1
|
Deng J, Gao L, Liu W, Yin F, Chen C, Jia T, He Y, Mao T, Wu W. Distributions and transformation of polyhalogenated carbazoles in environmental matrices contaminated by printing and dyeing plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124451. [PMID: 38942278 DOI: 10.1016/j.envpol.2024.124451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
As emerging organic contaminants, Polyhalogenated carbazoles (PHCZs) have caused wide concerns due to their wide distribution in the environment and dioxin-like toxicity. Nevertheless, research on the distribution and formation mechanisms of PHCZs in polluted environment of printing and dyeing plants is lacking. Here, 11 PHCZs were detected in samples from the Cao'e River, China, a typical river heavily polluted by printing and dyeing. The PHCZs concentrations in the soil, sediment, and water samples were 8.3-134.5 ng/g (median: 26.3 ng/g), 17.7-348.8 ng/g (median: 64.2 ng/g), and 1.2-41.4 μg/L (median: 4.8 μg/L), respectively. 3,6-dichlorocarbazole was the dominant congener, proved by both analysis results and formation mechanisms. PHCZ migration patterns in water-sediment systems indicated that highly halogenated PHCZs tend to be transferred to sediment. Furthermore, PHCZs are persistent, can undergo long-range transport, and pose high risks to aquatic organisms by models. PHCZs released from dye production into environment can be form through halogenation of carbazole or PHCZs formed during the dye synthesis, heating of halogenated indigo dyes, and photolysis of highly halogenated PHCZs. This is the first comprehensive study to reveal the impact of printing and dyeing plant activities on PHCZs in the environment.
Collapse
Affiliation(s)
- Jinglin Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Lirong Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Fei Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chunci Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianao Mao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenqi Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
2
|
Johann S, Weichert FG, Schröer L, Stratemann L, Kämpfer C, Seiler TB, Heger S, Töpel A, Sassmann T, Pich A, Jakob F, Schwaneberg U, Stoffels P, Philipp M, Terfrüchte M, Loeschcke A, Schipper K, Feldbrügge M, Ihling N, Büchs J, Bator I, Tiso T, Blank LM, Roß-Nickoll M, Hollert H. A plea for the integration of Green Toxicology in sustainable bioeconomy strategies - Biosurfactants and microgel-based pesticide release systems as examples. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127800. [PMID: 34865895 DOI: 10.1016/j.jhazmat.2021.127800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
A key aspect of the transformation of the economic sector towards a sustainable bioeconomy is the development of environmentally friendly alternatives for hitherto used chemicals, which have negative impacts on environmental health. However, the implementation of an ecotoxicological hazard assessment at early steps of product development to elaborate the most promising candidates of lowest harm is scarce in industry practice. The present article introduces the interdisciplinary proof-of-concept project GreenToxiConomy, which shows the successful application of a Green Toxicology strategy for biosurfactants and a novel microgel-based pesticide release system. Both groups are promising candidates for industrial and agricultural applications and the ecotoxicological characterization is yet missing important information. An iterative substance- and application-oriented bioassay battery for acute and mechanism-specific toxicity within aquatic and terrestrial model species is introduced for both potentially hazardous materials getting into contact with humans and ending up in the environment. By applying in silico QSAR-based models on genotoxicity, endocrine disruption, skin sensitization and acute toxicity to algae, daphnids and fish, individual biosurfactants resulted in deviating toxicity, suggesting a pre-ranking of the compounds. Experimental toxicity assessment will further complement the predicted toxicity to elaborate the most promising candidates in an efficient pre-screening of new substances.
Collapse
Affiliation(s)
- Sarah Johann
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Fabian G Weichert
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lukas Schröer
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lucas Stratemann
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Christoph Kämpfer
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Hygiene-Institut des Ruhrgebiets, Rotthauser Str. 21, 45879 Gelsenkirchen, Germany
| | - Sebastian Heger
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Alexander Töpel
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074 Aachen, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Tim Sassmann
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074 Aachen, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Andrij Pich
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074 Aachen, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; Aachen Maastricht Institute for Biobased Materials, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Felix Jakob
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany; Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Peter Stoffels
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute for Microbiology, Department Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Magnus Philipp
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute for Microbiology, Department Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marius Terfrüchte
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute for Microbiology, Department Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Anita Loeschcke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, 52425 Jülich, Germany
| | - Kerstin Schipper
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute for Microbiology, Department Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael Feldbrügge
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute for Microbiology, Department Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Nina Ihling
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany
| | - Jochen Büchs
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany
| | - Isabel Bator
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Till Tiso
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lars M Blank
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Martina Roß-Nickoll
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany.
| |
Collapse
|
4
|
Voigt M, Bartels I, Schmiemann D, Votel L, Hoffmann-Jacobsen K, Jaeger M. Metoprolol and Its Degradation and Transformation Products Using AOPs-Assessment of Aquatic Ecotoxicity Using QSAR. Molecules 2021; 26:3102. [PMID: 34067394 PMCID: PMC8196942 DOI: 10.3390/molecules26113102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Pharmaceuticals are found in waterbodies worldwide. Conventional sewage treatment plants are often not able to eliminate these micropollutants. Hence, Advanced Oxidation Processes (AOPs) have been heavily investigated. Here, metoprolol is exposed to UV irradiation, hydrogen peroxide, and ozonation. Degradation was analyzed using chemical kinetics both for initial and secondary products. Photo-induced irradiation enhanced by hydrogen peroxide addition accelerated degradation more than ozonation, leading to complete elimination. Degradation and transformation products were identified by high-performance liquid-chromatography coupled to high-resolution higher-order mass spectrometry. The proposed structures allowed to apply Quantitative Structure-Activity Relationship (QSAR) analysis to predict ecotoxicity. Degradation products were generally associated with a lower ecotoxicological hazard to the aquatic environment according to OECD QSAR toolbox and VEGA. Comparison of potential structural isomers suggested forecasts may become more reliable with larger databases in the future.
Collapse
Affiliation(s)
- Melanie Voigt
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| | - Indra Bartels
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
- Faculty of Chemistry, University Duisburg-Essen, Universitätsstraße 2, D-45141 Essen, Germany
| | - Dorothee Schmiemann
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
- Faculty of Chemistry, University Duisburg-Essen, Universitätsstraße 2, D-45141 Essen, Germany
| | - Lars Votel
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| | - Martin Jaeger
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| |
Collapse
|