene oxide-modified GCE (GO/GCE), polyaniline-graphene oxide-modified GCE (PG/GCE), and the unmodified bare glassy carbon electrode. The constructed sensor demonstrated an impressive limit of detection at 80 nM along with a broad and linear detection range spanning from 124 nM to 40 mM. The synergistic effect created by the close contact between ZrP and PG, which resulted in a well-enhanced electrochemical sensing capability, was responsible for this exceptional activity. The developed sensor exhibited an enhanced electrochemical performance characterized by an extended operational range, a heightened detection threshold, and exceptional sensitivity. The PGZrP/GCE sensor, as fabricated, consistently demonstrated commendable operational stability, robust reproducibility, and remarkable repeatability in its capacity for nitrite detection. Furthermore, its successful application in the precise quantification of nitrite levels within environmental water samples and blood specimens showcased an impressive recovery rate, establishing it as a promising tool for diverse analytical applications. These findings indicate the promising potential of the PGZrP composite for integration into electrochemical devices designed to deliver rapid response times, heightened sensitivity, and sustained stability, thereby placing it as a potential candidate for the production of cutting-edge sensors, particularly those employed for the precise recognition of nitrite in aquatic and biological specimens.
Collapse
Affiliation(s)
- Vidhya C Valsalakumar
- Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| | - Suni Vasudevan
- Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| |
Collapse
|
4
|
Yang Y, Wei S, Wang J, Li J, Tang J, Aaron AA, Cai Q, Wang N, Li Z. Highly sensitive and ratiometric detection of nitrite in food based on upconversion-carbon dots nanosensor. Anal Chim Acta 2023; 1263:341245. [PMID: 37225331 DOI: 10.1016/j.aca.2023.341245] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
Nitrite (NO2-) is extensively found in the daily dietary environment. However, consuming too much NO2- can pose serious health risks. Thus, we designed a NO2--activated ratiometric upconversion luminescence (UCL) nanosensor which could realize NO2- detection via the inner filter effect (IFE) between NO2--sensitive carbon dots (CDs) and upconversion nanoparticles (UCNPs). Due to the exceptional optical properties of UCNPs and the remarkable selectivity of CDs, the UCL nanosensor exhibited a good response to NO2-. By taking advantage of NIR excitation and ratiometric detection signal, the UCL nanosensor could eliminate the autofluorescence thereby increasing the detection accuracy effectively. Additionally, the UCL nanosensor proved successful in detecting NO2- quantitatively in actual samples. The UCL nanosensor provides a simple as well as sensitive sensing strategy for NO2- detection and analysis, which is anticipated to extend the utilization of upconversion detection in food safety.
Collapse
Affiliation(s)
- Yaqing Yang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Simin Wei
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jialin Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Junjie Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jinlu Tang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Albert Aryee Aaron
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Qiyong Cai
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Ningning Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, PR China
| |
Collapse
|
5
|
Cheng C, Zhang Y, Chen H, Zhang Y, Chen X, Lu M. Reduced graphene oxide-wrapped La 0·8Sr 0·2MnO 3 microspheres sensing electrode for highly sensitive nitrite detection. Talanta 2023; 260:124644. [PMID: 37182290 DOI: 10.1016/j.talanta.2023.124644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
An electrochemical nitrite sensor based on perovskite oxides La0·8Sr0·2MnO3 (LSM) microspheres-decorated reduced graphene oxide (rGO) composite was presented to take the merit of the excellent electrocatalytic activity of the LSM and the large surface area of rGO. The content of rGO has been finely adjusted and the electrochemical sensor employing 15 wt% rGO has shown an ultralow nitrite detection limit of 0.016 μM and a high sensitivity of 0.041 μA μM-1 cm-2 and 0.039 μA μM-1 cm-2 in the range of 2-100 and 100-5000 μM, respectively. In addition, the proposed electrode shows good selectivity, reproducibility and stability, suitable for detection of nitrite at various pH values. The sensor was used to determine the nitrite level in environmental water samples with acceptable relative error, demonstrating its feasibility for practical environmental monitoring.
Collapse
Affiliation(s)
- Chu Cheng
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Yixin Zhang
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Hongyu Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Yulong Zhang
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Xinyi Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China.
| | - Miao Lu
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
6
|
Batool R, Riaz S, Bano S, Hayat A, Nazir MS, Nasir M, Marty JL, Nawaz MH. Fabrication of polydopamine decorated carbon cloth as support material to anchor CeO 2 nanoparticles for electrochemical detection of ethanol. Mikrochim Acta 2023; 190:172. [PMID: 37017829 DOI: 10.1007/s00604-023-05707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/14/2023] [Indexed: 04/06/2023]
Abstract
A flexible CeO2 nanostructured polydopamine-modified carbon cloth (CeO2/PDA/CC) interface was fabricated via electrodeposition for ethanol detection. The fabrication method involved two consecutive electrochemical steps in which dopamine was firstly electrodeposited on carbon fibers, followed by the electrochemical growth of CeO2 nanoparticles. The CeO2/PDA-based electroactive interface exerts an impressive electrochemical performance on the flexible sensor due to strong synergistic effect of the PDA functionalization with more active sites. Moreover, catalytic activity of CeO2 nanostructures anchored on highly conductive CC incorporate superior electrocatalytic performance of the fabricated interface. The designed electrochemical sensor showed a wide response to ethanol in the linear range 1 to 25 mM with a detection limit of 0.22 mM. The CeO2/PDA/CC flexible sensor showed good anti-interference ability and excellent repeatability and reproducibility (RSD = 1.67%). The fabricated interface performed well in saliva samples with satisfactory recoveries, corroborating the viability of CeO2/PDA/CC integrated interface for practical implementation.
Collapse
Affiliation(s)
- Rabia Batool
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Shehar Bano
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Muhammad Nasir
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | | | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| |
Collapse
|
7
|
Ivanišević I. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:3692. [PMID: 37050752 PMCID: PMC10099384 DOI: 10.3390/s23073692] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
With rapidly increasing environmental pollution, there is an urgent need for the development of fast, low-cost, and effective sensing devices for the detection of various organic and inorganic substances. Silver nanoparticles (AgNPs) are well known for their superior optoelectronic and physicochemical properties, and have, therefore, attracted a great deal of interest in the sensor arena. The introduction of AgNPs onto the surface of two-dimensional (2D) structures, incorporation into conductive polymers, or within three-dimensional (3D) nanohybrid architectures is a common strategy to fabricate novel platforms with improved chemical and physical properties for analyte sensing. In the first section of this review, the main wet chemical reduction approaches for the successful synthesis of functional AgNPs for electrochemical sensing applications are discussed. Then, a brief section on the sensing principles of voltammetric and amperometric sensors is given. The current utilization of silver nanoparticles and silver-based composite nanomaterials for the fabrication of voltammetric and amperometric sensors as novel platforms for the detection of environmental pollutants in water matrices is summarized. Finally, the current challenges and future directions for the nanosilver-based electrochemical sensing of environmental pollutants are outlined.
Collapse
Affiliation(s)
- Irena Ivanišević
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Zuo J, Shen Y, Wang L, Yang Q, Cao Z, Song H, Ye Z, Zhang S. Flexible Electrochemical Sensor Constructed Using an Active Copper Center Instead of Unstable Molybdenum Carbide for Simultaneous Detection of Toxic Catechol and Hydroquinone. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Kokulnathan T, Wang TJ, Murugesan T, Anthuvan AJ, Kumar RR, Ahmed F, Arshi N. Structural growth of zinc oxide nanograins on carbon cloth as flexible electrochemical platform for hydroxychloroquine detection. CHEMOSPHERE 2023; 312:137186. [PMID: 36368534 DOI: 10.1016/j.chemosphere.2022.137186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical pollution that imposes a health threat worldwide is making accurate and rapid detection crucial to prevent adverse effects. Herein, binder-free zinc oxide nanograins on carbon cloth (ZnO NGs@CC) have been synthesized hydrothermally and employed to fabricate a flexible electrochemical sensor for the quantification of hydroxychloroquine (HCQ) that is typical pharmaceutical pollution. The characteristics of ZnO NGs@CC were investigated by various in-depth electron microscopic, spectroscopic and electroanalytical approaches. Compared with the pristine CC platform, the ZnO NGs@CC platform exhibits superior electrochemical performance in detecting HCQ with a large oxidation current at a low over-potential of +0.92 V with respect to the Ag/AgCl (Sat. KCl) reference electrode. With the support of desirable characteristics, the fabricated ZnO NGs@CC-based electrochemical sensor for HCQ detection displays good performances in terms of wide sensing range (0.5-116 μM), low detection limit (0.09 μM), high sensitivity (0.279 μA μM-1 cm-2), and strong selectivity. By the resulting 3D hierarchical nanoarchitecture, ZnO NGs@CC has progressive structural advantages that led to its excellent electrochemical performance in sensing applications. Furthermore, the electrochemical sensor is employed to detect HCQ in biological and environmental samples and also achieves good recovery rates. Thus, the designed ZnO NGs@CC demonstrates admirable electrochemical activity toward HCQ real-time monitoring and would be an excellent electrochemical platform for HCQ sensing.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Thangapandian Murugesan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Allen Joseph Anthuvan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; Nanotech Division, Accubits Invent Pvt. Ltd, Trivandrum 695 592, Kerala, India
| | - Rishi Ranjan Kumar
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Nishat Arshi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box-400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
10
|
Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Zhou X, Zhang C, Li Y, Xiong X, Wang Y, Rong S. Promoted microbial denitrification and carbon dioxide fixation via photogenerated electrons stored in novel core/shell memory photocatalysts in darkness. CHEMOSPHERE 2022; 303:135259. [PMID: 35675870 DOI: 10.1016/j.chemosphere.2022.135259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Excess nitrogen in water and greenhouse gases, especially atmospheric carbon dioxide (CO2) from the rapid development of modern society have become an acute threat to the environment. Herein, novel core/shell structured g-C3N4@WO3 memory photocatalyst was fabricated by coating g-C3N4 on the surface of WO3 nanoparticles and applied in the simultaneous coupling of memory photocatalysts and microbial communities (SCMPMC) for the synergistic removal of microbial nitrate and CO2 fixation in darkness. The results showed that ∼98.6% of nitrate was removed and ∼17.7% of CO2 was fixed in darkness by microorganisms in the presence of g-C3N4@WO3 memory photocatalyst within 48 h. Besides, the investigation of the mechanism evidenced that g-C3N4@WO3 memory photocatalyst can promote electron transfer in the SCMPMC system. Moreover, key enzyme activities (i.e., NAR, NIR, CAT, and ETSA) were accelerated, indicating that the activities of enzymes within microorganisms could be remarkably enhanced by the continuous release of stored electrons by the g-C3N4@WO3 memory photocatalyst in the dark. Furthermore, microbial community analysis revealed that the g-C3N4@WO3 memory photocatalyst increased the relative abundance of denitrifiers (i.e., Acidobacterota, Actinobacteria, Chloroflexi, and Proteobacteria) and CO2-assimilating microorganisms (i.e., Pseudomonas), in the treated communities compared with the original community in river sediment, demonstrating the positive effects of g-C3N4@WO3 memory photocatalyst on river sediment microbial communities. The results in this study could shed new light on the establishment of promising synergistic microbial nitrate removal and CO2 fixation methods and mechanisms in darkness.
Collapse
Affiliation(s)
- Xinyi Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Ye Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shengxiang Rong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
12
|
High performance of nitrite electrochemical sensing based on Au-poly(thionine)-tin oxide/graphene nanosheets nanocomposites. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Yu J, Liu Y, Zhang X, Liu R, Yang Q, Hu S, Song H, Li P, Li A, Zhang S. Enhanced capacitive deionization of a low-concentration brackish water with protonated carbon nitride-decorated graphene oxide electrode. CHEMOSPHERE 2022; 293:133580. [PMID: 35026198 DOI: 10.1016/j.chemosphere.2022.133580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Freshwater resources are one of the core elements that affect the harmonious development of mankind and society. Capacitive deionization (CDI) technology is one of the effective methods to transform brackish water into fresh water. The choice of material for a CDI electrode is critical to its electrosorption performance, which directly affects the electrosorption performance through interface optimization. Herein, protonated carbon nitride (H-C3N4)-modified graphene oxide (H-C3N4-mGO1/8) is fabricated by a simultaneous nucleophilic addition and amide reaction in order to enhance capacitive deionization of a very low concentration brackish water. Using activated carbon (AC) as the positive electrode and H-C3N4-mGO1/8 as the negative electrode, H-C3N4-mGO1/8 || AC asymmetric CDI devices are used to remove ions from a NaCl aqueous solution. The CDI test results indicate that the system has a high electrosorption capacity of 8.36 mg g-1 in the 50 mg L-1 NaCl solution with a low applied voltage of 1.2 V, which is 1.40 times than AC || AC symmetric. Moreover, the CDI device performs faster adsorption rate of 0.1879 mg (g·min)-1 and an excellent regeneration efficiency of 100%. The salt electrosorption capacity, electrosorption rate of the H-C3N4-mGO1/8 || AC asymmetric electrodes improve with increasing applied voltage due to the stronger Coulombic interaction between the electrode and charged ions with the formation of a more sufficient electric double layer principle.
Collapse
Affiliation(s)
- Jian Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xumei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Rumeng Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Qi Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Shen Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Haiou Song
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Pengcheng Li
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
14
|
Tian YS, Li XH, Zhang DF, Lu L, Xu YG, An CW. A Novel Method for the Polarographic Determination of Trace Nitrite in Water. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Chakraborty U, Garg P, Bhanjana G, Kaur G, Kaushik A, Chaudhary GR. Spherical silver oxide nanoparticles for fabrication of electrochemical sensor for efficient 4-Nitrotoluene detection and assessment of their antimicrobial activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152179. [PMID: 34875317 DOI: 10.1016/j.scitotenv.2021.152179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
This research article reports an economic and affordable microwave-assisted synthesis of spherical silver oxide nanoparticles (Ag2O NPs) (80-90 nm) for an efficient electrochemical sensing of a hazardous organic pollutant 4-nitrotoluene (4-NT). Such well-characterized Ag2O NPs were utilized to modify gold (Au) electrode in order to fabricate Ag2O-NPs/Au sensor to detect 4-NT using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques. Ag2O-NPs/Au sensor exhibited a distinguished electrical response as a function of varying 4-NT concentration in neutral medium samples. Ag2O-NPs/Au sensor demonstrated an ultrahigh sensitivity as 15.33 μA (μM)-1 cm-2, a low detection limit of 62.3 nM, and linear response in detection ranges of 0.6-5.9 μM and 37-175 μM. The sensing performance of fabricated Ag2O-NPs/Au sensor is reproducible, reusable, selective in presence of other chemical species, and validated using real samples. The Ag2O/Au sensor had much rapid and easy fabrication process and offered much lower LOD for 4-NT detection than many previously reported sensors. Along with efficient electrochemical activity, the spherical Ag2O NPs also exhibit remarkable antimicrobial activity against harmful gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus) bacteria. Herein projected efficient Ag2O-NPs/Au electrochemical sensor for 4-NT is affordable with the capability of scaling up to perform point-of-care 4-NT testing needed for successful environmental monitoring and water quality assurance.
Collapse
Affiliation(s)
- Urmila Chakraborty
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, 160014, India
| | - Preeti Garg
- Sophisticated Analytical Instrumentation Facility (SAIF)/CIL, Panjab University Chandigarh, 160014, India
| | - Gaurav Bhanjana
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, 160014, India
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, 160014, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Florida Polytechnic University, Lakeland 33805, FL, USA
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, 160014, India; Sophisticated Analytical Instrumentation Facility (SAIF)/CIL, Panjab University Chandigarh, 160014, India
| |
Collapse
|
16
|
Alsaiari M, Saleem A, Alsaiari R, Muhammad N, Latif U, Tariq M, Almohana A, Rahim A. SiO 2/Al 2O 3/C grafted 3-n propylpyridinium silsesquioxane chloride-based non-enzymatic electrochemical sensor for determination of carcinogenic nitrite in food products. Food Chem 2022; 369:130970. [PMID: 34500207 DOI: 10.1016/j.foodchem.2021.130970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
The excessive uptake of nitrite is perilous and detrimental for human health that prone to cancer disease. Herein, described the synthesis of SiO2/Al2O3/C material through the sol-gel procedure followed by grafting with 3-n propylpyridinium silsesquioxane chloride organic ligand for enhancing electrochemical activity. H-NMR, 13C NMR, and 29Si studies were performed for confirmation of surface functionalization through the grafting technique. The surface morphology was evaluated through SEM and TEM techniques. The material showed an irregular and flakes-like structure that exhibited more compactness and conglomerate structure with no segregation in phase was observed after grafting. The elemental composition was confirmed from EDX analysis. The electrochemical measurements were performed with cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and chronoamperometry. The prepared hybrid inorganic-organic composite Si/C/Al/SiPy+Cl- was applied for the modification of the glassy carbon (GC) electrode and assessed as a sensor for nitrite determination. The sensor showed the low limit of detection (0.01 μM), low limit of quantification (0.08 μM), wide linear response range (0.2-280 μM), and high sensitivity (410 μA·μM-1). It gave a quick response time of <1 s in the presence of 70 μM nitrite. The fabricated sensor showed high sensitivity, chemical stability, and insignificant interference from co-existing species present in sausage meat and food industry discharges. The repeatability of the sensor was evaluated as 2.5 % R.S.D.; for n = 10 at 50 μM nitrite.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Promising Centre for sensors and electronic devices (PCSED), Advanced materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran, Saudi Arabia.
| | - Amina Saleem
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan
| | - Raiedhah Alsaiari
- Promising Centre for sensors and electronic devices (PCSED), Advanced materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran, Saudi Arabia
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University KPK, Pakistan
| | - Usman Latif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan
| | - Muhammad Tariq
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Abdulaziz Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O.BOX 800, Riyadh, 11421, Saudi Arabia
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan.
| |
Collapse
|
17
|
Lin Z, Cheng S, Li H, Li L. A novel, rapidly preparable and easily maintainable biocathode electrochemical biosensor for the continuous and stable detection of nitrite in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150945. [PMID: 34655619 DOI: 10.1016/j.scitotenv.2021.150945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Nitrite is a highly toxic and pathogenic pollutant that is widely distributed in various nitrogenous wastewaters. Therefore, there is an urgent need for fast and stable nitrite detection to avoid water pollution and protect human health. In this study, we developed a novel rapidly preparable and easily maintainable biocathode electrochemical biosensor (BEB) using nitrite-reducing bacteria as the detectors to realize continuous nitrite monitoring in wastewater. The preparation of the biocathode was shortened by the polarity inversion method to less than 6 d. The BEB could detect nitrite solution samples in the range of 0.1- 16.0 mg NO2--N L-1 within 1.7 min. The BEB was also successfully used to detect nitrite in real wastewater with a relative error < 4.0% and a relative standard deviation < 5.8%. In addition, the BEB could be easily maintained by an operation mode of microbial fuel cells and stably detected nitrite for at least 150 tests. Our study provided a feasible and convenient way to develop electrochemical biosensors based on the biocathode for continuous and stable monitoring of pollutants in wastewater.
Collapse
Affiliation(s)
- Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Huahua Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Longxin Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
18
|
CHU GL, HUANG JC, YIN JQ, GUO YM, LI M, ZHANG YY, SUN X. Novel anti-oxidation electrochemical sensor based on rod-shaped polyaniline-carboxymethyl cellulose-copper nanoparticles for nitrite determination. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Porcu S, Secci F, Abdullah QA, Ricci PC. 4-Nitrophenol Efficient Photoreduction from Exfoliated and Protonated Phenyl-Doped Graphitic Carbon Nitride Nanosheets. Polymers (Basel) 2021; 13:polym13213752. [PMID: 34771307 PMCID: PMC8588007 DOI: 10.3390/polym13213752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
The photoreduction of 4-nitrophenol to 4-aminophenol by means of protonated and exfoliated phenyl-doped carbon nitride is reported. Although carbon nitride-based materials have been recognized as efficient photocatalysts, the photoreduction of 4-nitrophenol to 4-aminophenol is not allowed because of the high recombination rate of the photogenerated electron–hole pairs. In this paper, we show the morphology effects on the photoactivity in phenyl-doped carbon nitride. Structural (TEM, XRD, Raman) and optical characterization (absorption, photoluminescence) of the protonated and exfoliated phenyl-doped carbon nitride (hereafter pePhCN) is reported. The increased photocatalytic efficiency, with respect to the bulk material, is underlined by the calculation of the kinetic constant of the photoreduction process (2.78 × 10−1 min−1 and 3.54 × 10−3 min−1) for pePhCN and bulk PhCN, respectively. Finally, the detailed mechanism of the photoreduction process of 4-nitrophenol to 4-aminophenol by modified phenyl carbon nitride is proposed.
Collapse
Affiliation(s)
- Stefania Porcu
- Department of Physics, University of Cagliari, 09042 Monserrato, Italy;
- Correspondence: ; Tel.: +39-340-876-8522
| | - Francesco Secci
- Department of Chemical and Geological Science, University of Cagliari, 09042 Monserrato, Italy;
| | - Qader Abdulqader Abdullah
- Department of Physics, University of Sulaimani, Kirkuk Road, Sulaimani 46001, Kurdistan Region, Iraq;
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, 09042 Monserrato, Italy;
| |
Collapse
|
20
|
Carvalho RM, Ferreira VS, Lucca BG. A novel all-3D-printed thread-based microfluidic device with an embedded electrochemical detector: first application in environmental analysis of nitrite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1349-1357. [PMID: 33656036 DOI: 10.1039/d1ay00070e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A microfluidic thread electroanalytical device (μTED) containing an embedded electrochemical detector is presented for the first time in this work. This novel device was entirely produced in an automated way using the fused deposition modeling (FDM) 3D printing technique. The main platform was fabricated with acrylonitrile butadiene styrene (ABS) filament, while the integrated electrochemical detector was produced using a commercial conductive filament composed of carbon black and polylactic acid (CB/PLA). The microfluidic channels consisted of cotton threads, which act as passive pumps, and the μTED was used for microflow injection analysis (μFIA). As a proof of concept, this μFIA system was utilized for the amperometric sensing of nitrite in natural waters. This is the first report on the use of both μTEDs and 3D-printed CB/PLA electrodes to determine this species. This fully 3D-printed μTED was characterized and all experimental and instrumental parameters related to the method were studied and optimized. Using the best conditions, the proposed approach showed a linear response in the concentration range from 8 to 200 μmol L-1 and a limit of detection (LOD) of 2.39 μmol L-1. The LOD obtained here was ca. ten-fold lower than the maximum contaminant level for nitrite in drinking water established by the Brazilian and US legislation. Moreover, the platform presented good repeatability and reproducibility (relative standard deviations (RSDs) were 2.1% and 2.5%, respectively). Lastly, the 3D-printed μTED was applied for the quantification of nitrite in well water samples and the results obtained showed good precision (RSD < 3%) and excellent concordance (relative error was ca.±3%) with those achieved by ion chromatography, used for validation.
Collapse
Affiliation(s)
- Rayan Marcel Carvalho
- Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande, MS 79074-460, Brazil.
| | | | | |
Collapse
|
21
|
Yang Z, Zhou X, Yin Y, Fang W. Determination of Nitrite by Noble Metal Nanomaterial-Based Electrochemical Sensors: A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1897134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zhengfei Yang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyong Zhou
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongqi Yin
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiming Fang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|