1
|
Preziosi E, Frollini E, Ghergo S, Parrone D, Ruggiero L, Sciarra A, Ciotoli G. A comprehensive monitoring approach for a naturally anoxic aquifer beneath a controlled landfill. CHEMOSPHERE 2024; 362:142657. [PMID: 38901701 DOI: 10.1016/j.chemosphere.2024.142657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The processes leading to high levels of arsenic (As), iron (Fe), and manganese (Mn) in groundwater, in a naturally reducing aquifer at a controlled municipal landfill site, are investigated. The challenge is to distinguish the natural water-rock interaction processes, that allow these substances to dissolve in groundwater, from direct pollution or enhanced dissolution of hydroxides as undesired consequences of the anthropic activities above. Ordinary groundwater monitoring of physical-chemical parameters and inorganic compounds (major and trace elements) was complemented by environmental isotopes of groundwater (tritium, deuterium, oxygen-18 and carbon-13) and dissolved gases (carbon-13 of methane and carbon dioxide and carbon-14 of methane). Pearson/Spearman correlation indices, as well as Principal Component Analysis (PCA), were used to determine the main correlations among variables. The concurrent presence of As, Fe and CH4, as reported in similar anoxic environments, suggests that anaerobic oxidation of methane could drive the reductive dissolution of As-rich Fe(III)(hydro)oxides. Manganese is more sensitive to carbon dioxide, possibly due to a decrease in pH which accelerates the dissolution of Mn-oxides. Finally, we found that tritium and deuterium, which have been used for decades as leachate tracer in groundwater, may be subject to false positives due to the reuse of water recovered from leachate treatment (which has the same isotopic signature of leachate) within the plants, to comply with the requirements of the circular economy. The integration of the environmental isotope analysis into the traditional monitoring approach can effectively support the comprehension of processes. However, this strategy needs to be complemented by a good conceptual hydrogeological model and expert evaluation to avoid misinterpretations.
Collapse
Affiliation(s)
- E Preziosi
- CNR-IRSA - National Research Council - Water Research Institute, Montelibretti, Italy.
| | - E Frollini
- CNR-IRSA - National Research Council - Water Research Institute, Montelibretti, Italy
| | - S Ghergo
- CNR-IRSA - National Research Council - Water Research Institute, Montelibretti, Italy
| | - D Parrone
- CNR-IRSA - National Research Council - Water Research Institute, Montelibretti, Italy
| | - L Ruggiero
- INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Rome, Italy
| | - A Sciarra
- INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Rome, Italy
| | - G Ciotoli
- INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Rome, Italy; CNR-IGAG - National Research Council, Institute of Environmental Geology and Geoengineering, Montelibretti, Italy
| |
Collapse
|
2
|
Amorosi A, Sammartino I. Predicting natural arsenic enrichment in peat-bearing, alluvial and coastal depositional systems: A generalized model based on sequence stratigraphy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171571. [PMID: 38492587 DOI: 10.1016/j.scitotenv.2024.171571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Hazardously high concentrations of arsenic exceeding the threshold limits for soils and drinking waters have been widely reported from Quaternary sedimentary successions and shallow aquifers of alluvial and coastal lowlands worldwide, raising public health concerns due to potential human exposure to arsenic. A combined sedimentological and geochemical analysis of subsurface deposits, 2.5-50 m deep, from the SE Po Plain (Italy) documents a systematic tendency for naturally-occurring arsenic to accumulate in peat-rich layers, with concentrations invariably greater than maximum permissible levels. A total of 366 bulk sediment samples from 40 cores that penetrated peat-bearing deposits were analysed by X-ray fluorescence. Arsenic concentrations associated with 7 peat-free lithofacies associations (fluvial-channel, levee/crevasse, floodplain, swamp, lagoon/bay, beach-barrier, and offshore/prodelta) exhibit background values invariably below threshold levels (<20 mg/kg). In contrast, total arsenic contents from peaty clay and peat showed 2-6 times larger As accumulation. A total of 204 near-surface (0-2.5 m) samples from modern alluvial and coastal depositional environments exhibit the same trends as their deeper counterparts, total arsenic peaking at peat horizons above the threshold values for contaminated soils. The arsenic-bearing, peat-rich Quaternary successions of the Po Plain accumulated under persisting reducing conditions in wetlands of backstepping estuarine and prograding deltaic depositional environments during the Early-Middle Holocene sea-level rise and subsequent stillstand. Contamination of the Holocene and underlying Pleistocene aquifer systems likely occurred through the release of As by microbially-mediated reductive dissolution. Using high-resolution sequence-stratigraphic concepts, we document that the Late Pleistocene-Holocene lithofacies architecture dictates the subsurface distribution of As. The "wetland trajectory", i.e. the path taken by the landward/seaward shift of peat-rich depositional environments during the Holocene, may help predict spatial patterns of natural As distribution, delineating the highest As-hazard zones and providing a realistic view of aquifer contamination even in unknown areas.
Collapse
Affiliation(s)
- Alessandro Amorosi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via Zamboni 67, 40126 Bologna, Italy.
| | - Irene Sammartino
- National Research Council (CNR), Institute of Marine Science (ISMAR), Via Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
3
|
Mushtaq N, Farooqi A, Khattak JA, Hussain I, Mailloux B, Bostick BC, Nghiem A, Ellis T, van Geen A. Elevated arsenic concentrations in groundwater of the Upper Indus Plain of Pakistan across a range of redox conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168574. [PMID: 38000757 DOI: 10.1016/j.scitotenv.2023.168574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
Groundwater of the Ravi River floodplain is particularly elevated in arsenic (As) on both sides of the Pakistan-India border. To understand this pattern, 14 sites were drilled to 12-30 m depth across floodplains and doabs of Pakistan after testing over 20,000 wells. Drill cuttings were collected at 1.5 m intervals, 132 of which were sand overlain by 77 intervals of clay and/or silt. Radiocarbon dating of clay indicates deposition of the aquifer sands tapped by wells 20-30 kyr ago. Most (85 %) of the sand samples were gray in color, indicating partial reduction to Fe(II) oxides, whereas most (92 %) of the clay and/or silt samples were orange. Associations between groundwater electrical conductivity, dissolved Fe, sulfate, and nitrate suggest that wells can be elevated (>10 μg/L) in As in the region due to either reductive dissolution of Fe oxides, evaporative concentration, or alkali desorption. In the Ravi floodplain, 47 % of 6445 wells tested contain >10 μg/L As compared to only 9 % of 14,165 tested wells in other floodplains and doabs. The As content of aquifer sands in the Ravi floodplain of Pakistan averages 4 ± 4 mg/kg (n = 66) and is higher than the average of 2 ± 2 mg/kg (n = 51) for aquifer sands outside the Ravi. Synchrotron spectroscopy and column-based speciation indicate predominance of As(V) over As(III) in both aquifer sands and groundwater. Whereas multiple processes may be responsible for elevated levels of As in groundwater across the region, spatial heterogeneity in groundwater As concentrations in the Ravi floodplain seems linked to variations in As concentrations in aquifer sands. Regulation by the solid phase may limit variations in groundwater As over time in response to natural and human-induced changes in hydrology. This means spatial heterogeneity could be taken advantage of to lower the exposure across the region with more testing and targeted drilling.
Collapse
Affiliation(s)
- Nisbah Mushtaq
- Environmental Hydrogeochemistry Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abida Farooqi
- Environmental Hydrogeochemistry Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Junaid Ali Khattak
- Environmental Hydrogeochemistry Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ishtiaque Hussain
- Environmental Hydrogeochemistry Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Brian Mailloux
- Environmental Sciences Department, Barnard College, New York, USA
| | | | - Athena Nghiem
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | - Tyler Ellis
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | | |
Collapse
|
4
|
Zanchi M, Zapperi S, Zanotti C, Rotiroti M, Bonomi T, Gomarasca S, Bocchi S, La Porta CA. A pipeline for monitoring water pollution: The example of heavy metals in Lombardy waters. Heliyon 2022; 8:e12435. [PMID: 36582716 PMCID: PMC9793264 DOI: 10.1016/j.heliyon.2022.e12435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Time-dependent geolocalized analysis of pollution data allows to better understand their dynamics over time and could suggest strategies to restore a good ecological status of contaminated area. This research analyzes concentrations of pollutants in surface waters and groundwater monitored by the Regional Environment Protection Agency of Lombardy from 2017 to 2020. Lombardy is one of the richest and populous region of Europe, providing an interesting example of the impact of environmental pollutants due to anthropogenic and industrial activities, not only for Italy but also for all Europe. Results show that groundwater displays more sites with heavy metals above the legal limit with respect to surface waters, including As, Ni, Cr and Zn. Furthermore, the spatio-temporal analysis of the data clearly shows that the introduction of more restrictive laws is a proper policy to improve the ecological status of the water.
Collapse
Affiliation(s)
- Marco Zanchi
- Department of Environmental Science and Policy, University of Milan, via Celoria 10, 20133 Milano, Italy,Center for Complexity and Biosystems, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, University of Milan, Via Celoria 16, 20133 Milano, Italy,Department of Physics, University of Milan, Via Celoria 16, 20133 Milano, Italy,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Via R. Cozzi 53, 20125 Milano, Italy
| | - Chiara Zanotti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Marco Rotiroti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Tullia Bonomi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Stefano Gomarasca
- Department of Environmental Science and Policy, University of Milan, via Celoria 10, 20133 Milano, Italy
| | - Stefano Bocchi
- Department of Environmental Science and Policy, University of Milan, via Celoria 10, 20133 Milano, Italy
| | - Caterina A.M. La Porta
- Department of Environmental Science and Policy, University of Milan, via Celoria 10, 20133 Milano, Italy,Center for Complexity and Biosystems, University of Milan, Via Celoria 16, 20133 Milano, Italy,CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via Celoria 10, 20133 Milano, Italy,Innovation For Well-Being And Environment (CRC-I-WE), University of Milan, Via Celoria 10, 20133 Milano, Italy,Corresponding author at: Department of environmental Science and Policy, University of Milan, Via Celoria 10, 20133 Milan, Italy.
| |
Collapse
|
5
|
Han D, Currell MJ. Review of drivers and threats to coastal groundwater quality in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150913. [PMID: 34653454 DOI: 10.1016/j.scitotenv.2021.150913] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
With rapid socio-economic development, China's coastal areas are among the fastest growing and most economically dynamic regions in the world. Under the influence of climate change and human activities, protecting the quality of coastal groundwater has emerged as one of the key environmental and resource management issues for these areas. This paper reviews (for the first time) groundwater quality data for the coastal basins of China, where over 600 million people live, focussing on key inorganic indicators/pollutants; groundwater salinity, nitrate, fluoride, and arsenic. These pollutants present major water quality issues and are also valuable as indicators of wider processes and influences impacting coastal groundwater quality - e.g. saltwater intrusion, agricultural pollution and release of geo-genic contaminants. We discuss the major drivers causing water quality problems in different regions and assess future trajectories and challenges for controlling changes in coastal groundwater quality in China. Multiple processes, including modern and palaeo seawater/brine migration, groundwater pumping for agricultural irrigation, pollution from agrochemical application, rapid development of aquaculture, urban growth, and water transfer projects, may all be responsible (to different degrees) for changes observed in coastal groundwater quality, and associated long-term health and ecological effects. We discuss implications for sustainable coastal aquifer management in China, arguing that groundwater monitoring and contamination control measures require urgent improvement. The evolution and treatment of coastal groundwater quality problems in China will serve as an important warning and example for other countries facing similar pressures, due to climate change, coastal development, and intensification of anthropogenic activity in coming decades.
Collapse
Affiliation(s)
- Dongmei Han
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | | |
Collapse
|
6
|
Zanotti C, Caschetto M, Bonomi T, Parini M, Cipriano G, Fumagalli L, Rotiroti M. Linking local natural background levels in groundwater to their generating hydrogeochemical processes in Quaternary alluvial aquifers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150259. [PMID: 34536881 DOI: 10.1016/j.scitotenv.2021.150259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Calculating natural background levels (NBLs) in groundwater is vital for supporting a sustainable use of groundwater resources. Although NBLs are often assessed through a unique concentration value per groundwater body, where hydrogeochemical features are highly variable, spatial heterogeneity needs to be accounted for, leading to the calculation of so-called "local" NBLs. Despite much research devoted to the identification of the best performing techniques for local NBLs spatialization, a deep understanding of the link between local NBL values and their generating hydrogeochemical processes is often lacking and so is addressed here for the redox-sensitive species As, NH4, Fe and Mn in the groundwater bodies of Lombardy region, N Italy. Local NBLs were calculated by a tired approach involving the hybridization of preselection and probability plot methods. Since the spatial variability of the target species depends mainly on redox conditions, a redox zonation was performed using multivariate statistical analysis. A conceptual model was developed and improved combing factor and cluster analysis. Results showed that NBLs for arsenic were up to 291 μg/L, reached in groundwaters under methanogenesis, a condition related to the prolonged degradation of peat buried in aquifer sediments. Ammonium NBLs up to 6.62 mg/L were generated by the upwelling of fluids from deep sediments hosting petroleum systems; ammonium NBLs up to 4.48 mg/L were generated as the accumulation of by-products of peat degradation. Iron and manganese NBLs up to, respectively, 6.0 and 1.51 mg/L were generated by the oxidation of younger and less stable Mn and Fe oxides within river valleys, mostly the Po River valley. The evaluation of local NBLs, and their association to generating natural hydrogeochemical processes/conditions, achieves a step forward from the commonly used approach of a single NBL per groundwater body, improving decision-support tools for sustainable groundwater management and protection.
Collapse
Affiliation(s)
- Chiara Zanotti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Mariachiara Caschetto
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Tullia Bonomi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Marco Parini
- Regione Lombardia, Direzione Generale Territorio e Protezione Civile, Struttura Risorse Idriche, Piazza Città di Lombardia 1, 20124 Milan, Italy
| | - Giuseppa Cipriano
- Agenzia Regionale per la Protezione dell'Ambiente della Lombardia, Settore Monitoraggi Ambientali, Via Rosellini 17, 20124 Milan, Italy
| | - Letizia Fumagalli
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Marco Rotiroti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| |
Collapse
|
7
|
Geochemical Markers as a Tool for the Characterization of a Multi-Layer Urban Aquifer: The Case Study of Como (Northern Italy). WATER 2022. [DOI: 10.3390/w14010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The analysis of geochemical markers is a known valid tool to explore the water sources and understand the main factors affecting natural water quality, which are known issues of interest in environmental science. This study reports the application of geochemical markers to characterize and understand the recharge areas of the multi-layer urban aquifer of Como city (northern Italy). This area presents a perfect case study to test geochemical markers: The hydrogeological setting is affected by a layered karst and fractured aquifer in bedrock, a phreatic aquifer hosted in Holocene sediments and connected with a large freshwater body (Lake Como); the aquifers recharge areas and the water geochemistry are unknown; the possible effect of the tectonic setting on water flow was overlooked. In total, 37 water samples were collected including water from two stacked aquifers and surface water to characterize hydrochemical features. Moreover, six sediment samples in the recent palustrine deposits of the Como subsurface were collected from cores and analyzed to understand the main geochemistry and mineralogy of the hosting material. The chemical analyses of water allow to observe a remarkable difference between the shallow and deep aquifers of the study area, highlighting different recharge areas, as well as a different permanence time in the aquifers. The sediment geochemistry, moreover, confirms the differences in trace elements derived from sediment-water interaction in the aquifers. Finally, an anomalous concentration of As in the Como deep aquifer was observed, suggesting the need of more detailed analyses to understand the origin of this element in water. This study confirms the potentials of geochemical markers to characterize main factors affecting natural water quality, as well as a tool for the reconstruction of recharge areas.
Collapse
|
8
|
Zecchin S, Crognale S, Zaccheo P, Fazi S, Amalfitano S, Casentini B, Callegari M, Zanchi R, Sacchi GA, Rossetti S, Cavalca L. Adaptation of Microbial Communities to Environmental Arsenic and Selection of Arsenite-Oxidizing Bacteria From Contaminated Groundwaters. Front Microbiol 2021; 12:634025. [PMID: 33815317 PMCID: PMC8017173 DOI: 10.3389/fmicb.2021.634025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Arsenic mobilization in groundwater systems is driven by a variety of functionally diverse microorganisms and complex interconnections between different physicochemical factors. In order to unravel this great ecosystem complexity, groundwaters with varying background concentrations and speciation of arsenic were considered in the Po Plain (Northern Italy), one of the most populated areas in Europe affected by metalloid contamination. High-throughput Illumina 16S rRNA gene sequencing, CARD-FISH and enrichment of arsenic-transforming consortia showed that among the analyzed groundwaters, diverse microbial communities were present, both in terms of diversity and functionality. Oxidized inorganic arsenic [arsenite, As(III)] was the main driver that shaped each community. Several uncharacterized members of the genus Pseudomonas, putatively involved in metalloid transformation, were revealed in situ in the most contaminated samples. With a cultivation approach, arsenic metabolisms potentially active at the site were evidenced. In chemolithoautotrophic conditions, As(III) oxidation rate linearly correlated to As(III) concentration measured at the parental sites, suggesting that local As(III) concentration was a relevant factor that selected for As(III)-oxidizing bacterial populations. In view of the exploitation of these As(III)-oxidizing consortia in biotechnology-based arsenic bioremediation actions, these results suggest that contaminated aquifers in Northern Italy host unexplored microbial populations that provide essential ecosystem services.
Collapse
Affiliation(s)
- Sarah Zecchin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Simona Crognale
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | - Patrizia Zaccheo
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milano, Italy
| | - Stefano Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | - Stefano Amalfitano
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | - Barbara Casentini
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | - Matteo Callegari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Raffaella Zanchi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Gian Attilio Sacchi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milano, Italy
| | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | - Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
9
|
Natural Background Levels of Potentially Toxic Elements in Groundwater from a Former Asbestos Mine in Serpentinite (Balangero, North Italy). WATER 2021. [DOI: 10.3390/w13050735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The definition of natural background levels (NBLs) for potentially toxic elements (PTEs) in groundwater from mining environments is a real challenge, as anthropogenic activities boost water–rock interactions, further increasing the naturally high concentrations. This study illustrates the procedure followed to derive PTE concentration values that can be adopted as NBLs for the former Balangero asbestos mine, a “Contaminated Site of National Interest”. A full hydrogeochemical characterisation allowed for defining the dominant Mg-HCO3 facies, tending towards the Mg-SO4 facies with increasing mineralisation. PTE concentrations are high, and often exceed the groundwater quality thresholds for Cr VI, Ni, Mn and Fe (5, 20, 50 and 200 µg/L, respectively). The Italian guidelines for NBL assessment recommend using the median as a representative concentration for each monitoring station. However, this involves discarding half of the measurements and in particular the higher concentrations, thus resulting in too conservative estimates. Using instead all the available measurements and the recommended statistical evaluation, the derived NBLs were: Cr = 39.3, Cr VI = 38.1, Ni = 84, Mn = 71.36, Fe = 58.4, Zn = 232.2 µg/L. These values are compared to literature data from similar hydrogeochemical settings, to support the conclusion on their natural origin. Results highlight the need for a partial rethink of the guidelines for the assessment of NBLs in naturally enriched environmental settings.
Collapse
|
10
|
Deriving Natural Background Levels of Arsenic at the Meso-Scale Using Site-Specific Datasets: An Unorthodox Method. WATER 2021. [DOI: 10.3390/w13040452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Arsenic is found in groundwater above regulatory limits in many countries and its origin is often from natural sources, making the definition of Natural Background Levels (NBLs) crucial. NBL is commonly assessed based on either dedicated small-scale monitoring campaigns or large-scale national/regional groundwater monitoring networks that may not grab local-scale heterogeneities. An alternative method is represented by site-specific monitoring networks in contaminated/polluted sites under remediation. As a main drawback, groundwater quality at these sites is affected by human activities. This paper explores the potential for groundwater data from an assemblage of site-specific datasets of contaminated/polluted sites to define NBLs of arsenic (As) at the meso-scale (order of 1000 km2). Common procedures for the assessment of human influence cannot be applied to this type of dataset due to limited data homogeneity. Thus, an “unorthodox” method is applied involving the definition of a consistent working dataset followed by a statistical identification and critical analysis of the outliers. The study was conducted in a highly anthropized area (Ferrara, N Italy), where As concentrations often exceed national threshold limits in a shallow aquifer. The results show that site-specific datasets, if properly pre-treated, are an effective alternative for the derivation of NBLs when regional monitoring networks fail to catch local-scale variability.
Collapse
|