1
|
Debroy A, Saravanan JS, Nirmala MJ, Pulimi M, Mukherjee A. Algal EPS modifies the toxicity potential of the mixture of polystyrene nanoplastics (PSNPs) and triphenyl phosphate in freshwater microalgae Chlorella sp. CHEMOSPHERE 2024; 366:143471. [PMID: 39368491 DOI: 10.1016/j.chemosphere.2024.143471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Triphenyl phosphate (TPP) and polystyrene nanoplastics (PSNPs) are prevalent freshwater contaminants obtained mainly from food packaging, textiles and electronics. Algal extracellular polymeric substances (EPS), a part of natural organic matter, may influence these pollutants' behaviour and toxicity. The presence of EPS can enhance the aggregation of TPP-PSNP mixtures, and reduce the bioavailability, and thus the toxicity potential. Understanding the mutual interactions between TPP, PSNPs, and EPS in the aquatic environment is a prerequisite for the environmental risk assessment of these chemicals. The study examines the toxicity effects of various surface-modified PSNPs (1 mg/L of plain, animated, and carboxylated) and TPP (0.05, 0.5, and 5 mg/L) in pristine and combined forms on freshwater microalgae, Chlorella sp., as a model organism. The physical-chemical interactions of algal EPS (10 mg/L) with PSNPs and TPP and their mixtures were studied. The toxicity potential of the PSNPs was estimated by quantifying growth inhibition, oxidative stress, antioxidant activity, and photosynthesis in the cells. TPP toxicity increased in the presence of the PSNPs, however the addition of algal EPS reduced the combined toxic effects. EPS plays a protective role by reducing oxidative stress and enhancing photosynthetic efficiency in the algal cells. The Pearson modeling analysis indicated a positive correlation between growth inhibition, and reactive oxygen species, malondialdehyde production. The cluster heatmap and correlation mapping revealed a strong correlation among the oxidative stress, growth inhibition, and photosynthetic parameters. The study clearly highlights the potential of EPS in mitigating the risk of mixed emerging pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang P, Meng F, Xia Y, Leng Y, Cui J. Deriving seawater quality criteria of tris(2-chloroethyl) phosphate for ecological risk assessment in China seas through species sensitivity distributions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119482. [PMID: 37939474 DOI: 10.1016/j.jenvman.2023.119482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Tris(2-chloroethyl) phosphate (TCEP), one of the widely used organophosphorus flame retardants (OPFRs), has been frequently detected in the marine environment in the seas off China. The existing freshwater biotoxicity data are not suited to derivation of the seawater quality criteria of TCEP and evaluating the associated ecological risks. This study aimed at deriving water quality criteria (WQC) of TCEP for marine organisms based on species sensitivity distribution (SSD) approach using the acute toxicity data generated from multispecies bioassays and chronic toxicity data by converting acute data with the acute-to-chronic ratios (ACRs); the derived WQC were then used to evaluate the ecological risk for TCEP in China Seas. According to median effective concentration (EC50) and median lethal concentration (LC50), TCEP had a moderate or low toxicity to eight marine species selected, among which mysid Neomysis awatschensis (96h-LC50 of 39.65 mg/L) and green alga Platymonas subcordiformis (96-h EC50 of 395.42 mg/L) were the most sensitive and the most tolerant, respectively. The acute and chronic hazardous concentrations of TCEP for 5% of marine species (HC5) were estimated to be 29.55 and 2.68 mg/L, respectively. The short-term and long-term WQC were derived to be 9.85 and 0.89 mg/L, respectively. The risk quotient (RQ) values indicated that TECP at current levels poses a negligible risk to marine ecosystems in China. These results will provide valuable reference for the government to establish a seawater quality standard for TCEP.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yu Leng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiali Cui
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
3
|
Sun W, Dang Y, Dai L, Liu C, Wang J, Guo Y, Fan B, Kong J, Zhou B, Ma X, Yu L. Tris(1,3-dichloro-2-propyl) phosphate causes female-biased growth inhibition in zebrafish: Linked with gut microbiota dysbiosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106585. [PMID: 37247575 DOI: 10.1016/j.aquatox.2023.106585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is ubiquitous in aquatic environment, but its effect on intestinal health of fish has yet not been investigated. In the present study, the AB strain zebrafish embryos were exposed to environmentally realistic concentrations (0, 30, 300, and 3000 ng·L-1) of TDCIPP for 90 days, after which the fish growth and physiological activities were evaluated, and the intestinal microbes were analyzed by 16S rRNA gene high-throughput sequencing. Our results manifested that the body length and body weight were significantly reduced in the female zebrafish but not in males. Further analyses revealed that TDCIPP resulted in notable histological injury of intestine, which was accompanied by impairment of epithelial barrier integrity (decreased tight junction protein 2), inflammation responses (increased interleukin 1β), and disruption of neurotransmission (increased serotonin) in female intestine. Male intestines maintained intact intestinal structure, and the remarkably increased activity of glutathione peroxidase (GPx) might protect the male zebrafish from inflammation and intestinal damage. Furthermore, 16S rRNA sequencing analysis showed that TDCIPP significantly altered the microbial communities in the intestine in a gender-specific manner, with a remarkable increase in alpha diversity of the gut microbiome in male zebrafish, which might be another mechanism for male fish to protect their intestines from damage by TDCIPP. Correlation analysis revealed that abnormal abundances of pathogenic bacteria (Chryseobacterium, Enterococcus, and Legionella) might be partially responsible for the impaired epithelial barrier integrity and inhibition in female zebrafish growth. Taken together, our study for the first time demonstrates the high susceptibility of intestinal health and gut microbiota of zebrafish to TDCIPP, especially for female zebrafish, which could be partially responsible for the female-biased growth inhibition.
Collapse
Affiliation(s)
- Wen Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Lili Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430073, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongyong Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Boya Fan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Kong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Sun T, Ji C, Li F, Wu H. Hormetic dose responses induced by organic flame retardants in aquatic animals: Occurrence and quantification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153295. [PMID: 35065129 DOI: 10.1016/j.scitotenv.2022.153295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The organic flame retardants (OFRs) have attracted global concerns due to their potential toxicity and ubiquitous presence in the aquatic environment. Hormesis refers to a biphasic dose response, characterized by low-dose stimulation and high-dose inhibition. The present study provided substantial evidence for the widespread occurrence of OFRs-induced hormesis in aquatic animals, including 202 hormetic dose response relationships. The maximum stimulatory response (MAX) was commonly lower than 160% of the control response, with a combined value of 134%. Furthermore, the magnitude of MAX varied significantly among multiple factors and their interactions, such as chemical types and taxonomic groups. Moreover, the distance from the dose of MAX to the no-observed-adverse-effect-level (NOAEL) (NOAEL: MAX) was typically below 10-fold (median = 6-fold), while the width of the hormetic zone (from the lowest dose inducing hormesis to the NOAEL) was approximately 20-fold. Collectively, the quantitative features of OFRs-induced hormesis in aquatic animals were in accordance with the broader hormetic literature. In addition, the implications of hormetic dose response model for the risk assessment of OFRs were discussed. This study offered a novel insight for understanding the biological effects of low-to-high doses of OFRs on aquatic animals and assessing the potential risks of OFRs in the aquatic environment.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|