1
|
van Hall BG, van Gestel CAM. Automated quantification of Enchytraeus crypticus juveniles in different soil types using RootPainter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117482. [PMID: 39662459 DOI: 10.1016/j.ecoenv.2024.117482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
The manual counting of juveniles in enchytraeid soil toxicity tests is time-consuming, labour-intensive, repetitive, prone to subjectivity, but can potentially be automated through deep learning methods using convolutional neural networks. This study investigated if RootPainter can be used as a tool to automatically quantify Enchytraeus crypticus juveniles in toxicity tests using different soil types. Toxicity tests were performed following OECD guideline 220 using five different pesticides (two fungicides and three insecticides) and four different soil types (three OECD artificial soils and one natural LUFA 2.2 soil). Manual counts were done by three different operators, with each operator counting images for one pesticide. Correlations between automated and manual counts were strong and significant in all four soils for all operators, with Pearson's correlation coefficients ≥ 0.955 and intraclass comparability coefficients ≥ 0.936. Toxicity values (EC50 and EC10) calculated from the manual and automated counts were within a factor of 0.85 - 1.30. Overall, the results show that RootPainter is a suitable tool for a reliable, repeatable and accurate quantification of enchytraeid juveniles, and can eliminate the time-consuming manual counting process.
Collapse
Affiliation(s)
- Bart G van Hall
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands.
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands.
| |
Collapse
|
2
|
Campani T, Casini S, Maccantelli A, Tosoni F, D'Agostino A, Caliani I. Oxidative stress and DNA alteration on the earthworm Eisenia fetida exposed to four commercial pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35969-35978. [PMID: 38743332 PMCID: PMC11136830 DOI: 10.1007/s11356-024-33511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Modern agriculture is mainly based on the use of pesticides to protect crops but their efficiency is very low, in fact, most of them reach water or soil ecosystems causing pollution and health hazards to non-target organisms. Fungicide triazoles and strobilurins based are the most widely used and require a specific effort to investigate toxicological effects on non-target species. This study evaluates the toxic effects of four commercial fungicides Prosaro® (tebuconazole and prothioconazole), Amistar®Xtra (azoxystrobin and cyproconazole), Mirador® (azoxystrobin) and Icarus® (Tebuconazole) on Eisenia fetida using several biomarkers: lipid peroxidation (LPO), catalase activity (CAT), glutathione S-transferase (GST), total glutathione (GSHt), DNA fragmentation (comet assay) and lysozyme activity tested for the first time in E. fetida. The exposure to Mirador® and AmistarXtra® caused an imbalance of ROS species, leading to the inhibition of the immune system. AmistarXtra® and Prosaro®, composed of two active ingredients, induced significant DNA alteration, indicating genotoxic effects. This study broadened our knowledge of the effects of pesticide product formulations on earthworms and showed the need for improvement in the evaluation of toxicological risk deriving from the changing of physicochemical and toxicological properties that occur when a commercial formulation contains more than one active ingredient and several unknown co-formulants.
Collapse
Affiliation(s)
- Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy.
| | - Andrea Maccantelli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Filippo Tosoni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Antonella D'Agostino
- Department of Economics and Statistics, University of Siena, Piazza S. Francesco, 7, 53100, Siena, Italia
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| |
Collapse
|
3
|
Gomes SIL, Guimarães B, Fenoglio I, Gasco P, Paredes AG, Blosi M, Costa AL, Scott-Fordsmand JJ, Amorim MJB. Advanced materials - Food grade melatonin-loaded Lipid Surfactant Submicron Particles (LSSP)-environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169748. [PMID: 38160813 DOI: 10.1016/j.scitotenv.2023.169748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Lipid-based nanoparticles (LNPs) are advanced materials (AdMa), particularly relevant for drug delivery of poorly water-soluble compounds, while also providing protection, stabilization, and controlled release of the drugs/active substances. The toxicological data available often focus on the specific applications of the LNPs-drug tested, with indication of low toxicity. However, the ecotoxicological effects of LNPs are currently unknown. In the present study, we investigated the ecotoxicity of a formulation of Lipid Surfactant Submicron Particles (LSSPs) loaded with melatonin at 1 mg/mL. The LSSPs formulation has been developed to be fully compliant with regulatory for its potential use in the market and all components are food additives. The same formulation without the thickening agent xanthan gum (stabilizer in water phase) designated as LSSP-xg, was also tested. Two soil model invertebrate species were tested in LUFA 2.2 soil: Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola). Effects were assessed based on the OECD standard guideline (28 days) and its extension, the longer-term exposure (56 days). Assessed endpoints were survival, reproduction, and size. LSSPs and LSSP-xg were toxic to E. crypticus and F. candida reducing their survival and reproduction in a dose-dependent way: e.g., 28-day exposure: E. crypticus: LC/EC50 = 30/15 mg LSSPs/kg soil and F. candida LC/EC50 = 55/44 mg LSSPs/kg soil, with similar values for LSSP-xg. Size was also reduced for F. candida but was the least sensitive endpoint. There were no indications that toxicity increased with longer term exposure. The results provide relevant information on ecotoxicity of a AdMa and highlights the need for awareness of the potential risks, even on products and additives usually used in food or cosmetic industry. Further information on single components and on their specific assembly is necessary for the interpretation of results, as it is not fully clear what causes the toxicity in this specific AdMa. This represents a typical challenge for AdMa hazard assessment scenario.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Guimarães
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| | | | | | - Magda Blosi
- National Research Council, Institute of Science and Technology for Ceramics, 48018 Faenza, RA, Italy
| | - Anna L Costa
- National Research Council, Institute of Science and Technology for Ceramics, 48018 Faenza, RA, Italy
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Dong B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168264. [PMID: 37918741 DOI: 10.1016/j.scitotenv.2023.168264] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Tebuconazole has been widely applied over three decades because of its high efficiency, low toxicity, and broad spectrum, and it is still one of the most popular fungicides worldwide. Tebuconazole residues have been frequently detected in environmental samples and food, posing potential hazards for humans. Understanding the toxicity of pesticides is crucial to ensuring human and ecosystem health, but the toxic mechanisms and toxicity of tebuconazole are still unclear. Moreover, pesticides could transform into transformation products (TPs) that may be more persistent and toxic than their parents. Herein, the toxicities of tebuconazole to humans, mammals, aquatic organisms, soil animals, amphibians, soil microorganisms, birds, honeybees, and plants were summarized, and its TPs were reviewed. In addition, the toxicity of tebuconazole TPs to aquatic organisms and mammals was predicted. Tebuconazole posed potential developmental toxicity, genotoxicity, reproductive toxicity, mutagenicity, hepatotoxicity, neurotoxicity, cardiotoxicity, and nephrotoxicity, which were induced via reactive oxygen species-mediated apoptosis, metabolism and hormone perturbation, DNA damage, and transcriptional abnormalities. In addition, tebuconazole exhibited apparent endocrine-disrupting effects by modulating hormone levels and gene transcription. The toxicity of some TPs was equivalent to and higher than tebuconazole. Therefore, further investigation is necessary into the toxicological mechanisms of tebuconazole and the combined toxicity of a mixture of tebuconazole and its TPs.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
5
|
Rossi AS, Michlig MP, Repetti MR, Cazenave J. Single and joint toxicity of azoxystrobin and cyproconazole to Prochilodus lineatus: Bioconcentration and biochemical responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167992. [PMID: 37875198 DOI: 10.1016/j.scitotenv.2023.167992] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Fungicides are widely used across the world to protect crops and their presence in freshwater systems is increasing. However, the evaluation of their potential impacts on non-target organisms is in the minority of studies related to pesticides. In the current research, the single and joint toxicity of azoxystrobin (AZX) and cyproconazole (CYP) was investigated in juvenile fish Prochilodus lineatus. In particular, we evaluated bioconcentration and biochemical responses following a short-term exposure to environmentally relevant concentrations of the fungicides (alone and in mixture). We also determined interactions between the biological responses when the two compounds were used in mixture. Our results demonstrate that AZX and CYP pose a risk to native freshwater fish by causing deleterious effects. Both compounds, alone and in mixture, bioaccumulated in P. lineatus and triggered neurotoxicity and changes in oxidative stress biomarkers in several organs. Moreover, muscle was a target tissue for these fungicides and a synergistic interaction was observed for the mixture. Due to the lack of studies in fish assessing the effects following exposure to AZX-CYP mixtures and considering a realistic exposure situation in agriculture-impacted water bodies, these findings provide new and relevant information for future studies.
Collapse
Affiliation(s)
- Andrea S Rossi
- Instituto Nacional de Limnología, CONICET, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Melina P Michlig
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, UNL, Santiago del Estero 2654, 3000 Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, UNL, Santiago del Estero 2654, 3000 Santa Fe, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología, CONICET, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina.
| |
Collapse
|
6
|
Favaro R, Garrido PM, Bruno D, Braglia C, Alberoni D, Baffoni L, Tettamanti G, Porrini MP, Di Gioia D, Angeli S. Combined effect of a neonicotinoid insecticide and a fungicide on honeybee gut epithelium and microbiota, adult survival, colony strength and foraging preferences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167277. [PMID: 37741399 DOI: 10.1016/j.scitotenv.2023.167277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Fungicides, insecticides and herbicides are widely used in agriculture to counteract pathogens and pests. Several of these molecules are toxic to non-target organisms such as pollinators and their lethal dose can be lowered if applied as a mixture. They can cause large and unpredictable problems, spanning from behavioural changes to alterations in the gut. The present work aimed at understanding the synergistic effects on honeybees of a combined in-hive exposure to sub-lethal doses of the insecticide thiacloprid and the fungicide penconazole. A multidisciplinary approach was used: honeybee mortality upon exposure was initially tested in cage, and the colonies development monitored. Morphological and ultrastructural analyses via light and transmission electron microscopy were carried out on the gut of larvae and forager honeybees. Moreover, the main pollen foraging sources and the fungal gut microbiota were studied using Next Generation Sequencing; the gut core bacterial taxa were quantified via qPCR. The mortality test showed a negative effect on honeybee survival when exposed to agrochemicals and their mixture in cage but not confirmed at colony level. Microscopy analyses on the gut epithelium indicated no appreciable morphological changes in larvae, newly emerged and forager honeybees exposed in field to the agrochemicals. Nevertheless, the gut microbial profile showed a reduction of Bombilactobacillus and an increase of Lactobacillus and total fungi upon mixture application. Finally, we highlighted for the first time a significant honeybee diet change after pesticide exposure: penconazole, alone or in mixture, significantly altered the pollen foraging preference, with honeybees preferring Hedera pollen. Overall, our in-hive results showed no severe effects upon administration of sublethal doses of thiacloprid and penconazole but indicate a change in honeybees foraging preference. A possible explanation can be that the different nutritional profile of the pollen may offer better recovery chances to honeybees.
Collapse
Affiliation(s)
- Riccardo Favaro
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| | - Paula Melisa Garrido
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Martin Pablo Porrini
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Sergio Angeli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bolzano, Italy
| |
Collapse
|
7
|
Huang M, Dong J, Yang S, Xiao M, Guo H, Zhang J, Wang D. Ecotoxicological effects of common fungicides on the eastern honeybee Apis cerana cerana (Hymenoptera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161637. [PMID: 36649770 DOI: 10.1016/j.scitotenv.2023.161637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The widespread use of fungicides for plant protection has increased the potential for pollinator exposure. This study therefore aimed at assessing the acute and chronic effects of fungicides on pollinators. For this purpose, the acute oral toxicity of the common fungicides azoxystrobin, pyraclostrobin, and boscalid to Eastern honeybee Apis cerana cerena was first evaluated, and the chronic effects on multiple aspects were investigated after exposure to a one-tenth medium lethal dose (LD50) for 10 days. This study revealed that the LD50 values of azoxystrobin, pyraclostrobin and boscalid for adult Eastern honeybees were 12.7 μg/bee, 36.6 μg/bee, and >119 μg/bee, respectively. Midgut epithelial cells revealed that fungicide exposure caused increased intercellular spaces and varying degrees of vacuolization. Exposure to these three fungicides and their binary mixtures significantly affected glycerophospholipid, alanine, aspartate, and glutamate metabolism in Eastern honeybee midguts. Additionally, the relative composition of Lactobacillus, the dominant functional genus in Eastern honeybee guts decreased and microbial balance was disrupted. All fungicides and their mixtures induced strong transcriptional upregulation of genes associated with the immune response and encoding enzymes related to oxidative phosphorylation and metabolism, including abaecin, apidaecin, hymenotaecin, cyp4c3, cyp6a2 and hbg3. Our study provides important insight for understanding the effects of commonly used fungicides on nontarget pollinator and contributes to a more comprehensive assessment of fungicide effects on ecological and environmental safety.
Collapse
Affiliation(s)
- Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Shuyuan Yang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Minghui Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Haikun Guo
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Hangzhou 310021, China
| | - Jiawen Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China.
| |
Collapse
|
8
|
Enzyme Inhibition-Based Assay to Estimate the Contribution of Formulants to the Effect of Commercial Pesticide Formulations. Int J Mol Sci 2023; 24:ijms24032268. [PMID: 36768591 PMCID: PMC9916951 DOI: 10.3390/ijms24032268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Pesticides can affect the health of individual organisms and the function of the entire ecosystem. Therefore, thorough assessment of the risks associated with the use of pesticides is a high-priority task. An enzyme inhibition-based assay is used in this study as a convenient and quick tool to study the effects of pesticides at the molecular level. The contribution of formulants to toxicological properties of the pesticide formulations has been studied by analyzing effects of 7 active ingredients of pesticides (AIas) and 10 commercial formulations based on them (AIfs) on the function of a wide range of enzyme assay systems differing in complexity (single-, coupled, and three-enzyme assay systems). Results have been compared with the effects of AIas and AIfs on bioluminescence of the luminous bacterium Photobacterium phosphoreum. Mostly, AIfs produce a considerably stronger inhibitory effect on the activity of enzyme assay systems and bioluminescence of the luminous bacterium than AIas, which confirms the contribution of formulants to toxicological properties of the pesticide formulation. Results of the current study demonstrate that "inert" ingredients are not ecotoxicologically safe and can considerably augment the inhibitory effect of pesticide formulations; therefore, their use should be controlled more strictly. Circular dichroism and fluorescence spectra of the enzymes used for assays do not show any changes in the protein structure in the presence of commercial pesticide formulations during the assay procedure. This finding suggests that pesticides produce the inhibitory effect on enzymes through other mechanisms.
Collapse
|
9
|
Kovačević M, Stjepanović N, Hackenberger DK, Lončarić Ž, Hackenberger BK. Comprehensive study of the effects of strobilurin-based fungicide formulations on Enchytraeus albidus. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1554-1564. [PMID: 36462129 DOI: 10.1007/s10646-022-02609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Excessive application of fungicides in crop fields can cause adverse effects on soil organisms and consequently affect soil properties. Existing knowledge on the effects of strobilurin fungicides has been primarily based on toxicity tests with active ingredients, while the effects of fungicide formulations remain unclear. Therefore, this work aims to provide new data on the effects of three commercial formulations of strobilurin fungicides on the soil organism Enchytraeus albidus. The tested fungicide formulations were Retengo® (pyraclostrobin-PYR), Zato WG 50® (trifloxystrobin-TRI) and Stroby WG® (kresoxim-methyl-KM). In laboratory experiments, multiple endpoints were considered at different time points. The results showed that PYR had the greatest impact on survival and reproduction (LC50 = 7.57 mga.i.kgsoil-1, EC50 = 0.98 mga.i.kgsoil-1), followed by TRI (LC50 = 72.98 mga.i.kgsoil-1, EC50 = 16.93 mga.i.kgsoil-1) and KM (LC50 = 73.12 mga.i.kgsoil-1, EC50 ≥ 30 mga.i.kgsoil-1). After 7 days of exposure, MXR activity was inhibited at the highest concentration of all fungicides tested (6 mgPYRkgsoil-1, 15 mgTRIkgsoil-1 and 30 mgKMkgsoil-1). Furthermore, oxidative stress (induction of SOD, CAT and GST) and lipid peroxidation (increase in MDA) were also observed. In addition, there was a decrease in total available energy after exposure to PYR and KM. Exposure to fungicides resulted in a shift in the proportions of carbohydrates, lipids, and proteins affecting the amount of available energy. In addition to the initial findings on the effects of strobilurin formulations on enchytraeids, the observed results suggest that multiple and long-term exposure to strobilurin formulations in the field could have negative consequences on enchytraeid populations.
Collapse
Affiliation(s)
- Marija Kovačević
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Nikolina Stjepanović
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Davorka K Hackenberger
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia.
| | - Željka Lončarić
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | | |
Collapse
|
10
|
Kovačević M, Stjepanović N, Hackenberger DK, Lončarić Ž, Hackenberger BK. Toxicity of fungicide azoxystrobin to Enchytraeus albidus: Differences between the active ingredient and formulated product. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105198. [PMID: 36127052 DOI: 10.1016/j.pestbp.2022.105198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Due to the often-excessive usage of fungicides, increasing attention is being paid to their impact on soil and non-target organisms. Risk assessments are usually based on the pure active ingredient and not on the formulated products applied in the environment. The aim of this study was therefore to investigate how azoxystrobin, the best-selling strobilurin fungicide, affects non-target soil organisms Enchytraeus albidus. To investigate the effects of the different types of azoxystrobin, E. albidus was exposed to the pure active ingredient, AZO_AI, and the formulated product, AZO_FP. Survival, reproduction, and molecular biomarkers of E. albidus were determined for different exposure durations (seven and 21 days). AZO_FP (LC50 = 15.3 mga.i./kg) showed a slightly stronger effect on survival than AZO_AI (LC50 = 16.8 mga.i./kg), yet the impact on reproduction was much stronger. Namely, while the tested concentrations of AZO_AI (EC50≥ 8 mga.i./kg) had almost no effect on reproduction, AZO_FP (EC50 = 2.9 mga.i./kg) significantly inhibited reproduction in a dose-dependent manner. Changes in enzyme activities (superoxide dismutase, catalase, glutathione-s-transferase) and malondialdehyde levels in both treatments indicated oxidative stress. Although AZO_FP had a stronger negative effect, the impact depended on the exposure time and the tested concentration. The higher toxicity of AZO_FP was a consequence of increased bioavailability and activity of the active ingredient due to the presence of adjuvants. Overall stronger adverse effects of AZO_FP suggest that the toxicity of azoxystrobin in the agricultural environment on the enchytraeid population may be underestimated. Furthermore, the results of this study highlighted the importance of comparing the toxicity of the active ingredient and the formulated product.
Collapse
Affiliation(s)
- Marija Kovačević
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia
| | - Nikolina Stjepanović
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia
| | - Davorka K Hackenberger
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia
| | - Željka Lončarić
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia
| | | |
Collapse
|
11
|
Jorge-Escudero G, Pérez Polanco M, Lagerlöf JE, Pérez CA, Míguez D. Commercial Fungicide Toxic Effects on Terrestrial Non-Target Species Might Be Underestimated When Based Solely on Active Ingredient Toxicity and Standard Earthworm Tests. TOXICS 2022; 10:toxics10090488. [PMID: 36136453 PMCID: PMC9502452 DOI: 10.3390/toxics10090488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 05/26/2023]
Abstract
The ecosystem services provided by earthworms are lost when land management reduces their populations, hence, the importance of thorough assessments of management effects on this group. The present study aimed to: (1) review the possible influence of other ingredients within the formulations of two commercial fungicides; (2) assess the sublethal effects of these commercial fungicides on Eisenia fetida; and (3) assess the acute lethal effects of one commercial fungicide on both Glossoscolex rione and E. fetida. Examining all components of the studied commercial formulations revealed that alongside the toxic active ingredients are other ingredients that are equally as or more toxic than the former and may even be in higher concentrations. The inhibition concentration of 10% of E. fetida’s progeny (IC10) was estimated at 133 mg kg−1 for PROSARO® and 1544 mg kg−1 for SWING PLUS®. Both fungicides showed an effect of hormesis on the progeny. In this first toxicity study with G. rione, it was found that this species is more sensitive to PROSARO® than E. fetida, with preliminary 14 day-lethal concentrations of 285 mg kg−1 for the former and >1000 mg kg−1 for the latter.
Collapse
Affiliation(s)
- Gabriella Jorge-Escudero
- Departamento de Sistemas Ambientales, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo 12900, Uruguay
| | - Mariana Pérez Polanco
- Departamento de Sistemas Ambientales, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo 12900, Uruguay
| | - Jan Erland Lagerlöf
- Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, SE-75007 Uppsala, Sweden
| | - Carlos Alberto Pérez
- Departamento de Protección Vegetal, EEMAC, Facultad de Agronomía, Universidad de la República, Ruta 3 km 363, Paysandú 60000, Uruguay
| | - Diana Míguez
- Latitud-LATU Foundation, Technological Laboratory of Uruguay (LATU), Montevideo 11500, Uruguay
| |
Collapse
|
12
|
Co-Exposure of Nanopolystyrene and Other Environmental Contaminants-Their Toxic Effects on the Survival and Reproduction of Enchytraeus crypticus. TOXICS 2022; 10:toxics10040193. [PMID: 35448454 PMCID: PMC9032828 DOI: 10.3390/toxics10040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023]
Abstract
Plastics in all shapes and sizes have become widespread across ecosystems due to intense anthropogenic use. As such, they can interact with other contaminants that accumulate in the terrestrial environment, such as pharmaceuticals, metals or nanomaterials (NMs). These interactions can potentiate combined toxic effects in the exposed soil organisms, with hazardous long-term consequences to the full ecosystem. In the present study, a terrestrial model species, Enchytraeus crypticus (oligochaeta), was exposed through contaminated soil with nanopolystyrene (representative of nanoplastics (NPls)), alone and in combination with diphenhydramine (DPH, representative of pharmaceuticals), silver nitrate (AgNO3, representative of metals) and vanadium nanoparticles (VNPs, representative of NMs). AgNO3 and VNPs decreased E. crypticus reproduction at 50 mg/kg, regardless of the presence of NPls. Moreover, at the same concentration, both single and combined VNP exposures decreased the E. crypticus survival. On the other hand, DPH and NPls individually caused no effect on organisms' survival and reproduction. However, the combination of DPH (10 and 50 mg/kg) with 300 mg NPls/kg induced a decrease in reproduction, showing a relevant interaction between the two contaminants (synergism). Our findings indicate that the NPls can play a role as vectors for other contaminants and can potentiate the effects of pharmaceuticals, such as DPH, even at low and sub-lethal concentrations, highlighting the negative impact of mixtures of contaminants (including NPls) on soil systems.
Collapse
|
13
|
Li S, Li X, Zhang H, Wang Z, Xu H. The research progress in and perspective of potential fungicides: Succinate dehydrogenase inhibitors. Bioorg Med Chem 2021; 50:116476. [PMID: 34757244 DOI: 10.1016/j.bmc.2021.116476] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the fastest growing classes of new fungicides since entering the market, and have attracted increasing attention as a result of their unique structure, high activity and broad fungicidal spectrum. The mechanism of SDHIs is to inhibit the activity of succinate dehydrogenase, thereby affecting mitochondrial respiration and ultimately killing pathogenic fungi. At present, they have become popular varieties researched and developed by major pesticide companies in the world. In the review, we focused on the mechanism, the history, the representative varieties, structure-activity relationship and resistance of SDHIs. Finally, the potential directions for the development of SDHIs were discussed. It is hoped that this review can strengthen the individuals' understanding of SDHIs and provide some inspiration for the development of new fungicides.
Collapse
Affiliation(s)
- Shuqi Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Xiangshuai Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Hongmei Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| |
Collapse
|
14
|
Kovačević M, Hackenberger DK, Hackenberger BK. Effects of strobilurin fungicides (azoxystrobin, pyraclostrobin, and trifloxystrobin) on survival, reproduction and hatching success of Enchytraeus crypticus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148143. [PMID: 34102440 DOI: 10.1016/j.scitotenv.2021.148143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Large quantities of strobilurin fungicides (SFs) are used worldwide, resulting in adverse effects on non-target organisms. SFs affect the reproduction and embryonic development of aquatic organisms, while the impact on soil organisms has been insufficiently researched. Therefore, we investigated the effects of three SFs (azoxystrobin (AZO), pyraclostrobin (PYR), and trifloxystrobin (TRI)) on the survival, reproduction, and hatching success of the non-target soil oligochaete Enchytraeus crypticus. The standard enchytraeid reproduction test (ERT) showed that, regarding survival, TRI (LC50 = 2.34 mg/kg) was the most toxic, followed by PYR (LC50 = 4.26 mg/kg) and AZO (LC50 ≥150 mg/kg). Reproduction was affected in the same order (TRI EC50 = 0.045 mg/kg, PYR EC50 = 1.85 mg/kg, and AZO EC50 = 93.10 mg/kg). Exposure to AZO and PYR showed a negative impact on hatching success with a significant increase in the number of unhatched cocoons. Prolonged hatching test was consequently carried out. As a result, a hatching delay was observed at lower AZO and PYR concentrations, while at higher concentrations hatching was completely stopped as the cocoons were no longer viable. Hence, hatching test enabled a discrimination between hatching delay and hatching impairment. Besides demonstrating the adverse effects of AZO, PYR, and TRI on the survival, reproduction, and hatching success of E. crypticus, the obtained results indicate the convenience of using several endpoints in reproduction tests. The usage of prolonged hatching tests and monitoring of hatching dynamics could fill the gap between standard reproduction tests and multigeneration tests and allow a better understanding of the adverse effects on reproduction.
Collapse
Affiliation(s)
- Marija Kovačević
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia
| | - Davorka K Hackenberger
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000 Osijek, Croatia
| | | |
Collapse
|
15
|
Amorim MJB, Gansemans Y, Gomes SIL, Van Nieuwerburgh F, Scott-Fordsmand JJ. Annelid genomes: Enchytraeus crypticus, a soil model for the innate (and primed) immune system. Lab Anim (NY) 2021; 50:285-294. [PMID: 34489599 PMCID: PMC8460440 DOI: 10.1038/s41684-021-00831-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023]
Abstract
Enchytraeids (Annelida) are soil invertebrates with worldwide distribution that have served as ecotoxicology models for over 20 years. We present the first high-quality reference genome of Enchytraeus crypticus, assembled from a combination of Pacific Bioscience single-molecule real-time and Illumina sequencing platforms as a 525.2 Mbp genome (910 gapless scaffolds and 18,452 genes). We highlight isopenicillin, acquired by horizontal gene transfer and conferring antibiotic function. Significant gene family expansions associated with regeneration (long interspersed nuclear elements), the innate immune system (tripartite motif-containing protein) and response to stress (cytochrome P450) were identified. The ACE (Angiotensin-converting enzyme) - a homolog of ACE2, which is involved in the coronavirus SARS-CoV-2 cell entry - is also present in E. crypticus. There is an obvious potential of using E. crypticus as a model to study interactions between regeneration, the innate immune system and aging-dependent decline.
Collapse
Affiliation(s)
- Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
16
|
Is the Synthetic Fungicide Fosetyl-Al Safe for the Ecotoxicological Models Danio rerio and Enchytraeus crypticus? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Worldwide, pesticides have contaminated the environment, affecting non-target species. The aim of this work was to evaluate the effects of fosetyl-Al (FOS) on model organisms. Based on the 3 Rs for animal research and described guidelines, the OECD 236 and 220 were applied with some modifications. The FOS test concentrations were 0.02–0.2–2–20–200 mg/L for Danio rerio and 250–500–750–1000–1250 mg/kg for Enchytraeus crypticus. Besides the standard endpoints, additional endpoints were evaluated (D. rerio: behavior and biochemical responses; E. crypticus: extension of exposure duration (28 d (days) + 28 d) and organisms’ sizes). For D. rerio, after 96 h (h), hatching was inhibited (200 mg/L), proteins’ content increased (2 and 20 mg/L), lipids’ content decreased (2 mg/L), glutathione S-transferase activity increased (2 mg/L), and, after 120 h, larvae distance swam increased (20 mg/L). For E. crypticus, after 28 d, almost all the tested concentrations enlarged the organisms’ sizes and, after 56 d, 1250 mg/kg decreased the reproduction. In general, alterations in the organisms’ biochemical responses, behavior, and growth occurred at lower concentrations than the effects observed at the standard endpoints. This ecotoxicological assessment showed that FOS may not be considered safe for the tested species, only at higher concentrations than the predicted environmental concentrations (PECs). This research highlighted the importance of a multi-endpoint approach to assess the (eco)toxic effects of the contaminants.
Collapse
|
17
|
Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA. Pesticides: formulants, distribution pathways and effects on human health - a review. Toxicol Rep 2021; 8:1179-1192. [PMID: 34150527 PMCID: PMC8193068 DOI: 10.1016/j.toxrep.2021.06.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.
Collapse
Affiliation(s)
- Valeriya P. Kalyabina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Elena N. Esimbekova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Kseniya V. Kopylova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Valentina A. Kratasyuk
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|