1
|
Sim W, Muambo KE, Choi J, Park S, Oh JE. Occurrence, distribution, and prioritization of unregulated emerging contaminants including battery-related chemicals in drinking water systems across South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178799. [PMID: 39946883 DOI: 10.1016/j.scitotenv.2025.178799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
This study investigated the presence of 95 emerging contaminants comprising pharmaceuticals, stimulants, artificial sweeteners, nicotine metabolites, corrosion inhibitors, battery-related pollutants, and pesticides across 70 drinking water treatment plants. Battery-related contaminants (lithium, nickel, and cobalt), with total concentrations raging from 424 to 38,500 ng/L (median 2560 ng/L) in the raw water and from 596 to 34,300 ng/L (median 2510 ng/L) in the treated water, showed the highest detection frequencies (≥99 %). The median levels of nickel (1440 ng/L in raw water and 1620 ng/L in treated water) were higher than those of lithium (591 ng/L in raw water and 445 ng/L in treated water) and cobalt (233 ng/L in raw water and 95.3 ng/L in treated water). Organic contaminants (raw water: 33.6-6540 ng/L, median 827 ng/L; treated water: not detected-1900 ng/L, median 121 ng/L) mostly had lower total levels than battery-related chemicals. Telmisartan (median 36.6 ng/L in raw water and median 7.47 ng/L in treated water) and valsartan acid (median 26.3 ng/L in raw water and median 6.61 ng/L in treated water) were the predominant pharmaceuticals. For corrosion inhibitors, benzothiazole (29.0 ng/L in raw water and 7.21 ng/L in treated water) displayed the highest median concentrations. Bentazone (median 119 ng/L) was the most predominant pesticide in raw water. The distribution patterns of contaminants in raw water were related to various pollution sources in industries, agricultural zones, and daily life. Additionally, rainfall increased the inflow of lithium, nickel, cobalt, and benzothiazole into public waterways. According to the human health risk assessment using the maximum levels of contaminants, lithium, nickel, cobalt, and valsartan acid were the priority contaminants in treated water, indicating potential risks or need for further evaluation. The priority contaminants with high or moderate risks to aquatic ecosystems in raw water were three battery-related chemicals, six pharmaceuticals, and five pesticides.
Collapse
Affiliation(s)
- Wonjin Sim
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Kimberly Etombi Muambo
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | | | - Sangmin Park
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Hou J, Wang N, Hu C, Yang L, Wang X, Li J. Reshuffling the risk values of pesticides in surface-groundwater systems: Evidence from mining intensity and hydrogeological vulnerabilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178755. [PMID: 39946889 DOI: 10.1016/j.scitotenv.2025.178755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
The extensive application of pesticides in agricultural cultivation and crop maintenance has resulted in their widespread occurrence and accumulation across diverse environmental media. This study screened >52 target pesticides occurs in both surface and groundwater, including 16 carbamates, 8 triazines, 6 triazoles, 4 chloroacetanilides, 3 neonicotinoids, 3 pyrazoles, 2 morpholines, and 10 other types of pesticides within the Wulong River Basin, situated on the Shandong Peninsula in China. The target pesticides in surface water ranged from below the limit of quantification (LOQ) to 111.2 ng/L, whereas in groundwater, they ranged from below LOQ to 148.1 ng/L. 63 % (p < 0.05) of the target pesticides follow the migration rule, where the concentration in surface water appears exceeded groundwater. 37 % overcome the pesticide properties and aquifer intrinsic vulnerability and show higher values in groundwater. The risk quotient values for imidacloprid and atrazine exceeded 1 at 86 % of the sampling sites, indicating a high level of chronic ecological risk to aquatic organisms. The assessment of pesticide mixtures posed 15 % to 24 % higher risk levels to aquatic organisms compared to individual pesticides. While the non-carcinogenic risks associated with groundwater across all age groups were below the threshold of 1, there was a significant potential carcinogenic risk, particularly for children, warrants due attention. This study provides a new perspective for the systematic analysis of surface-groundwater systems and identify the exposure potential of pesticides in different water bodies and generate priority levels for risk assessment.
Collapse
Affiliation(s)
- Jinlong Hou
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Nan Wang
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Changqin Hu
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Lei Yang
- National Research Center for Geoanalysis, Beijing 100037, China; Key Laboratory of Ministry of Natural Resources for Eco-Geochemistry, Beijing 100037, China.
| | - Xiaocui Wang
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Jin Li
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Drakopoulou SK, Kokolakis SE, Karagiannidis AL, Dasenaki ME, Maragou NC, Thomaidis NS. A comprehensive HRMS methodology using LC-(ESI)-/GC-(APCI)-QTOF MS complementary platforms for wide-scope target screening of >750 pesticides in olive oil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2684-2692. [PMID: 38623768 DOI: 10.1039/d4ay00181h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
This study presents the development and validation of a comprehensive high-resolution mass spectrometry (HRMS) methodology for the detection of 771 pesticides in olive oil, using liquid chromatography with electrospray ionization, operating in positive and negative mode, and gas chromatography with atmospheric-pressure chemical ionization in positive mode, both coupled to quadrupole-time-of-flight mass spectrometry (LC-(ESI)-/GC-(APCI)-QTOF MS). Special reference is made to the post-acquisition evaluation step, in which all LC/GC-HRMS analytical evidence (i.e. mass accuracy, retention time, isotopic pattern, MS/MS fragmentation) is taken into account in order to successfully identify the compounds. The sample preparation of the method involves a QuEChERS-based protocol, common for both techniques, differentiated only on the reconstitution step, making the method highly applicable in routine analysis. A smart evaluation of method's performance was carried out, with 65 representative analytes comprising the validation set. The method was validated in terms of linearity, accuracy, matrix effect and precision, while the limits of detection and quantification of the method were estimated. Finally, twenty Greek olive oil samples were analysed in both analytical platforms and the findings included the pesticides lambda-cyhalothrin, chlorpyrifos, phosphamidon, pirimiphos-methyl and esprocarb at low ng g-1 level.
Collapse
Affiliation(s)
- Sofia K Drakopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Stefanos E Kokolakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Apostolos L Karagiannidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Marilena E Dasenaki
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Niki C Maragou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
5
|
Lu Y, Wang S. Theoretical explanation of direct photolysis and indirect photolysis of bendazone with •OH, •SO 4-, and •CO 3- in water: mechanism insights and ecotoxicity evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18982-18992. [PMID: 38353814 DOI: 10.1007/s11356-024-32315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Bendazone (BNTE) is an herbicide and a highly concerned pollutant in aquatic environments. Understanding the photochemical behavior of BNTE in water is crucial for evaluating its photochemical conversion process in aquatic environments. This study analyzed the direct photolysis and indirect photolysis pathways of two dissociated forms of BNTE in water through density functional theory and time-dependent density functional theory method. The results show that the reaction types of indirect photolysis of BNTE with free radicals (•OH, •SO4-, and •CO3-) are OH- addition, SO4- addition, and CO3- addition. In the process of indirect photolysis of BNTE and free radicals, the photolysis of •OH and BNTE was the easiest, followed by •SO4-. In addition, the active site of BNTE reacting with •OH is C8, and the active site of BNTE reacting with •SO4- is C10. However, the photolysis effect of •CO3- on BNTE is very small, indicating that •CO3- in water plays a secondary role in the indirect photolysis of BNTE. In the direct photolysis of BNTE, N1-C6 bond breaking is difficult to occur spontaneously in the environment due to its high endothermic property and energy barrier. The direct photolysis pathway of BNTE involves the break of the N1-S2/S2-N3/N3-C12 bond. In addition, the ecological toxicity evaluation showed that toxicity of most of the degradation products were reduced, but the toxicity level was still maintained at a harmful level. Our findings provide the photochemical fate of BNTE in aquatic environments and will help to more accurately understand their photochemical conversion mechanisms in the environment.
Collapse
Affiliation(s)
- Ying Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Se Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
6
|
Rodrigues VB, Menezes JM, da Silva LC, Müller I, Mallmann L, Hermann BS, Menezes C, Brucker N, da Vida RL, Picada JN, Boaretto FBM, Schneider A, Linden R, Zanella R, Fleck JD, Charão MF. Caenorhabditis elegans as a suitable model to evaluate the toxicity of water from Rolante River, southern Brazil. Toxicol Res (Camb) 2024; 13:tfad117. [PMID: 38178995 PMCID: PMC10762661 DOI: 10.1093/toxres/tfad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Urbanization and agricultural activities increased environmental contaminants. Integrated analysis of water parameters and bioassays represents an essential approach to evaluating aquatic resource quality. This study aimed to assess water quality by microbiological and physicochemical parameters as well as the toxicological effects of water samples on the Ames test and Caenorhabditis elegans model. Samples were collected during (collection 1) and after (collection 2) pesticide application in the upper (S1), middle (S2), and lower (S3) sections of the Rolante River, southern Brazil. Metals were determined by GFAAS and pesticides by UPLC-MS/MS. Bioassays using the Ames test and the nematode C. elegans were performed. Levels of microbiological parameters, as well as Mn and Cu were higher than the maximum allowed limits established by legislation in collection 2 compared to collection 1. The presence of pesticide was observed in both collections; higher levels were found in collection 1. No mutagenic effect was detected. Significant inhibition of body length of C. elegans was found in collection 1 at S2 (P < 0.001) and S3 (P < 0.001) and in collection 2 at S2 (P = 0.004). Comparing the same sampling site between collections, a significant difference was found between the site of collection (F(3,6)=8.75, P = 0.01) and the time of collection (F(1,2)=28.61, P = 0.03), for the S2 and S3 samples. C. elegans model was useful for assessing surface water quality/toxicity. Results suggest that an integrated analysis for the surface water status could be beneficial for future approaches.
Collapse
Affiliation(s)
- Vinícius Bley Rodrigues
- Laboratory of Analytical Toxicology, Post-graduation in Toxicology and Toxicological Analysis, Feevale University, ERS 239, 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil
| | - Júlia Machado Menezes
- Laboratory of Analytical Toxicology, Post-graduation in Toxicology and Toxicological Analysis, Feevale University, ERS 239, 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil
| | - Laura Cé da Silva
- Laboratory of Analytical Toxicology, Post-graduation in Toxicology and Toxicological Analysis, Feevale University, ERS 239, 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil
| | - Isadora Müller
- Laboratory of Analytical Toxicology, Post-graduation in Toxicology and Toxicological Analysis, Feevale University, ERS 239, 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil
| | - Larissa Mallmann
- Laboratory of Molecular Microbiology, Post-graduation in Virology, Feevale University, ERS 239, 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Bruna Saraiva Hermann
- Laboratory of Molecular Microbiology, Post-graduation in Virology, Feevale University, ERS 239, 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Charlene Menezes
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Pharmacology Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Roselaine L da Vida
- Graduate Program in Pharmacology, Pharmacology Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS 92425-900, Brazil
| | - Fernanda Brião Menezes Boaretto
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS 92425-900, Brazil
| | - Anelise Schneider
- Laboratory of Analytical Toxicology, Post-graduation in Toxicology and Toxicological Analysis, Feevale University, ERS 239, 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil
| | - Rafael Linden
- Laboratory of Analytical Toxicology, Post-graduation in Toxicology and Toxicological Analysis, Feevale University, ERS 239, 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil
| | - Renato Zanella
- Pesticide Residue Analysis Laboratory (LARP), Chemistry Department, Analytical Chemistry Sector, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Juliane Deise Fleck
- Laboratory of Molecular Microbiology, Post-graduation in Virology, Feevale University, ERS 239, 2755, Novo Hamburgo, RS 93352-000, Brazil
| | - Mariele Feiffer Charão
- Laboratory of Analytical Toxicology, Post-graduation in Toxicology and Toxicological Analysis, Feevale University, ERS 239, 2755, Vila Nova, Novo Hamburgo, RS 93352-000, Brazil
| |
Collapse
|
7
|
Yue Y, Sun X, Tian S, Yan S, Sun W, Miao J, Huang S, Diao J, Zhou Z, Zhu W. Multi-omics and gut microbiome: Unveiling the pathogenic mechanisms of early-life pesticide exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105770. [PMID: 38458664 DOI: 10.1016/j.pestbp.2024.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
The extensive application of pesticides in agricultural production has raised significant concerns about its impact on human health. Different pesticides, including fungicides, insecticides, and herbicides, cause environmental pollution and health problems for non-target organisms. Infants and young children are so vulnerable to the harmful effects of pesticide exposure that early-life exposure to pesticides deserves focused attention. Recent research lays emphasis on understanding the mechanism between negative health impacts and early-life exposure to various pesticides. Studies have explored the impacts of exposure to these pesticides on model organisms (zebrafish, rats, and mice), as well as the mechanism of negative health effects, based on advanced methodologies like gut microbiota and multi-omics. These methodologies help comprehend the pathogenic mechanisms associated with early-life pesticide exposure. In addition to presenting health problems stemming from early-life exposure to pesticides and their pathogenic mechanisms, this review proposes expectations for future research. These proposals include focusing on identifying biomarkers that indicate early-life pesticide exposure, investigating transgenerational effects, and seeking effective treatments for diseases arising from such exposure. This review emphasizes how to understand the pathogenic mechanisms of early-life pesticide exposure through gut microbiota and multi-omics, as well as the adverse health effects of such exposure.
Collapse
Affiliation(s)
- Yifan Yue
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiyan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Lee S, Choi Y, Kang D, Jeon J. Proposal for priority emerging pollutants in the Nakdong river, Korea: Application of EU watch list mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122838. [PMID: 37918771 DOI: 10.1016/j.envpol.2023.122838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The Nakdong River, the longest in Korea, has received numerous pollutants from heavily industrialized and densely populated areas while being used as a drinking water source. A number of research have reported occurrences of emerging pollutants (EPs) in the river. The results requested efficient monitoring and systematic management strategies such as EU watch list under Water Framework Directive. The aim of this study is to propose a watch list through preliminary monitoring of the river and risk-based prioritization approach. As candidates for monitoring target, 632 substances were selected based on literature and database searches. Among them, 175 substances were subjected to target screening method whereas 457 were evaluated via suspect screening. A risk-based prioritization was applied to substances quantified through target screening based on concentrations, and a scoring-based prioritization was applied to substances tentatively identified through suspect screening. Sampling campaigns (n = 12) were conducted from October 2020 to September 2021, at 8 sampling sites along the river. As a result, 130 target substances were quantified above the LOQ. Among the 21 substances whose priority score was assigned through risk-based prioritization, telmisartan and iprobenfos were identified with very high environmental risk while candesartan, TBEP, imidacloprid, azithromycin and clotrimazole were classified with high or intermediate risk. As result of the scoring system for 39 tentatively identified substances, 6 substances (benzophenone, caprolactam, metolachlor oxanilic acid, heptaethylene glycol, octaethylene glycol and pentaethylene glycol), which were then confirmed with reference standards, showed a potential environmental risk. Those substances prioritized through target and suspect screening followed by scoring systems can be a subset for the watch list and potential targets for nationwide water quality monitoring program in the future.
Collapse
Affiliation(s)
- Sangyoon Lee
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; Water Environmental Safety Management Dept., Korea Water Resources Corporation (K-water), 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, South Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea.
| |
Collapse
|
9
|
Mohd Ghazi R, Nik Yusoff NR, Abdul Halim NS, Wahab IRA, Ab Latif N, Hasmoni SH, Ahmad Zaini MA, Zakaria ZA. Health effects of herbicides and its current removal strategies. Bioengineered 2023; 14:2259526. [PMID: 37747278 PMCID: PMC10761135 DOI: 10.1080/21655979.2023.2259526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
The continually expanding global population has necessitated increased food supply production. Thus, agricultural intensification has been required to keep up with food supply demand, resulting in a sharp rise in pesticide use. The pesticide aids in the prevention of potential losses caused by pests, plant pathogens, and weeds, but excessive use over time has accumulated its occurrence in the environment and subsequently rendered it one of the emerging contaminants of concern. This review highlights the sources and classification of herbicides and their fate in the environment, with a special focus on the effects on human health and methods to remove herbicides. The human health impacts discussion was in relation to toxic effects, cell disruption, carcinogenic impacts, negative fertility effects, and neurological impacts. The removal treatments described herein include physicochemical, biological, and chemical treatment approaches, and advanced oxidation processes (AOPs). Also, alternative, green, and sustainable treatment options were discussed to shed insight into effective treatment technologies for herbicides. To conclude, this review serves as a stepping stone to a better environment with herbicides.
Collapse
Affiliation(s)
- Rozidaini Mohd Ghazi
- Faculty of Earth Science, Universiti Malaysia Kelantan - Jeli Campus, Jeli, Kelantan, Malaysia
| | - Nik Raihan Nik Yusoff
- Faculty of Earth Science, Universiti Malaysia Kelantan - Jeli Campus, Jeli, Kelantan, Malaysia
| | | | | | - Nurzila Ab Latif
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Siti Halimah Hasmoni
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | | | - Zainul Akmar Zakaria
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
10
|
de Oliveira DM, Agostinetto L, Siegloch AE. Comparison of the drinking water standard for pesticides of the Brazil with other countries. Heliyon 2023; 9:e13783. [PMID: 36873476 PMCID: PMC9976313 DOI: 10.1016/j.heliyon.2023.e13783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The objective was to compare the types and concentrations of pesticides allowed in the water potability standard for human supply in Brazil with other countries considered to be the largest consumers of pesticides in dollars invested in purchase/trade. This is a descriptive and documentary study, with data collection in regulations available in official government websites in Brazil, USA, China, Japan, France, Germany, Canada, Argentina, India, Italy, and World Health Organization (WHO). Since Germany, France and Italy are part of the European Union (EU), the legislative resolution of the European Parliament was adopted. Pesticides number and maximum permitted values (MPV) differ between the countries and WHO. In the Brazilian ordinance there are forty pesticides, a number like the USA, Canada, China, and WHO, but that represents only 8% of the total pesticides registered for agricultural use in Brazil. When comparing the ordinance of Brazil with EU the values are only the same for Aldrin + Dieldrin. For other, amounts between 2 and 5000 times more are allowed in Brazil. Brazilian regulations do not establish a total value for the mixture of pesticides in water, only individual limits, which together can reach 1677.13 μg/L, while in EU standards it is only 0.5 μg/L. The study showed discrepancies of the pesticides allowed in water potability standard of the Brazil with other countries, but features 12 pesticides with the same concentrations as WHO guidelines, thus, a worldwide standardization in water potability regulations is necessary to promote health and reducing risk of exposure.
Collapse
Affiliation(s)
- Dinoraide Mota de Oliveira
- Programa de Pós-Graduação em Ambiente e Saúde, Universidade do Planalto Catarinense - UNIPLAC, Santa Catarina State, Brazil
| | - Lenita Agostinetto
- Programa de Pós-Graduação em Ambiente e Saúde, Universidade do Planalto Catarinense - UNIPLAC, Santa Catarina State, Brazil
| | - Ana Emilia Siegloch
- Programa de Pós-Graduação em Ambiente e Saúde, Universidade do Planalto Catarinense - UNIPLAC, Santa Catarina State, Brazil
| |
Collapse
|
11
|
Liu F, Zhang G, Zhang C, Zhou W, Xu X, Shou Q, Yuan F, Li Q, Huang H, Hu J, Jiang W, Qin J, Ye W, Dai P. Pesticide exposure and forage shortage in rice cropping system prevents honey bee colony establishment. ENVIRONMENTAL RESEARCH 2023; 219:115097. [PMID: 36566965 DOI: 10.1016/j.envres.2022.115097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
As one of the key stable crops to feed half of the world's population, how rice cropping system affects honey bee health regarding pesticide exposure and forage availability is under investigated. We predicted honey bees were stressed by high pesticide exposure and forage dearth in monoculture rice systems. Providing access to natural habitats is a typical approach to mitigate the negative impact of intensive agriculture on honey bees. We aimed to determine if bee colonies located in landscapes with more cover of forest habitat would collect more forage and be exposed to less pesticides. We selected beekeeping locations in rice dominated landscapes (as control), mosaic landscapes of rice and medium woodland (MW) cover, and landscapes of high woodland (HW) cover, respectively, in July when rice starts bloom and pesticides are commonly used. Colonies were inspected at a biweekly frequency from July to October with population growth and forage (nectar and pollen) availability estimated. Pollen and bees were collected in middle August for pesticide exposure analysis. We did not observe enhancement in forage availability and reduction in pesticide exposure in landscapes with increased forest habitat (i.e., MW or HW cover), and all colonies failed in the end. Other natural habitats that can supplement flower shortage periods in forest can be considered for supporting bee health. Our results suggest that forest should be carefully assessed for being incorporated into beekeeping management or pollinator conservation when forest phenology can be a factor to affect its impact as a natural habitat.
Collapse
Affiliation(s)
- Feng Liu
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China; Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China
| | - Ge Zhang
- Department of Entomology, Washington State University, Pullman, WA, 99164, USA
| | - Chuanlian Zhang
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China
| | - Weiliang Zhou
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China
| | - Xijian Xu
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China
| | - Qinyi Shou
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China
| | - Fang Yuan
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China
| | - Qian Li
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China
| | - Huijun Huang
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China
| | - Jinghua Hu
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China
| | - Wujun Jiang
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China
| | - Jiamin Qin
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China; Yunnan Academy of Agricultural Sciences, Institute of Sericultural and Apiculture, Mengzi, Yunnan, 661101, People's Republic of China
| | - Wuguang Ye
- Apiculture Institute of Jiangxi Province, Nanchang, Jiangxi, 330052, People's Republic of China.
| | - Pingli Dai
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
12
|
Narita K, Matsui Y, Matsushita T, Shirasaki N. Screening priority pesticides for drinking water quality regulation and monitoring by machine learning: Analysis of factors affecting detectability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116738. [PMID: 36375426 DOI: 10.1016/j.jenvman.2022.116738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Proper selection of new contaminants to be regulated or monitored prior to implementation is an important issue for regulators and water supply utilities. Herein, we constructed and evaluated machine learning models for predicting the detectability (detection/non-detection) of pesticides in surface water as drinking water sources. Classification and regression models were constructed for Random Forest, XGBoost, and LightGBM, respectively; of these, the LightGBM classification model had the highest prediction accuracy. Furthermore, its prediction performance was superior in all aspects of Recall, Precision, and F-measure compared to the detectability index method, which is based on runoff models from previous studies. Regardless of the type of machine learning model, the number of annual measurements, sales quantity of pesticide for rice-paddy field, and water quality guideline values were the most important model features (explanatory variables). Analysis of the impact of the features suggested the presence of a threshold (or range), above which the detectability increased. In addition, if a feature (e.g., quantity of pesticide sales) acted to increase the likelihood of detection beyond a threshold value, other features also synergistically affected detectability. Proportion of false positives and negatives varied depending on the features used. The superiority of the machine learning models is their ability to represent nonlinear and complex relationships between features and pesticide detectability that cannot be represented by existing risk scoring methods.
Collapse
Affiliation(s)
- Kentaro Narita
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan.
| | - Taku Matsushita
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Nobutaka Shirasaki
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| |
Collapse
|
13
|
Wang P, Cao M, Pan F, Liu J, Wan Y, Wang H, Xia W. Bentazone in water and human urine in Wuhan, central China: exposure assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7089-7095. [PMID: 34467478 DOI: 10.1007/s11356-021-16177-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Bentazone is a widely used post-emergence herbicide, while no data was available on its concentrations in tap water from China and in urine among the general population. It was determined in the source (Wuhan section of the Yangtze River watershed), treated, and tap water (n = 20, 20, and 170, respectively) in different seasons (2019) in Wuhan, central China. Also, urine samples (n = 38) collected from healthy adults in Wuhan (September 2020) were analyzed to characterize its urinary concentration. Bentazone was detected in all the source and treated water samples. Its concentrations in the source water in July were higher than those in February (median: 17.9 ng/L vs. 2.86 ng/L) (p < 0.05). It cannot be removed efficiently (27.8-27.9%) by conventional drinking water treatment using NaClO, but it can be efficiently removed by using chlorine dioxide or ozone combined with activated carbon. Bentazone was frequently detected (detection frequency: 96.3%) in 160 tap water samples (underwent conventional treatment) (median: 1.95 ng/L, range: <0.02-47.0 ng/L), while it was not detectable in tap water samples that underwent ozone combined with activated carbon. Seasonal variations were found, with the lowest median concentration (ng/L) in April (0.46) and the highest in July (17.6). In addition, bentazone was frequently (92.1%) detected in human urine samples (median: 0.02 ng/mL; range: < 0.01-0.11 ng/mL). The estimated daily intake of bentazone based on its median concentration in tap water (0.04 ng/kg-body weight [bw]/day) accounted for approximately 8% of that based on the median urinary concentration (0.48 ng/kg-bw/day). This is the first time to characterize its occurrence in drinking water from China and its occurrence in the urine of the general population.
Collapse
Affiliation(s)
- Pei Wang
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Meiling Cao
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Feng Pan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Junling Liu
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China.
| | - Huaiji Wang
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
14
|
Liu J, Xia W, Wan Y, Xu S. Azole and strobilurin fungicides in source, treated, and tap water from Wuhan, central China: Assessment of human exposure potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149733. [PMID: 34467936 DOI: 10.1016/j.scitotenv.2021.149733] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Fungicides are widely used in agriculture worldwide. However, data on the occurrence of fungicides in drinking water are scarce. This study aimed to determine the occurrence of 12 selected fungicides in drinking water, the removal efficiency of conventional water treatment processes for fungicides, and the risk of fungicide exposure. In this study, source water (February and July), treated water (February and July), and tap water samples (February, April, July, and October) were collected from Wuhan, central China, in 2019. Seven of the twelve selected fungicides were 100% detected in the three types of water samples; tricyclazole was found with the highest concentrations in the source water phase (median: 15.2 ng/L; range: 4.21-67.9 ng/L). The concentrations of the 12 selected fungicides remaining in the treated water samples (median proportion of the remaining content: 77.5%) revealed that most of the target analytes may not be removed efficiently by conventional water treatment processes, though they could be removed efficiently by advanced treatment. Higher concentrations of the fungicides were observed in samples collected in July (median: 38.7 ng/L; range: 12.5-85.8 ng/L), followed by those in October (median: 21.8 ng/L; range: 10.2-58.8 ng/L), February (median: 9.82 ng/L; range: 5.63-93.3 ng/L), and April (median: 7.13 ng/L; range: 6.23-91.1 ng/L). The health risk assessment implied that estimated daily intake of these fungicides through tap water ingestion might pose a low risk to consumers, though risk associated with infant exposure to the fungicides requires further attention. This study provides baseline data on the occurrence, removal efficiencies, and seasonal variations of the selected fungicides in tap water from central China.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
15
|
Ouyang W, Zhang Y, Lin C, Wang A, Tysklind M, Wang B. Metabolic process and spatial partition dynamics of Atrazine in an estuary-to-bay system, Jiaozhou bay. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125530. [PMID: 33667800 DOI: 10.1016/j.jhazmat.2021.125530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The spatial distributions of atrazine and six types of metabolites in water, suspended particulate sediment (SPS), and surface sediment in an estuary-to-bay system were analyzed. The water distance of metabolites demonstrated that degradation was more active in coastal zone and the Desisopropylatrazine had the shortest half-distance of 1.6 Km from the river mouth. The dechlorination-hydroxylation metabolites were the dominant pollutants in the bay and the Didealkyl-atrazine (DDA), Deisopropylhydroxy-atrazine (DIHA), and Deethylhydroxy-atrazine (DEHA) had higher concentrations in all three mediums. The DDA had the biggest content (6.58 ng/g) in the coastal sediment. The DIHA was the only pollutant had bigger concentration during the transport, and the others continually degraded with smaller value. The spatial distributions of pollutants in sediment had different patterns in water with SPS. The water-particle phase partition coefficient (Kp) analysis indicated that the partition process was more active in the estuary than the bay, and the metabolites had stronger capacity than atrazine. The correlations between Kp with octanol-water partitioning coefficient showed their physic-chemical properties were the important factors for vertical partition between seawater with sediment. The correlations with marine environmental factors demonstrated that the metabolite type was the direct factor for the redistributions during the transport.
Collapse
Affiliation(s)
- Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yu Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mats Tysklind
- Environmental Chemistry, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China
| |
Collapse
|
16
|
Narita K, Matsui Y, Matsushita T, Shirasaki N. Selection of priority pesticides in Japanese drinking water quality regulation: Validity, limitations, and evolution of a risk prediction method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141636. [PMID: 32882551 DOI: 10.1016/j.scitotenv.2020.141636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Several risk scoring and ranking methods have been applied for the prioritization of micropollutants, including pesticides, and in the selection of pesticides to be regulated regionally and nationally. However, the effectiveness of these methods has not been evaluated in Japan. We developed a risk prediction method to select pesticides that have a high probability of being detected in drinking water sources where no monitoring data is available. The risk prediction method was used to select new pesticides for the 2013 Primary List in the Japanese Drinking Water Quality Guidelines. Here, we examined the effectiveness of the method on the basis of the results of water quality examinations conducted by water supply authorities across Japan, and studied ways to improve the risk prediction method. Of the 120 pesticides in the 2013 Primary List, 80 were detected in drinking water sources (raw water entering water treatment plants). The rates of detection of the newly selected pesticides and previously listed pesticides were not significantly different: 64% and 68%, respectively. When the risk predictor was revised to incorporate degradability of dry-field pesticides and current pesticide sales data, the rate of detection of pesticides selected as having a high risk of detection improved from 72% to 88%. We prepared regional versions of the Primary List using the revised risk predictors and verified their utility. The number of listed pesticides varied greatly by region, ranging from 32 to 73; all regional lists were much shorter than the national Primary List. In addition, 55% to 100% of the pesticides detected in each region were included in a Regional Primary List. This work verifies the ability of the risk prediction method to screen pesticides and select those with a high risk of detection.
Collapse
Affiliation(s)
- Kentaro Narita
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan.
| | - Taku Matsushita
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Nobutaka Shirasaki
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| |
Collapse
|