1
|
Lin Q, Yang Y, Zhang S, Sun F, Shen C, Su X. Enhanced biodegradation of polychlorinated biphenyls by co-cultivation of resuscitated strains with unique advantages. ENVIRONMENTAL RESEARCH 2024; 261:119699. [PMID: 39074776 DOI: 10.1016/j.envres.2024.119699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
The investigation into viable but non-culturable (VBNC) bacteria through the implementation of resuscitation promoting factors (Rpfs) has broadened the potential sources for isolating strains capable of degrading polychlorinated biphenyls (PCBs). Nonetheless, there has been limited research on the efficacy of resuscitated strains and the potential improvement of their performance through co-cultivation. In this work, the PCB degradation potential of resuscitated strains, specifically Pseudomonas sp. HR1 and Achromobacter sp. HR2, as well as their co-cultures, was investigated. Of particular importance was the comparative analysis between the optimal co-culture and individual strains regarding their ability to degrade PCB homologs and mineralize intermediate metabolites. The results suggested that the resuscitated strains HR1 and HR2 demonstrated robust growth and effective degradation of Aroclor 1242. The co-culture CO13, with an optimal HR1 to HR2 ratio of 1:3, exhibited a remarkable improvement in PCB degradation and intermediate metabolite mineralization compared to individual strains. Analysis of functional genes and degradation metabolites revealed that both the individual strains and co-culture CO13 degraded PCBs via the HOPDA-benzoate pathway, then mineralized through protocatechuate meta- and ortho-cleavage pathways, as well as the catechol ortho-cleavage pathway. This study represents the first documentation of the improved PCB degradation through the co-cultivation of resuscitated strains, which highlights the great promise of these resuscitated strains and their co-cultures as effective bio-inoculants for enhanced bioremediation.
Collapse
Affiliation(s)
- Qihua Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yingying Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, 325500, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
2
|
Xu Y, Teng Y, Dai S, Liao J, Wang X, Hu W, Guo Z, Pan X, Dong X, Luo Y. Atmospheric Trace Gas Oxidizers Contribute to Soil Carbon Fixation Driven by Key Soil Conditions in Terrestrial Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39443297 DOI: 10.1021/acs.est.4c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Microbial oxidizers of trace gases such as hydrogen (H2) and carbon monoxide (CO) are widely distributed in soil microbial communities and play a vital role in modulating biogeochemical cycles. However, the contribution of trace gas oxidizers to soil carbon fixation and the driving environmental factors remain unclear, especially on large scales. Here, we utilized biogeochemical and genome-resolved metagenomic profiling, assisted by machine learning analysis, to estimate the contributions of trace gas oxidizers to soil carbon fixation and to predict the key environmental factors driving this process in soils from five distinct ecosystems. The results showed that phylogenetically and physiologically diverse H2 and CO oxidizers and chemosynthetic carbon-fixing microbes are present in the soil in different terrestrial ecosystems. The large-scale variations in soil carbon fixation were highly positively correlated with both the abundance and the activity of H2 and CO oxidizers (p < 0.05-0.001). Furthermore, soil pH and moisture-induced shifts in the abundance of H2 and CO oxidizers partially explained the variation in soil carbon fixation (55%). The contributions of trace gas oxidizers to soil carbon fixation in the different terrestrial ecosystems were estimated to range from 1.1% to 35.0%. The estimated rate of trace gas carbon fixation varied from 0.04 to 1.56 mg kg-1 d-1. These findings reveal that atmospheric trace gas oxidizers may contribute to soil carbon fixation driven by key soil environmental factors, highlighting the non-negligible contribution of these microbes to terrestrial carbon cycling.
Collapse
Affiliation(s)
- Yongfeng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiang Dai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xia Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhang Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Xu Y, Teng Y, Wang X, Wang H, Li Y, Ren W, Zhao L, Wei M, Luo Y. Biohydrogen utilization in legume-rhizobium symbiosis reveals a novel mechanism of accelerated tetrachlorobiphenyl transformation. BIORESOURCE TECHNOLOGY 2024; 404:130918. [PMID: 38823562 DOI: 10.1016/j.biortech.2024.130918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Symbiosis between Glycine max and Bradyrhizobium diazoefficiens were used as a model system to investigate whether biohydrogen utilization promotes the transformation of the tetrachlorobiphenyl PCB77. Both a H2 uptake-positive (Hup+) strain (wild type) and a Hup- strain (a hupL deletion mutant) were inoculated into soybean nodules. Compared with Hup- nodules, Hup+ nodules increased dechlorination significantly by 61.1 % and reduced the accumulation of PCB77 in nodules by 37.7 % (p < 0.05). After exposure to nickel, an enhancer of uptake hydrogenase, dechlorination increased significantly by 2.2-fold, and the accumulation of PCB77 in nodules decreased by 54.4 % (p < 0.05). Furthermore, the tetrachlorobiphenyl transformation in the soybean root nodules was mainly testified to be mediated by nitrate reductase (encoded by the gene NR) for tetrachlorobiphenyl dechlorination and biphenyl-2,3-diol 1,2-dioxygenase (bphC) for biphenyl degradation. This study demonstrates for the first time that biohydrogen utilization has a beneficial effect on tetrachlorobiphenyl biotransformation in a legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongzhe Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanning Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zhao M, Ren Z, Zhao A, Tang Y, Kuang J, Li M, Chen T, Wang S, Wang J, Zhang H, Wang J, Zhang T, Zeng J, Liu X, Xie G, Liu P, Sun N, Bao T, Nie T, Lin J, Liu P, Zheng Y, Zheng X, Liu T, Jia W. Gut bacteria-driven homovanillic acid alleviates depression by modulating synaptic integrity. Cell Metab 2024; 36:1000-1012.e6. [PMID: 38582087 DOI: 10.1016/j.cmet.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.
Collapse
Affiliation(s)
- Mingliang Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhenxing Ren
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yajun Tang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junliang Kuang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengci Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jieyi Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huiheng Zhang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Jiahui Zeng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Engineering Technology Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Guoxiang Xie
- Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Tianhao Bao
- The Affiliated Mental Health Center of Kunming Medical University, Kunming 650224, China
| | - Tongtong Nie
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jingchao Lin
- Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Ping Liu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuanyi Zheng
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Ma Y, Wang J, Liu Y, Wang X, Zhang B, Zhang W, Chen T, Liu G, Xue L, Cui X. Nocardioides: "Specialists" for Hard-to-Degrade Pollutants in the Environment. Molecules 2023; 28:7433. [PMID: 37959852 PMCID: PMC10649934 DOI: 10.3390/molecules28217433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nocardioides, a genus belonging to Actinomycetes, can endure various low-nutrient conditions. It can degrade pollutants using multiple organic materials such as carbon and nitrogen sources. The characteristics and applications of Nocardioides are described in detail in this review, with emphasis on the degradation of several hard-to-degrade pollutants by using Nocardioides, including aromatic compounds, hydrocarbons, haloalkanes, nitrogen heterocycles, and polymeric polyesters. Nocardioides has unique advantages when it comes to hard-to-degrade pollutants. Compared to other strains, Nocardioides has a significantly higher degradation rate and requires less time to break down substances. This review can be a theoretical basis for developing Nocardioides as a microbial agent with significant commercial and application potential.
Collapse
Affiliation(s)
- Yecheng Ma
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jinxiu Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinyue Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lingui Xue
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaowen Cui
- College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
6
|
Xu Y, Teng Y, Wang X, Ren W, Zhao L, Luo Y, Christie P, Greening C. Endogenous biohydrogen from a rhizobium-legume association drives microbial biodegradation of polychlorinated biphenyl in contaminated soil. ENVIRONMENT INTERNATIONAL 2023; 176:107962. [PMID: 37196568 DOI: 10.1016/j.envint.2023.107962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Endogenous hydrogen (H2) is produced through rhizobium-legume associations in terrestrial ecosystems worldwide through dinitrogen fixation. In turn, this gas may alter rhizosphere microbial community structure and modulate biogeochemical cycles. However, very little is understood about the role that this H2 leaking to the rhizosphere plays in shaping the persistent organic pollutants degrading microbes in contaminated soils. Here, we combined DNA-stable isotope probing (DNA-SIP) with metagenomics to explore how endogenous H2 from the symbiotic rhizobium-alfalfa association drives the microbial biodegradation of tetrachlorobiphenyl PCB 77 in a contaminated soil. The results showed that PCB77 biodegradation efficiency increased significantly in soils treated with endogenous H2. Based on metagenomes of 13C-enriched DNA fractions, endogenous H2 selected bacteria harboring PCB degradation genes. Functional gene annotation allowed the reconstruction of several complete pathways for PCB catabolism, with different taxa conducting successive metabolic steps of PCB metabolism. The enrichment through endogenous H2 of hydrogenotrophic Pseudomonas and Magnetospirillum encoding biphenyl oxidation genes drove PCB biodegradation. This study proves that endogenous H2 is a significant energy source for active PCB-degrading communities and suggests that elevated H2 can influence the microbial ecology and biogeochemistry of the legume rhizosphere.
Collapse
Affiliation(s)
- Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Li R, Teng Y, Sun Y, Xu Y, Wang Z, Wang X, Hu W, Ren W, Zhao L, Luo Y. Chemodiversity of soil organic matters determines biodegradation of polychlorinated biphenyls by a graphene oxide-assisted bacterial agent. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131015. [PMID: 36801720 DOI: 10.1016/j.jhazmat.2023.131015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
A promising strategy for degrading persistent organic pollutants (POPs) in soil is amendment with nanomaterial-assisted functional bacteria. However, the influence of soil organic matter chemodiversity on the performance of nanomaterial-assisted bacterial agents remains unclear. Herein, different types of soil (Mollisol soil, MS; Ultisol soil, US; and Inceptisol soil, IS) were inoculated with a graphene oxide (GO)-assisted bacterial agent (Bradyrhizobium diazoefficiens USDA 110, B. diazoefficiens USDA 110) to investigate the association between soil organic matter chemodiversity and stimulation of polychlorinated biphenyl (PCB) degradation. Results indicated that the high-aromatic solid organic matter (SOM) inhibited PCB bioavailability, and lignin-dominant dissolved organic matter (DOM) with high biotransformation potential was a favored substrate for all PCB degraders, which led to no stimulation of PCB degradation in MS. Differently, high-aliphatic SOM in US and IS promoted PCB bioavailability. The high/low biotransformation potential of multiple DOM components (e.g., lignin, condensed hydrocarbon, unsaturated hydrocarbon, etc.) in US/IS further resulted to the enhanced PCB degradation by B. diazoefficiens USDA 110 (up to 30.34%) /all PCB degraders (up to 17.65%), respectively. Overall, the category and biotransformation potential of DOM components and the aromaticity of SOM collaboratively determine the stimulation of GO-assisted bacterial agent on PCB degradation.
Collapse
Affiliation(s)
- Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuopeng Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhou X, Zhang S, Wang R, An Z, Sun F, Shen C, Lin H, Su X. A novel strategy for enhancing bioremediation of polychlorinated biphenyl-contaminated soil with resuscitation promoting factor and resuscitated strain. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130781. [PMID: 36641851 DOI: 10.1016/j.jhazmat.2023.130781] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
PCBs bioremediation is largely impeded by the reduced metabolic activity and degradation ability of indigenous and exogenous microorganisms. Resuscitation promoting factor (Rpf) of Micrococcus luteus, has been reported to resuscitate and stimulate the growth of PCB-degrading bacterial populations, and the resuscitated strains exhibited excellent PCB-degrading performances. Therefore, this study was conducted to assess the feasibility of supplementing Rpf (SR) or resuscitated strain LS1 (SL), or both (SRL) for enhanced bioremediation of PCB-contaminated soil. The results indicated that Rpf and/or LS1 amended soil microcosms achieved more rapid PCBs degradation, which were 1.1-3.2 times faster than control microcosms. Although soil-inoculated LS1 maintained the PCB-degrading activity, higher PCBs degradation was observed in Rpf-amended soil microcosms compared with SL. The order of enhancement effect on PCBs bioremediation was SRL > SR > SL. PCBs degradation in soil microcosms was via HOPDA-benzoate-catechol/protocatechuate pathways. The improved PCBs degradation in Rpf-amended soil microcosms was attributed to the enhanced abundances of PCB-degrading populations which were mainly belonged to Proteobacteria and Actinobacteria. These results suggest that Rpf and resuscitated strains serve as effective additive and bio-inoculant for enhanced bioremediation, providing new approaches to realizing large scale applications of in situ bioremediation.
Collapse
Affiliation(s)
- Xinru Zhou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou 325500, China
| | - Rui Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zijing An
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
9
|
Ma Y, Hua Z, Wang P, Yu L, Lu Y, Wang Y, Dong Y. Differences in bacterial community composition, structure and function between sediments in waterways and non-navigable channels in a plain river network area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45910-45923. [PMID: 36708482 DOI: 10.1007/s11356-023-25535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
Bacterial communities greatly help maintain the balance of river ecosystems and are highly sensitive to changes in environmental conditions. Plain river network areas (PRNs) are characterized by dense river networks, low-lying terrain, and slow water flow, where the bottom sediment is frequently disturbed by ship navigation due to the limited water depth and width of waterways, providing a unique ecological niche for bacterial growth. Hence, understanding how bacterial communities in PRNs respond to changes in hydrodynamic conditions, physicochemical parameters, and pollutants under ship navigation is essential to maintaining the stability of inland waterway ecosystems. The Taihu Lake Basin, a typical PRN, was selected to explore the differences in bacterial community composition, structure and function between sediments in waterways (WS) and non-navigable channels (NS). The results indicate that the sediment from NS possessed more diverse and complex bacterial communities than WS. NMDS and ANOSIM analyses further verified the significant differences in bacterial community structure between WS and NS. Combined with LEfSe, we observed the highly differential taxonomy between WS and NS from phylum to order. Moreover, a comparison of beta diversity dissimilarity indices revealed that although species replacement dominated both the WS and NS beta-diversity patterns, species loss caused the differences in the overall beta diversity between them. Variance partitioning analysis revealed that physicochemical parameters (clay content, pH, ORP, and others) and ship traffic volume (STV) were the main driving factors for bacterial community distribution between WS and NS, while pollutants (heavy metals, perfluoroalkyl acids, and others) had a relatively minor influence. PICRUSt2 analysis revealed that the changes in pH, ORP, and STV under ship navigation might inhibit the bacterial ability to metabolize carbohydrates. The results reveal the comprehensive effects of ship navigation disturbance on sediment bacterial communities in the PRN and contribute to further understanding of inland waterway ecosystems.
Collapse
Affiliation(s)
- Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Peng Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China. .,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China. .,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yifan Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yueyang Dong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
10
|
Ren H, Ding Y, Hao X, Hao J, Liu J, Wang Y. Enhanced rhizoremediation of polychlorinated biphenyls by resuscitation-promoting factor stimulation linked to plant growth promotion and response of functional microbial populations. CHEMOSPHERE 2022; 309:136519. [PMID: 36210576 DOI: 10.1016/j.chemosphere.2022.136519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Rhizoremediation is acknowledged as a green technology for removing polychlorinated biphenyls (PCBs) in soil. However, rhizoremediation is limited because most soil microorganisms enter into a viable but non-culturable (VBNC) state under PCBs stress. This work was to study the effect of resuscitation-promoting factor (Rpf) on rhizoremediation efficiency of PCBs in alfalfa and rhizosphere microbiological communities. Results suggested that Rpf promoted alfalfa growth in PCB-contaminated soil by improving antioxidant enzymes and detoxification metabolites in alfalfa. After 40 d Rpf treatment, removal rate for five selected PCBs significantly increased by 0.5-2.2 times. Rpf enhanced relative abundances of bphA and bphC responsible for degrading PCBs, and enzymatic activities of metabolizing exogenous compounds in rhizosphere soil. High-throughput sequencing showed that Rpf did not change the dominant microbial population at phyla and genera levels, but caused variation of the bacterial community structures. The promoting function of Rpf was linked to the shift of various key populations having different functions depending on Rpf concentrations. Pseudomonas and Rhizobium spp. enrichment might stimulate PCB degradation and Streptomyces and Bacillus spp. primarily contributed to alfalfa growth. Predicted functions in rhizosphere soil bacterial community indicated Rpf facilitated soil nutrient cycling and environmental adaptation. This study indicated that Rpf was an active additive for strengthening rhizoremediation efficiency of PCB-contaminated soil and enhancing their in-situ remediation.
Collapse
Affiliation(s)
- Hejun Ren
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, China.
| | - Yuzhu Ding
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
| | - Xinyu Hao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
| | - Jianjun Hao
- School of Food & Agriculture, The University of Maine, Orono, 04469-5735, USA
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Yan Wang
- College of Plant Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
11
|
Lin Q, Zhou X, Zhang S, Gao J, Xie M, Tao L, Sun F, Shen C, Hashmi MZ, Su X. Oxidative dehalogenation and mineralization of polychlorinated biphenyls by a resuscitated strain Streptococcus sp. SPC0. ENVIRONMENTAL RESEARCH 2022; 207:112648. [PMID: 34990605 DOI: 10.1016/j.envres.2021.112648] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Most functional microorganisms cannot be cultivated due to entering a viable but non-culturable (VBNC) state, which limits the characterization and application of polychlorinated biphenyl (PCB)-degrading strains. Resuscitating VBNC bacteria could provide huge candidates for obtaining high-efficient PCB degraders. However, limited studies have focused on the ability of resuscitated strains for PCBs degradation. In the present study, whole-genome analysis of a resuscitated strain SPC0, and its performances in degradation of three prevalent PCB congeners (PCBs 18, 52 and 77) were investigated. The results indicate that the strain SPC0 belonged to the genus Streptococcus, possessed the degradation potential for aromatic xenobiotics. The SPC0 could effectively degrade PCBs 18 and 52, but exhibited lower degradation efficiency of PCB 77. Degradation of PCBs 18 and 52 could be fitted well by zero-order model, whereas the fittest model for PCB 77 degradation was pseudo second-order kinetics. The bph genes expression, chloride ions release and degradation metabolites identification, suggest that SPC0 possessed the capability of oxidative dehalogenation and mineralization of PCBs. Interestingly, SPC0 can degrade PCBs via the bph-encoded biphenyl pathway, and further mineralize metabolite dichlorobenzoate via protocatechuate pathway. This study is the first to show that a strain belonging to genus Streptococcus possessed PCB-degrading capability, which uncovered the powerful potential of resuscitated strains for bioremediation of PCB-contaminated sites.
Collapse
Affiliation(s)
- Qihua Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinru Zhou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, 325500, China
| | - Junliang Gao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Mengqi Xie
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Linqin Tao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
12
|
Koner S, Chen JS, Hsu BM, Rathod J, Huang SW, Chien HY, Hussain B, Chan MWY. Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for Biolog EcoPlate-based biostimulation strategy. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127266. [PMID: 34600373 DOI: 10.1016/j.jhazmat.2021.127266] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
This study explores the toxic effect of TCE at different depths of sub-surface soil and underpins microbial community-level suitable carbon (C)-sources that provided directionality to the in situ biostimulation effort via augmentation strategy for effective TCE remediation in soil. The impacts on resident microbial communities and their functional profiles that govern the TCE biodegradation process were identified. Highly contaminated PW01 soil (9 m depth) had severely limited microbial diversity and was enriched in Proteobacteria and Firmicutes. The abundance of TCE degradation-associated genera was observed in all contaminated samples, and the abundance of TCE-degradation-related taxa were positively correlated with soil TCE contamination levels. Community-level metabolic activity associated with the utilization of diverse external C-sources was directly influenced by TCE concentration and soil depth. Multivariate data analysis revealed that the functional genus, TCE concentration, and selected available C substrate uptake capacity correlated in soil samples. Pearson's correlation tests revealed that C sources such as L-arginine, phenylethylamine and γ-hydroxybutyric acid utilization trait exhibited significant positive correlations with chloroalkane and chloroalkene degradation pathway abundance. Ultimately, depth and TCE contamination level-associated soil microbiota and their most preferred C-source understanding could add to facilitate effective biostimulation via external nutrient amendment for efficient in situ TCE degradation.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan.
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Wei Huang
- Center for environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan; Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| | - Hua-Yi Chien
- Environmental Technology Development Department, Taiwan VCM Corporation, Kaohsiung, Taiwan; Department of Environmental Sciences and Engineering, Fooyin University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
13
|
Du J, Hou F, Zhou Q. Response of soil enzyme activity and soil bacterial community to PCB dissipation across different soils. CHEMOSPHERE 2021; 283:131229. [PMID: 34146884 DOI: 10.1016/j.chemosphere.2021.131229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Soils are a repository for polychlorinated biphenyls (PCBs). A pot incubation experiment was performed with four soils (black soil, paddy soil, oasis soil, and fluvo-aquic soil) treated with Aroclor 1242 to achieve PCB concentrations of 5 mg kg-1. The soil enzyme activities of protease, phosphatase, catalase, dehydrogenase, and laccase were determined by spectrophotometry. The soil bacterial communities were investigated using Illumina sequencing analysis. The results showed that the characteristics of the test soils varied among the soil types. The fluvo-aquic soil had the greatest PCB dissipation rate (86.41%), followed by the oasis (79.31%), paddy (56.09%), and black (50.65%) soils. The soil pH, cation exchange capacity, soil organic matter content, and particle diameter played significant roles in PCB dissipation from soils. The soil type had a greater influence than PCB contamination on the soil enzyme activities and bacterial communities (alpha diversity, community structure, and composition). Among the four soils, the bacterial communities of the fluvo-aquic soil were the most susceptible to PCB contamination. However, the bacterial communities of the black soil were not changed by PCB contamination.
Collapse
Affiliation(s)
- Junjie Du
- College of Life Science, Shanxi Normal University, Linfen, 041004, China
| | - Fen Hou
- School of Public Administration, Shanxi University of Finance and Economics, Taiyuan, 030000, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
14
|
Yuan J, Shentu J, Ma B, Lu Z, Luo Y, Xu J, He Y. Microbial and abiotic factors of flooded soil that affect redox biodegradation of lindane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146606. [PMID: 34030285 DOI: 10.1016/j.scitotenv.2021.146606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Pollution induces pressure to soil microorganism; and conversely, the degradation of pollutants is reported largely regulated by the soil microbiome assembly in situ. However, the specific-dependent core taxa of degraders were barely confirmed, which is not conducive to improving the soil remediation strategy. Taking pollution of a typical organochlorine pesticide (OCP), lindane, as an example, we explored the microbial community assembly in flooded soils and simultaneously quantified the corresponding dynamics of typical soil redox processes. Contrasting initial status of microbial diversity was set up by gamma irradiation or not, with additives (acetate, NaNO3, acetate + NaNO3) capable of modifying microbial growth employed simultaneously. Microorganism under lindane stress was reflected by microbial adaptability within complex co-occurrence networks, wherein some environment-dependent core taxa (e.g., Clostridia, Bacteroidia, Bacilli) were highly resilient to pollution and sterilization disturbances. Lindane had higher degradation rate in irradiated soil (0.96 mg kg-1 d-1) than non-irradiated soil (0.83 mg kg-1 d-1). In non-irradiated soil, addition of acetate promoted lindane degradation and methanogenesis, whereas nitrate inhibited lindane degradation but promoted denitrification. No significant differences in lindane degradation were observed in irradiated soils, which exhibited low-diversity microbiomes in parallel to stronger Fe reduction and methanogenesis. The varied corresponding trigger effects on soil redox processes are likely due to differences of soil microbiome, specifically, deterministic or stochastic assembly, in response to pollution stress under high or low initial microbial diversity conditions. Our results improve the knowledge of the adaptability of disturbed microbiomes and their feedback on microbial functional development in OCP-polluted soils, achieving for a more reliable understanding with respect to the ecological risk of soils resided with OCPs under the fact of global microbial diversity loss.
Collapse
Affiliation(s)
- Jing Yuan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jue Shentu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhijiang Lu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
15
|
Dong Y, Wu S, Deng Y, Wang S, Fan H, Li X, Bai Z, Zhuang X. Distinct Functions and Assembly Mechanisms of Soil Abundant and Rare Bacterial Taxa Under Increasing Pyrene Stresses. Front Microbiol 2021; 12:689762. [PMID: 34276621 PMCID: PMC8283415 DOI: 10.3389/fmicb.2021.689762] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/20/2021] [Indexed: 01/23/2023] Open
Abstract
Elucidating the relative importance of species interactions and assembly mechanisms in regulating bacterial community structure and functions, especially the abundant and rare subcommunities, is crucial for understanding the influence of environmental disturbance in shaping ecological functions. However, little is known about how polycyclic aromatic hydrocarbon (PAH) stress alters the stability and functions of the abundant and rare taxa. Here, we performed soil microcosms with gradient pyrene stresses as a model ecosystem to explore the roles of community assembly in determining structures and functions of the abundant and rare subcommunities. The dose–effect of pyrene significantly altered compositions of abundant and rare subcommunities. With increasing pyrene stresses, diversity increased in abundant subcommunities, while it decreased in the rare. Importantly, the abundant taxa exhibited a much broader niche width and environmental adaptivity than the rare, contributing more to pyrene biodegradation, whereas rare taxa played a key role in improving subcommunity resistance to stress, potentially promoting community persistence and stability. Furthermore, subcommunity co-occurrence network analysis revealed that abundant taxa inclined to occupy the core and central position in adaptation to the pyrene stresses. Stochastic processes played key roles in the abundant subcommunity rather than the rare subcommunity. Overall, these findings extend our understanding of the ecological mechanisms and interactions of abundant and rare taxa in response to pollution stress, laying a leading theoretical basis that abundant taxa are core targets for biostimulation in soil remediation.
Collapse
Affiliation(s)
- Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xianglong Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|