1
|
Ye M, Zhang W, Zhao S, Zhang J, Li Y, Pan H, Jiang Z, Li J, Xie X. Coupled transformation pathways of iron minerals and natural organic matter related to iodine mobilization in alluvial-lacustrine aquifer. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135944. [PMID: 39332257 DOI: 10.1016/j.jhazmat.2024.135944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
The complex of natural organic matter (NOM) and iron minerals in sediment is the main host and source of groundwater iodine. However, the transformation pathways of the complex remain unclear. The groundwater and sediment from the Hetao Basin were collected in this study to analyze multi-isotopes, NOM molecular characteristics, and iron mineral phases. The results showed that high-iodine groundwater was mainly observed in the discharge area, where biodegradation of NOM, sulfate reduction and methanogenesis occurred. Compared to the shallow clayey sediments, the confined sandy sediments had lower iodine content, a lower fraction of crystalline iron oxides, and a higher fraction of carbonate associated Fe(II) minerals, suggesting that the release of sediment iodine in the aquifer is related to the transformation of sediment Fe(III) hydroxides/oxides. Moreover, the molecular features of high-iodine groundwater NOM and sandy sediment NOM were characterized by a higher proportion of refractory compounds, suggesting that the reductive transformation of sediment Fe(III) hydroxides/oxides is fueled by degradable organic compounds. The microbial Fe-reducing and/or sulfate-reducing processes cause the enrichment of groundwater iodine in the form of iodide via the transformation of iodine species. These findings provide new insights into the genesis of high-iodine groundwater.
Collapse
Affiliation(s)
- Mingxia Ye
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Wenyi Zhang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Shilin Zhao
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jingxian Zhang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanlong Li
- Geological Survey Academy of Inner Mongolia Autonomous Region, Huhhot 010020, China
| | - Hongjie Pan
- Geological Survey Academy of Inner Mongolia Autonomous Region, Huhhot 010020, China
| | - Zhou Jiang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Junxia Li
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| | - Xianjun Xie
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
2
|
Li X, Niu A, Yang S, Liu F. The reduction of nitrobenzene by Fe(II)-goethite-hematite heterogeneous systems: Insight from thermodynamic parameters of reduction potential. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122404. [PMID: 39250851 DOI: 10.1016/j.jenvman.2024.122404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Determining the contaminants reduction rate by dissolved ferrous iron (Fe(II)aq) bound to iron oxides is curial for evaluating the abiotic attenuation of contaminants in aquifers. However, few studies have assessed the contaminants reduction rate controlled by thermodynamic parameters in heterogeneous systems with different iron oxides. In this study, a linear free energy relationship (LFER) was established between the nitrobenzene reduction rate and the thermodynamic driving force (reduction potential (EH) and pH) in Fe(II)aq-goethite-hematite co-existing systems. Results showed that the reduction rate of nitrobenzene correlated with the EH of the heterogeneous system. The standard reduction potential (EH0mix) of the mixed iron oxides could be obtained by a proportionate linear combination of the single iron oxide system EH0. Based on this, the EH of the heterogeneous systems could be calculated theoretically by combining EH0mix and the Nernst equation. Furthermore, a parallel LFER with the slope of 1 was established to associate the nitrobenzene reduction rate with EH and pH. The intercept term was related to the adsorption capacity of different iron oxides towards Fe(II)aq. The Fe(II)aq saturation adsorption capacity of hematite was 1.5 times higher than that of goethite. After normalizing the nitrobenzene reduction rate to the Fe(II)aq saturation adsorption capacity, the maximum difference in intercept terms was reduced from 37% to 15%. These findings would provide an important and feasible methodological support for the quantitative evaluation of abiotic attenuation of contaminants in groundwater.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Aiyu Niu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shanshan Yang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China.
| |
Collapse
|
3
|
Spielman-Sun E, Boye K, Dwivedi D, Engel M, Thompson A, Kumar N, Noël V. A Critical Look at Colloid Generation, Stability, and Transport in Redox-Dynamic Environments: Challenges and Perspectives. ACS EARTH & SPACE CHEMISTRY 2024; 8:630-653. [PMID: 38654896 PMCID: PMC11033945 DOI: 10.1021/acsearthspacechem.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 04/26/2024]
Abstract
Colloid generation, stability, and transport are important processes that can significantly influence the fate and transport of nutrients and contaminants in environmental systems. Here, we critically review the existing literature on colloids in redox-dynamic environments and summarize the current state of knowledge regarding the mechanisms of colloid generation and the chemical controls over colloidal behavior in such environments. We also identify critical gaps, such as the lack of universally accepted cross-discipline definition and modeling infrastructure that hamper an in-depth understanding of colloid generation, behavior, and transport potential. We propose to go beyond a size-based operational definition of colloids and consider the functional differences between colloids and dissolved species. We argue that to predict colloidal transport in redox-dynamic environments, more empirical data are needed to parametrize and validate models. We propose that colloids are critical components of element budgets in redox-dynamic systems and must urgently be considered in field as well as lab experiments and reactive transport models. We intend to bring further clarity and openness in reporting colloidal measurements and fate to improve consistency. Additionally, we suggest a methodological toolbox for examining impacts of redox dynamics on colloids in field and lab experiments.
Collapse
Affiliation(s)
- Eleanor Spielman-Sun
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kristin Boye
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dipankar Dwivedi
- Earth
and Environmental Sciences Area, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Maya Engel
- Department
of Soil and Water Sciences, Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aaron Thompson
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
| | - Naresh Kumar
- Soil
Chemistry, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Vincent Noël
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
4
|
Kwasigroch U, Łukawska-Matuszewska K, Jędruch A, Brocławik O, Bełdowska M. Mobility and bioavailability of mercury in sediments of the southern Baltic sea in relation to the chemical fractions of iron: Spatial and temporal patterns. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106132. [PMID: 37579704 DOI: 10.1016/j.marenvres.2023.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Marine sediments play a significant role as reservoirs for mercury (Hg), a bioaccumulative toxic pollutant that poses risks to human and ecosystem health. Iron (Fe) has been recognized as an influential factor in the complexation and bioavailability of Hg in sediments. However, limited studies have investigated the interactions between the chemical fractions of these elements in natural settings. This study aims to examine the fractions of Hg and Fe in sediments of the Baltic Sea, a region historically impacted by Hg pollution. The Hg fractions were determined using the thermodesorption technique, while sequential extraction was employed to identify the Fe fractions. The findings confirm the crucial role of Fe in the formation, as well as the horizontal and vertical distribution of labile and stable Hg in marine sediments. Factors such as the contribution of organic matter, the presence of reactive Fe, and Fe associated with sheet silicates emerged as significant drivers that positively influenced the content of the most labile Hg fractions, potentially affecting the mobility and bioavailability of Hg in the marine environment.
Collapse
Affiliation(s)
- Urszula Kwasigroch
- University of Gdańsk, Faculty of Oceanography and Geography, Department of Chemical Oceanography and Marine Geology, Marszałka Józefa Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Katarzyna Łukawska-Matuszewska
- University of Gdańsk, Faculty of Oceanography and Geography, Department of Chemical Oceanography and Marine Geology, Marszałka Józefa Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Agnieszka Jędruch
- University of Gdańsk, Faculty of Oceanography and Geography, Department of Chemical Oceanography and Marine Geology, Marszałka Józefa Piłsudskiego 46, 81-378, Gdynia, Poland; Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry and Biochemistry, Powstańców Warszawy 55, 81-712, Sopot, Poland.
| | - Olga Brocławik
- University of Gdańsk, Faculty of Oceanography and Geography, Department of Chemical Oceanography and Marine Geology, Marszałka Józefa Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Magdalena Bełdowska
- University of Gdańsk, Faculty of Oceanography and Geography, Department of Chemical Oceanography and Marine Geology, Marszałka Józefa Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
5
|
Chen C, Dong Y, Thompson A. Electron Transfer, Atom Exchange, and Transformation of Iron Minerals in Soils: The Influence of Soil Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449758 DOI: 10.1021/acs.est.3c01876] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Despite substantial experimental evidence of electron transfer, atom exchange, and mineralogical transformation during the reaction of Fe(II)aq with synthetic Fe(III) minerals, these processes are rarely investigated in natural soils. Here, we used an enriched Fe isotope approach and Mössbauer spectroscopy to evaluate how soil organic matter (OM) influences Fe(II)/Fe(III) electron transfer and atom exchange in surface soils collected from Luquillo and Calhoun Experimental Forests and how this reaction might affect Fe mineral composition. Following the reaction of 57Fe-enriched Fe(II)aq with soils for 33 days, Mössbauer spectra demonstrated marked electron transfer between sorbed Fe(II) and the underlying Fe(III) oxides in soils. Comparing the untreated and OM-removed soils indicates that soil OM largely attenuated Fe(II)/Fe(III) electron transfer in goethite, whereas electron transfer to ferrihydrite was unaffected. Soil OM also reduced the extent of Fe atom exchange. Following reaction with Fe(II)aq for 33 days, no measurable mineralogical changes were found for the Calhoun soils enriched with high-crystallinity goethite, while Fe(II) did drive an increase in Fe oxide crystallinity in OM-removed LCZO soils having low-crystallinity ferrihydrite and goethite. However, the presence of soil OM largely inhibited Fe(II)-catalyzed increases in Fe mineral crystallinity in the LCZO soil. Fe atom exchange appears to be commonplace in soils exposed to anoxic conditions, but its resulting Fe(II)-induced recrystallization and mineral transformation depend strongly on soil OM content and the existing soil Fe phases.
Collapse
Affiliation(s)
- Chunmei Chen
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yanjun Dong
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Aaron Thompson
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Wang M, Shen J, Xu X, Feng H, Huang D, Chen Z. Biochar as an enhancer of the stability, mesoporous structure and oxytetracycline adsorption capacity of ferrihydrite: Role of the silicon component. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162652. [PMID: 36894094 DOI: 10.1016/j.scitotenv.2023.162652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The char component of biochar can act as an electron shuttle and redox agent to accelerate the transformation of ferrihydrite, but how the silicon component of biochar affects ferrihydrite transformation and pollutant removal remains unclear. In this paper, infrared spectroscopy, electron microscopy, transformation experiments and batch sorption experiments were conducted to examine a 2-line ferrihydrite formed by alkaline precipitation of Fe3+ on a rice straw-derived biochar. Fe-O-Si bonds were developed between the precipitated ferrihydrite particles and biochar silicon component, increasing mesopore volume (for mesopores with diameters of 10-100 nm) and surface area of ferrihydrite as the Fe-O-Si formation probably alleviated the aggregation of ferrihydrite particles. The Fe-O-Si bonding-contributed interactions blocked the transformation to goethite for ferrihydrite precipitated on biochar in a 30-day ageing and a 5-day Fe2+ catalysis ageing. Moreover, there was an increase of oxytetracycline adsorption capacity onto ferrihydrite-loaded biochar, which reached amazingly 3460 mg/g at the maximum, due to the Fe-O-Si bonding-contributed increase of surface area and oxytetracycline coordination sites. Ferrihydrite-loaded biochar as a soil amendment enhanced oxytetracycline adsorption and reduced the bacterial toxicity of dissolved oxytetracycline better than ferrihydrite did. These results provide new perspectives for the role of biochar (especially its silicon component) as an iron-based material carrier and a soil additive in the environmental effects of iron (hydr) oxides in water and soil.
Collapse
Affiliation(s)
- Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Jiahao Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Xiaoqin Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Dan Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Zaiming Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| |
Collapse
|
7
|
Zhang T, Tang B, Fu F. Influence of montmorillonite incorporation on ferrihydrite transformation and Cr(VI) behaviors during ferrihydrite-Cr(VI) coprecipitates aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162257. [PMID: 36822418 DOI: 10.1016/j.scitotenv.2023.162257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a pollutant with high migration ability, and the destiny of Cr(VI) is highly correlated with ferrihydrite (Fh). Montmorillonite (Mt) is a clay mineral abundantly presents in nature. Although Cr(VI) adsorption on montmorillonite or ferrihydrite has been studied, Cr(VI) behaviors during the Fh-Cr-Mt coprecipitates transformation still remain unknown. In this study, calcium montmorillonite (Ca-Mt) or sodium montmorillonite (Na-Mt) was coprecipitated with ferrihydrite and Cr(VI). Effect of Ca-Mt (or Na-Mt) incorporation on coprecipitates transformation and Cr(VI) behaviors during aging were investigated. The results showed that Ca-Mt or Na-Mt incorporation inhibited the transformation of ferrihydrite in Fh-Cr-Ca-Mt or Fh-Cr-Na-Mt at the initial pH of 5.0, 7.0 and 9.0. During aging, two kinds of Mt were supposed to interact with Fh to form the FeOSi and FeOAl bonds, and thus the formation of hematite and goethite were limited. By testing the Cr(VI) distribution in each phase of coprecipitates during transformation, delay on Cr(VI) migration and redistribution could be found in systems added with montmorillonite, and Cr(VI) was retained in coprecipitates to a greater extent compared with the systems without montmorillonite addition. The results of this study contribute to increasing our knowledge about the role of clay minerals on the coprecipitates transformation when they coexist at different pH values. It is also significant for the heavy metals polluted sites repairing.
Collapse
Affiliation(s)
- Tingsong Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Engel M, Noël V, Pierce S, Kovarik L, Kukkadapu RK, Pacheco JSL, Qafoku O, Runyon JR, Chorover J, Zhou W, Cliff J, Boye K, Bargar JR. Structure and composition of natural ferrihydrite nano-colloids in anoxic groundwater. WATER RESEARCH 2023; 238:119990. [PMID: 37146398 DOI: 10.1016/j.watres.2023.119990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Fe-rich mobile colloids play vital yet poorly understood roles in the biogeochemical cycling of Fe in groundwater by influencing organic matter (OM) preservation and fluxes of Fe, OM, and other essential (micro-)nutrients. Yet, few studies have provided molecular detail on the structures and compositions of Fe-rich mobile colloids and factors controlling their persistence in natural groundwater. Here, we provide comprehensive new information on the sizes, molecular structures, and compositions of Fe-rich mobile colloids that accounted for up to 72% of aqueous Fe in anoxic groundwater from a redox-active floodplain. The mobile colloids are multi-phase assemblages consisting of Si-coated ferrihydrite nanoparticles and Fe(II)-OM complexes. Ferrihydrite nanoparticles persisted under both oxic and anoxic conditions, which we attribute to passivation by Si and OM. These findings suggest that mobile Fe-rich colloids generated in floodplains can persist during transport through redox-variable soils and could be discharged to surface waters. These results shed new light on their potential to transport Fe, OM, and nutrients across terrestrial-aquatic interfaces.
Collapse
Affiliation(s)
- Maya Engel
- Environmental Geochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Vincent Noël
- Environmental Geochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Samuel Pierce
- Environmental Geochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Libor Kovarik
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ravi K Kukkadapu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Odeta Qafoku
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - J Ray Runyon
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Weijiang Zhou
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kristin Boye
- Environmental Geochemistry Group, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - John R Bargar
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
9
|
Luo W, Zhao X, Wang G, Teng Z, Guo Y, Ji X, Hu W, Li M. Humic acid and fulvic acid facilitate the formation of vivianite and the transformation of cadmium via microbially-mediated iron reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130655. [PMID: 36580773 DOI: 10.1016/j.jhazmat.2022.130655] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The effects of humic acids (HA) and fulvic acids (FA) on the fate of Cd in anaerobic environment upon microbial reduction of Cd-bearing ferrihydrite (Fh) with Geobacter metallireducens were investigated. The results showed that HA and FA could promote the reductive dissolution of Fh and the formation of vivianite. After incubation of 38 d, vivianite accounted for 47.19%, 59.22%, and 48.53% of total Fe in biological control batch (BCK), HA and FA batches (C/Fe molar ratio of 1.0), respectively, by Mössbauer spectroscopy analysis. In terms of Cd, HA and FA could promote the release of adsorbed Cd during the initial bioreduction process, but reassuringly, after 38 d the dissolved Cd with HA and FA addition batches were 0.58-0.91 and 0.99-1.08 times of the BCK, respectively. The proportions of residual Cd in HA batches were higher than FA and BCK batches, indicating that HA was better than FA in immobilizing Cd. This might be because the quinone groups in HA could act as electron shuttle. This study showed that HA facilitated the transformation of vivianite better than FA, and Cd can be stabilized by resorption or co-precipitation with vivianite, providing a theoretical support for the translocation of Cd in sediment-water interface.
Collapse
Affiliation(s)
- Wenqing Luo
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xin Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Gongting Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zedong Teng
- Innovation Academy for Green Manufacture, Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Lu Y, Hu S, Zhang H, Song Q, Zhou W, Shen X, Xia D, Yang Y, Zhu H, Liu C. Effect of humic acid on bioreduction of facet-dependent hematite by Shewanella putrefaciens CN-32. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157713. [PMID: 35914600 DOI: 10.1016/j.scitotenv.2022.157713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Interfacial reactions between iron (Fe) (hydr)oxide surfaces and the activity of bacteria during dissimilatory Fe reduction affect extracellular electron transfer. The presence of organic matter (OM) and exposed facets of Fe (hydr)oxides influence this process. However, the underlying interfacial mechanism of facet-dependent hematite and its toxicity toward microbes during bioreduction in the presence of OM remains unknown. Herein, humic acid (HA), as typical OM, was selected to investigate its effect on the bioreduction of hematite {100} and {001}. When HA concentration was increased from 0 to 500 mg L-1, the bioreduction rates increased from 0.02 h-1 to 0.04 h-1 for hematite {100} and from 0.026 h-1 to 0.05 h-1 for hematite {001}. Since hematite {001} owned lower resistance than hematite {100} irrespective of the HA concentration, and hematite {100} was less favorable for reduction. Microscopy-based analysis showed that more hematite {001} nanoparticles adhered to the cell surface and were bound more closely to the bacteria. Moreover, less cell damage was observed in the HA-hematite {001} treatments. As the reaction progressed, some bacterial cells died or were inactivated; confocal laser scanning microscopy showed that bacterial survival was higher in the HA-hematite {001} treatments than in the HA-hematite {100} treatments after bioreduction. Spectroscopic analysis revealed that facet-dependent binding was primarily realized by surface complexation of carboxyl functional groups with structural Fe atoms, and that the binding order of HA functional groups and hematite was affected by the exposed facets. The exposed facets of hematite could influence the electrochemical properties and activity of bacteria, as well as the binding of bacteria and Fe oxides in the presence of OM, thereby governing the extracellular electron transfer and concomitant bioreduction of Fe (hydr)oxides. These results provide new insights into the interfacial reactions between OM and facet-dependent Fe oxides in anoxic, OM-rich soil and sediment environments.
Collapse
Affiliation(s)
- Yang Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), 7 West Street, Yuancun, Guangzhou, Guangdong 510655, People's Republic of China
| | - Shiwen Hu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Hanyue Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Qingmei Song
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), 7 West Street, Yuancun, Guangzhou, Guangdong 510655, People's Republic of China
| | - Wenjing Zhou
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Xinyue Shen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Di Xia
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), 7 West Street, Yuancun, Guangzhou, Guangdong 510655, People's Republic of China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Huiyan Zhu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
11
|
Shen X, Zhu H, Wang P, Zheng L, Hu S, Liu C. Mechanistic and modeling insights into the immobilization of Cd and organic carbon during abiotic transformation of ferrihydrite induced by Fe(II). JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129216. [PMID: 35739738 DOI: 10.1016/j.jhazmat.2022.129216] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) oxides and fulvic acid (FA) are the key components affecting the fate of cadmium (Cd) in soil. The presence of FA influences Fe mineral transformation, and FA may complicate phase transformation and dynamic behavior of Cd. How varying Fe minerals and FA affect Cd immobilization during the ferrihydrite transformation induced by various Fe(II) concentrations, however, is still lack of quantitative understanding. In this study, we built a model for Cd species quantification during phase transformation based on mechanistic insights obtained from batch experiments. Spectroscopic analysis showed that Fe(II) concentrations affected secondary Fe minerals formation under the condition of co-existence of Cd and FA, and ultimately changed the distribution of Cd and FA. Microscopic analysis revealed that besides surface adsorption, part of Cd was sequestrated by magnetite, whereas FA was able to diffuse into lepidocrocite defects. The model revealed that adsorbed Cd was mainly controlled by FA and ferrihydrite, and direct complexation of Cd by FA had a strong impact on the continuous change in Cd at lower Fe(II) concentration. The results contribute to an in-depth understanding of the mobility of Cd in the environment and provide a method for quantifying the dynamic behavior of heavy metals in multi-reactant systems.
Collapse
Affiliation(s)
- Xinyue Shen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Huiyan Zhu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Pei Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shiwen Hu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
12
|
Zhang Y, Zhang X, Wen J, Wang Y, Zhang N, Jia Y, Su S, Wu C, Zeng X. Exogenous fulvic acid enhances stability of mineral-associated soil organic matter better than manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9805-9816. [PMID: 34505251 DOI: 10.1007/s11356-021-16382-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Mineral-associated soil organic matter (MAOM) is seen as the key to soil carbon sequestration, but its stability often varies with types of exogenous organic materials. Fulvic acid and manure are ones of the exogenous organic materials used for the improvement of degraded soil. However, little is known about if and how fulvic acid and manure affect the stability of MAOM. Using a field experiment of four fertilization treatments (no fertilization, mineral fertilizers, fulvic acid, and manure) and a comprehensive meta-analysis using relevant studies published prior to January 2020, we investigated effects of exogenous fulvic acid and manure applications on four MAOM stability indexes: association intensity, humus stabilization index, iron oxide complex coefficient, and aluminum oxide complex coefficient. Exogenous fulvic acid and manure applications increased soil organic carbon fractions by 26.04-48.47%, MAOM stability by 12.26-387.41%, and complexed iron/aluminum contents by 16.12-20.01%. Fulvic acid application increased MAOM stability by promoting mineral oxide complexation by 20.33% and manure application improved MAOM stability via increasing humus stabilization by 21-25%. Association intensity was positively correlated with contents of soil carbon fractions and the metal oxide complex coefficients were positively correlated with iron/aluminum oxide contents. Moreover, stable-humus exerted significantly positive direct and indirect effects on association intensity and humus stabilization index, while amorphous iron/aluminum content had significantly negative influences on metal oxide complex coefficients. The meta-analysis verified that long-term fulvic acid application improved MAOM stability more so than manure application in acidic soils. We recommend that strategies aiming to prevent land degradation should focus on the potential of fulvic acid as a soil amendment because it can significantly increase MAOM stability.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| | - Xiaojia Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Jiong Wen
- Yueyang Agricultural Environment Scientific Experiment Station, Ministry of Agriculture, Yueyang, 414000, China
| | - Yanan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Nan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yuehui Jia
- College of Bio-Science and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Cuixia Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| |
Collapse
|