1
|
Jiang W, Liu Y, Wang S, Yang H, Fan X. Combination of co-pyrolyzed biomass-sludge biochar and ultrasound for persulfate activation in antibiotic degradation: efficiency, synergistic effect, and reaction mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3208-3225. [PMID: 39150421 DOI: 10.2166/wst.2024.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/10/2024] [Indexed: 08/17/2024]
Abstract
A carbon material Cu-corn straw-sludge biochar (Cu-CSBC) was prepared by hydrothermally modifying sewage sludge and corn stover. The composite coupled to ultrasound can effectively catalyze the activation of PS for organic pollutants degradation, and the removal rate of 20 mg/L TC reached 89.15% in 5 min in the presence of 0.5 g/L Cu-CSBC and 3 mM PS. The synergistic effect between the factors in the system, the reaction mechanism, and the efficient removal of TC in the aqueous environment were explored in a Cu-CSBC/US/PS system established for that purpose. Quenching experiments and electron paramagnetic resonance analysis both demonstrated the Cu-CSBC/US/PS system generated •OH, SO4-•, 1O2, and O2- •, which involved in the reaction. The Cu, carboxyl, and hydroxyl groups on the Cu-CSBC surface promoted the generation of radicals and non-radicals for the degradation process, which was dominated by both radical and non-radical pathways. The degradation pathway is proposed by measuring the intermediate products with LC-MS. Finally, the stability of the Cu-CSBC/US/PS system was tested under various reaction conditions. This study not only prepared a novel biochar composite material for the active degradation of organic pollutants by PS but also provided an effective method for the resource utilization of solid waste and sludge treatment.
Collapse
Affiliation(s)
- Wan Jiang
- Jiangsu Fangyang Construction Engineerineg Management Co., LTD, Lianyungang 222065, China
| | - Yiming Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Shenpeng Wang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Haifeng Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China E-mail:
| |
Collapse
|
2
|
Tao J, Wu W, Lin D, Yang K. Role of biochar pyrolysis temperature on intracellular and extracellular biodegradation of biochar-adsorbed organic compounds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123583. [PMID: 38365081 DOI: 10.1016/j.envpol.2024.123583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Immobilizing organic pollutants by adsorption of biochar in farmland soil is a cost-effective remediation method for contaminated soil. As the adsorption capacity of biochar is limited, biodegradation of biochar-adsorbed organic pollutants was a potential way to regenerate biochars and maintain the adsorption performance of biochars to lower the cost. It could be affected by the biochar pyrolysis temperature, but was not evaluated yet. In this study, biodegradation of adsorbed phenanthrene on a series of biochars with pyrolysis temperatures from 150 to 700 °C by Sphingobium yanoikuyae B1 was investigated using batch experiments of biodegradation kinetics at 30 °C, to explore the role of biochar pyrolysis temperature on biodegradation of biochar-adsorbed organic compounds. It was observed that 37.5-47.9% of adsorbed phenanthrene on moderate temperature-pyrolyzed biochars produced at 400 and 500 °C were biodegraded, less than that on high temperature-pyrolyzed biochars produced at ≥600 °C (48.8-60.8%) and low temperature-pyrolyzed biochars produced at ≤300 °C (63.4-92.5%). Phenanthrene adsorbed largely on the low temperature-pyrolyzed biochars by partition mechanism and thus is easily desorbed to water for a dominated intracellular biodegradation. On the high temperature-pyrolyzed biochars, phenanthrene is adsorbed largely by pore-filling mechanism and thus less desorbed to water for intracellular biodegradation. However, high temperature-pyrolyzed biochars can promote microbes to produce siderophore, H2O2 and thus release extracellular •OH for a dominated degradation of adsorbed phenanthrene by Fenton-like reaction. With the increase of biochar pyrolysis temperature, desorption and consequently the intracellular biodegradation of adsorbed phenanthrene on biochars decreased, while the secretion of siderophore and H2O2 by microbes on biochars increased to produce more extracellular •OH for degradation by Fenton-like reaction. The results could provide deep insights into the role of biochar pyrolysis temperature on biodegradation of biochar-adsorbed organic compounds, and optimize the selection of biochar with higher adsorption performance and easier regeneration for soil remediation.
Collapse
Affiliation(s)
- Jiaqi Tao
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China.
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
3
|
Alfei S, Pandoli OG. Biochar-Derived Persistent Free Radicals: A Plethora of Environmental Applications in a Light and Shadows Scenario. TOXICS 2024; 12:245. [PMID: 38668468 PMCID: PMC11054495 DOI: 10.3390/toxics12040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
Biochar (BC) is a carbonaceous material obtained by pyrolysis at 200-1000 °C in the limited presence of O2 from different vegetable and animal biomass feedstocks. BC has demonstrated great potential, mainly in environmental applications, due to its high sorption ability and persistent free radicals (PFRs) content. These characteristics enable BC to carry out the direct and PFRs-mediated removal/degradation of environmental organic and inorganic contaminants. The types of PFRs that are possibly present in BC depend mainly on the pyrolysis temperature and the kind of pristine biomass. Since they can also cause ecological and human damage, a systematic evaluation of the environmental behavior, risks, or management techniques of BC-derived PFRs is urgent. PFRs generally consist of a mixture of carbon- and oxygen-centered radicals and of oxygenated carbon-centered radicals, depending on the pyrolytic conditions. Here, to promote the more productive and beneficial use of BC and the related PFRs and to stimulate further studies to make them environmentally safer and less hazardous to humans, we have first reviewed the most common methods used to produce BC, its main environmental applications, and the primary mechanisms by which BC remove xenobiotics, as well as the reported mechanisms for PFR formation in BC. Secondly, we have discussed the environmental migration and transformation of PFRs; we have reported the main PFR-mediated application of BC to degrade inorganic and organic pollutants, the potential correlated environmental risks, and the possible strategies to limit them.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Omar Ginoble Pandoli
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
- Department of Chemistry, Pontifical Catholic University, Rua Marquês de São Vincente 225, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
4
|
Duan P, Kong F, Fu X, Han Z, Sun G, Yu Z, Wang S, Cui Y. Peroxymonosulfate activation by walnut shell activated carbon supported nano zero-valent iron for the degradation of tetracycline: Performance, degradation pathway and mechanism. ENVIRONMENTAL RESEARCH 2024; 245:117971. [PMID: 38145740 DOI: 10.1016/j.envres.2023.117971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/11/2023] [Accepted: 12/03/2023] [Indexed: 12/27/2023]
Abstract
In this study, activated carbon (WS-AC) was prepared from walnut shell. Nano-zero-valent iron (nZVI) was loaded on walnut shell activated carbon by liquid phase reduction method and used as catalyst (WS-AC/nZVI) to activate peroxymonosulfate (PMS) to efficiently degrade tetracycline (TC) in solution. The composite material with a mass ratio of WS-AC to nZVI of 1:1 has the highest catalytic performance for activating PMS to degrade TC. The results showed that under the conditions of TC concentration of 100 ppm, PMS dosage of 0.2 mM and WS-AC/nZVI dosage of 0.1 g/L, the removal efficiency of TC could reach 81%. Based on quenching experiments and electron spin resonance (EPR), it was verified that •OH, SO4•- and 1O2 bound on the catalyst surface were the main reactive oxygen species during the reaction. The intermediate products of TC were identified by liquid chromatography-mass spectrometry (HPLC-MS) and DFT calculation, and the possible degradation pathway of TC was proposed. The catalyst still maintained high removal efficiency of TC after four cycles of experiments, and the minimal iron loss on the surface of the catalyst indicated that it had good stability. The efficient and stable WS-AC/nZVI activated PMS showed great potential in the degradation of antibiotics.
Collapse
Affiliation(s)
- Pingping Duan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Xiuzheng Fu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhijie Han
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Guangwei Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhengda Yu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| | - Yuqian Cui
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
5
|
E Z, Liang J, Li P, Qiang S, Fan Q. A review on photocatalytic attribution and process of pyrolytic biochar in environment. WATER RESEARCH 2024; 251:120994. [PMID: 38277825 DOI: 10.1016/j.watres.2023.120994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
Biochar has attracted significant attention due to its excellent environmental benefits and extensive applications. Recently, a consensus has been accepted that biochar can act as a photocatalyst and trigger effective photocatalytic reactions in the environment, which is important to energy conversion and the cycle of elements. However, its photocatalytic processes and the corresponding environmental impacts need to receive more and due attention. In this review, we provide a comprehensive summary of the underlying correlations among the pyrolytic evolution of biomass, the structure characteristic of biochar, and the resultant photocatalytic performance. Moreover, the photocatalytic processes and the influence of environmental factors were elaborately investigated on biochar. Finally, future tendencies and challenges in the photocatalysis of biochar have been prospected in the environmental field. This review has offered innovative insights into the photocatalytic essential of biochar and highly enhanced the understanding of its environmental impact.
Collapse
Affiliation(s)
- Zhengyang E
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Lanzhou, Gansu 730000, China
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Lanzhou, Gansu 730000, China
| | - Shirong Qiang
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China; Key Laboratory of Petroleum Resources, Lanzhou, Gansu 730000, China.
| |
Collapse
|
6
|
Qin Y, Wang S, Zhang B, Chen W, An M, Yang Z, Gao H, Qin S. Zinc and sulfur functionalized biochar as a peroxydisulfate activator via deferred ultraviolet irradiation for tetracycline removal. RSC Adv 2024; 14:5648-5664. [PMID: 38352677 PMCID: PMC10863648 DOI: 10.1039/d3ra07923f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
To enhance the degradation of tetracycline class (TC) residuals of high-concentration from pharmaceutical wastewater, a novel zinc (Zn) and sulfur (S) functionalized biochar (SC-Zn), as a peroxydisulfate (PDS) activator, was prepared by two-step pyrolysis using ZnSO4 accumulated water-hyacinth. Results showed that the removal rate of 50, 150, and 250 mg per L TC reached 100%, 99.22% and 94.83% respectively, by the SC-Zn/PDS system at a dosage of 0.3 g per L SC-Zn and 1.2 mM PDS, via the deferred ultraviolet (UV) irradiation design. Such excellent performance for TC removal was due to the synergetic activation of PDS by the biochar activator and UV-irradiation with biochar as a responsive photocatalyst. The functionalization of the co-doped Zn and S endowed the biochar SC-Zn with a significantly enhanced catalytic performance, since Zn was inferred to be the dominant catalytic site for SO4˙- generation, while S played a key role in the synergism with Zn by acting as the primary adsorption site for the reaction substrates. The employed SC-Zn/PDS/UV system had excellent anti-interference under different environmental backgrounds, and compared with the removal rate of TC by adsorption of SC-Zn, the increasing rate in the SC-Zn/PDS/UV system (18.75%) was higher than the sum of the increases in the SC-Zn/PDS (9.87%) and SC-Zn/UV systems (3.34%), furtherly verifying the systematic superiority of this synergy effect. This study aimed to prepare a high-performance functionalized biochar activator and elucidate the rational design of deferred UV-irradiation of PDS activation to efficiently remove high-concentration antibiotic pollutants.
Collapse
Affiliation(s)
- Yixue Qin
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Sheng Wang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Bingbing Zhang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
- Resources and Environmental Engineering Department, Guizhou University Guiyang 550025 China
| | - Weijie Chen
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
- Resources and Environmental Engineering Department, Guizhou University Guiyang 550025 China
| | - Mingze An
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Zhao Yang
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Hairong Gao
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| | - Shuhao Qin
- College of Materials and Metallurgy, Guizhou University Guiyang 550025 China
- National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang 550014 China
| |
Collapse
|
7
|
Zhao S, Wang X, Wang Q, Sumpradit T, Khan A, Zhou J, Salama ES, Li X, Qu J. Application of biochar in microbial fuel cells: Characteristic performances, electron-transfer mechanism, and environmental and economic assessments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115643. [PMID: 37944462 DOI: 10.1016/j.ecoenv.2023.115643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Biochar is a by-product of thermochemical conversion of biomass or other carbonaceous materials. Recently, it has garnered extensive attention for its high application potential in microbial fuel cell (MFC) systems owing to its high conductivity and low cost. However, the effects of biochar on MFC system performance have not been comprehensively reviewed, thereby necessitating the evaluation of the efficacy of biochar application in MFCs. In this review, biochar characteristics were outlined based on recent publications. Subsequently, various applications of biochar in the MFC systems and their probable processes were summarized. Finally, proposals for future applications of biochar in MFCs were explored along with its perspectives and an environmental evaluation in the context of a circular economy. The purpose of this review is to gain comprehensive insights into the application of biochar in the MFC systems, offering important viewpoints on the effective and steady utilization of biochar in MFCs for practical application.
Collapse
Affiliation(s)
- Shuai Zhao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xu Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Qiutong Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tawatchai Sumpradit
- Microbiolgy and Parasitology Department, Naresuan University, Muang, Phitsanulok, Thailand
| | - Aman Khan
- Pakistan Agricultural Research Council, 20-Attaturk Avenue, Sector G-5/1, Islamabad, Pakistan
| | - Jia Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - El-Sayed Salama
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Jianhang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Zhang M, Ruan J, Wang X, Shao W, Chen Z, Chen Z, Gu C, Qiao W, Li J. Selective oxidation of organic pollutants based on reactive oxygen species and the molecular structure: Degradation behavior and mechanism analysis. WATER RESEARCH 2023; 246:120697. [PMID: 37837899 DOI: 10.1016/j.watres.2023.120697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
The selective and rapid elimination of refractory organic pollutants from surface water is significant. However, the relationship of between reactive oxygen species (ROSs) and diversified pollutants molecular structures still needs to be further clarified. Here, we utilize polydopamine (PDA)-assisted coating strategy to prepare hollow 2D carbon nanosheet (ZPL-HCNS) and 2D Co3O4 nanosheet (ZPL-Co3O4) by thermolysis of PDA coated ZIF-L (ZIF-L@PDA) precursor under different gas atmosphere, which realizes the controlled generation of radicals and non-radicals. Organic pollutants including bisphenols, sulfonamides, quinolones, tetracyclines, and azo dyes are applied to assess the catalytic performance. Results show that dyes containing azo structure are more likely to be degraded by radical process, which is due to that the energy (ΔE) requirements to break the azo bond is higher than energy released from singlet oxygen to oxygen molecule and lower than that of sulfate radical to sulfate. Frontier molecular orbital theory HOMO-LUMO and Fukui function expounded the possible selectivity mechanism. In addition, the degradation pathway and biotoxicity test are carried out. This work provides a reference to illustrate the selective degradation for ROSs and molecular structure of pollutants.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jingqi Ruan
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weizhen Shao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglin Chen
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Zeng S, Li K, Xu X, Zhang J, Xue Y. Efficiently catalytic degradation of tetracycline via persulfate activation with plant-based biochars: Insight into endogenous mineral self-template effect and pyrolysis catalysis. CHEMOSPHERE 2023; 337:139309. [PMID: 37391085 DOI: 10.1016/j.chemosphere.2023.139309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Endogenous mineral of plant such as potassium, calcium and iron may play a crucial role in boosting the physicochemical structure and catalytic activity of high temperature pyrolyzed plant-based biochar while it is often neglected owing to its relative less content. Herein, self-template pyrolyzed plant-based biochars were prepared from two different ash-contained agricultural wastes of peanut hull (PH, 3.2% ash) and cotton straw (CS, 0.8% ash), and aimed at investigating the relationship among the endogenous mineral fractions of plant-based biomass, physicochemical active structure and persulfate (PS) catalytic degradation activity for tetracycline (TC). The results of energy/spectral characterization showed that under the self-template effect and pyrolysis catalysis of endogenous minerals, PH biochar (PBC) possessed much more specific surface area, conjugated graphite domain, C=O and pyrrolic-N surface active functional sites than CS biochar (CBC), enhancing TC removal rate of PBC/PS to 88.37%, twice that of CBC/PS (44.16%). Meanwhile, reactive oxygen quenching and electrochemical experiments showed that electrons transfer and non-free radical pathways based on singlet oxygen contributed 92% of TC removal in PBC/PS system. Remarkably, by comparing the differences in structure and TC removal performance of pre-deashing and non-deashing prepared plant-based biochars, a possible mechanism for endogenous mineral components' self-template effect and pyrolysis catalysis role of plant-based biomass was proposed. This study provides a new insight for revealing the intrinsic mechanism of mineral elements enhancing the active surface structures and catalytic properties of plant-based biochars derived from distinct feedstocks.
Collapse
Affiliation(s)
- Shaoyi Zeng
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Kunquan Li
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China.
| | - Xia Xu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Jiayong Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Yan Xue
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| |
Collapse
|
10
|
Pang W, Wang Y, Li S, Luo Y, Wang G, Hou J, Han T, Gao Z, Guo Q, Zhou H. Novel magnetic graphoxide/biochar composite derived from tea for multiple SAs and QNs antibiotics removal in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43215-43228. [PMID: 36652077 DOI: 10.1007/s11356-023-25298-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Antibiotics pollution is an urgent public health issue. Biochar is a kind of promising composite for removal antibiotic in aqueous environment. In this study, a novel magnetic graphoxide/biochar composite (mGO/TBC) was synthesized by simple impregnation method and used as an efficient and recyclable persulfate (PS) activator for degradation and removal of sulfonamides (SAs) and quinolones (QNs) antibiotics. Based on the synergism pre-adsorption and degradation between graphoxide and biochar, the removal rates of mGO/TBC on sarafloxacin hydrochloride, sulfadimethoxine, sulfapyridine, sulfadoxine, sulfamonomethoxine, sulfachloropyridazine, enrofloxacin, and ciprofloxacin were increased above 95%. Moreover, the mGO/TBC could be reused at least seven times after degradation-recovery cycles. Quenching experiment and ESR analysis proved that 1O2, •OH, and SO4•- from mGO/TBC/PS system were the primary oxidation active species to degrade SAs and QNs. It is a promising substrate for antibiotic bioremediation with good application prospects.
Collapse
Affiliation(s)
- Wei Pang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yonghui Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yuanyuan Luo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Guanyu Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jian Hou
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tie Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhixian Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Huanying Zhou
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
11
|
Synergy between graphitized biochar and goethite driving efficient H2O2 activation: Enhanced performance and mechanism analysis. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Wang D, Dong S, Fu S, Shen Y, Zeng T, Yu W, Lu X, Wang L, Song S, Ma J. Catalytic ozonation for imazapic degradation over kelp-derived biochar: Promotional role of N- and S-based active sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160473. [PMID: 36455736 DOI: 10.1016/j.scitotenv.2022.160473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
It is a feasible strategy to prepare reliable biochar catalysts for heterogeneous catalytic ozonation (HCO) processes by using inexpensive, high quality, and easily available raw materials. Here, an environmentally friendly, simple, and green biochar catalyst rich in nitrogen (N) and sulfur (S) has been prepared by the pyrolysis of kelp. Compared with directly carbonized kelp biomass (KB), acid-activated KB (KBA) and base-activated KB (KBB) have higher specific surface areas and more extensive porous structures, although only KBB displays effective ozone activation. Imazapic (IMZC), a refractory organic herbicide, was chosen as the target pollutant, which has apparently not hitherto been investigated in the HCO process. Second-order rate constants (k) for the reactions of IMZC with three different reactive oxygen species (ROS), specifically kO3, IMZC, kOH, IMZC, and k1O2, IMZC, have been determined as 0.974, 2.48 × 109, and 6.23 × 105 M-1 s-1, respectively. The amounts of graphitic N and thiophene S derived from the intrinsic N and S showed good correlations with the IMZC degradation rate, implicating them as the main active sites. OH and O2- and 1O2 were identified as main ROS in heterogeneous catalytic ozonation system for IMZC degradation. This study exemplified the utilization of endogenous N and S in biological carbon, and provided more options for the application of advanced oxidation processes and the development of marine resources.
Collapse
Affiliation(s)
- Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shiwen Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Siqi Fu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weiti Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lizhang Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Acid-modified anaerobic biogas residue biochar activates persulfate for phenol degradation: Enhancement of the efficiency and non-radical pathway. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Jiang T, Wang B, Gao B, Cheng N, Feng Q, Chen M, Wang S. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130075. [PMID: 36209607 DOI: 10.1016/j.jhazmat.2022.130075] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Biochar has shown large potential in environmental remediation because of its low cost, large specific surface area, porosity, and high conductivity. Biochar-assisted advanced oxidation processes (BC-AOPs) have recently attracted increasing attention to the remediation of organic pollutants from water. However, the effects of biochar properties on catalytic performance need to be further explored. There are still controversial and knowledge gaps in the reaction mechanisms of BC-AOPs, and regeneration methods of biochar catalysts are lacking. Therefore, it is necessary to systematically review the latest research progress of BC-AOPs in the treatment of organic pollutants in water. In this review, first of all, the effects of biochar properties on catalytic activity are summarized. The biochar properties can be optimized by changing the feedstocks, preparation conditions, and modification methods. Secondly, the catalytic active sites and degradation mechanisms are explored in different BC-AOPs. Different influencing factors on the degradation process are analyzed. Then, the applications of BC-AOPs in environmental remediation and regeneration methods of different biochar catalysts are summarized. Finally, the development prospects and challenges of biochar catalysts in environmental remediation are put forward, and some suggestions for future development are proposed.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Ning Cheng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
15
|
Wang T, Xu KM, Yan KX, Wu LG, Chen KP, Wu JC, Chen HL. Comparative study of the performance of controlled release materials containing mesoporous MnOx in catalytic persulfate activation for the remediation of tetracycline contaminated groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157217. [PMID: 35810910 DOI: 10.1016/j.scitotenv.2022.157217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Controlled release materials (CRMs) are an emerging oxidant delivery technique for in-situ chemical oxidation (ISCO) that solve the problems of contaminant rebound, backflow and wake during groundwater remediation. CRMs were fabricated using ordered mesoporous manganese oxide (O-MnOx) and sodium persulfate (Na2S2O8) as active components, for the removal of antibiotic pollutants from groundwater. In both static and dynamic groundwater environments, persulfate can first be activated by O-MnOx within CRMs to form sulfate radicals and hydroxyl radicals, with these radicals subsequently dissolving out from the CRMs and degrading tetracycline (TC). Due to their excellent persulfate activation performance and good stability, the constructed CRMs could effectively degrade TC in both static and dynamic simulated groundwater systems over a long period (>21 days). The TC removal rate reached >80 %. Changing the added content of O-MnOx and persulfate could effectively regulate the performance of the CRMs during TC degradation in groundwater. The process and products of TC degradation in the dynamic groundwater system were the same as in the static groundwater system. Due to the strong oxidizing properties of sulfate radicals and hydroxyl radicals, TC molecules were completely mineralized within the groundwater systems, resulting in only trace levels of degradation products being detectable, with low- or non-toxicity. Therefore, the CRMs constructed in this study exhibited good potential for practical application in the remediation of organic pollutants from both static and dynamic groundwater environments.
Collapse
Affiliation(s)
- Ting Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kun-Miao Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kai-Xin Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Li-Guang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kou-Ping Chen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Ji-Chun Wu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Hua-Li Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
16
|
Large-Scale Synthesis of Iron Ore@Biomass Derived ESBC to Degrade Tetracycline Hydrochloride for Heterogeneous Persulfate Activation. Catalysts 2022. [DOI: 10.3390/catal12111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-based catalysts are widely used in water treatment and environmental remediation due to their abundant content in nature and their ability to activate persulfate at room temperature. Here, eggshell biochar-loaded natural iron slag (IO@ESBC) was successfully synthesized to remove tetracycline hydrochloride (TCH) by activated persulfate. The morphology, structure and chemical composition of IO@ESBC were systematically characterized. The IO@ESBC/PS process showed good performance for TCH removal. The decomposition rate constant (k) for IO@ESBC was 0.011 min−1 and the degradation rate was 3690 mmol/g/h in this system. With the increase of PS concentration and IO@ESBC content, the removal rate of TCH both increased. The IO@ESBC/PS process can effectively remove TCH at pH 3–9. There are different effects on TCH removal for the reason that the addition of water matrix species (humic acid, Cl−, HCO3−, NO3− and HPO42−). The IO@ESBC/PS system for degrading TCH was mainly controlled by both the free radical pathway (SO4•−, •OH and O2•−) and non-free radical pathway (1O2). The loading of ESBC slows down the agglomeration between iron particles, and more active sites are exposed. The removal rate of TCH was still above 75% after five cycles of IO@ESBC. This interesting investigation has provided a green route for synthesis of composite driving from waste resources, expanding its further application for environmental remediations.
Collapse
|
17
|
Wang C, Wang Y, Yu Y, Cui X, Yan B, Song Y, Li N, Chen G, Wang S. Effect of phosphates on oxidative species generation and sulfamethoxazole degradation in a pig manure derived biochar activated peroxymonosulfate system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Zhou Y, Li WB, Kumar V, Necibi MC, Mu YJ, Shi CZ, Chaurasia D, Chauhan S, Chaturvedi P, Sillanpää M, Zhang Z, Awasthi MK, Sirohi R. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective. ENVIRONMENTAL RESEARCH 2022; 211:113075. [PMID: 35271831 DOI: 10.1016/j.envres.2022.113075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Synthetic antibiotics have been known for years to combat bacterial antibiotics. But their overuse and resistance have become a concern recently. The antibiotics reach the environment, including soil from the manufacturing process and undigested excretion by cattle and humans. It leads to overburden and contamination of the environment. These organic antibiotics remain in the environment for a very long period. During this period, antibiotics come in contact with various flora and fauna. The ill manufacturing practices and inadequate wastewater treatment cause a severe problem to the water bodies. After pretreatment from pharmaceutical industries, the effluents are released to the water bodies such as rivers. Even after pretreatment, effluents contain a significant number of antibiotic residues, which affect the living organisms living in the water bodies. Ultimately, river contaminated water reaches the ocean, spreading the contamination to a vast environment. This review paper discusses the impact of synthetic organic contamination on the environment and its hazardous effect on health. In addition, it analyzes and suggests the biotechnological strategies to tackle organic antibiotic residue proliferation. Moreover, the degradation of organic antibiotic residues by biocatalyst and biochar is analyzed. The circular economy approach for waste-to-resource technology for organic antibiotic residue in China is analyzed for a sustainable solution. Overall, the significant challenges related to synthetic antibiotic residues and future aspects are analyzed in this review paper.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Wen-Bing Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Mohamed Chaker Necibi
- International Water Research Institute, Mohammed VI Polytechnic University, 43150, Ben-Guerir, Morocco
| | - Yin-Jun Mu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chang-Ze Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, Republic of Korea.
| |
Collapse
|
19
|
Su X, Guo Y, Yan L, Wang Q, Zhang W, Li X, Song W, Li Y, Liu G. MoS2 nanosheets vertically aligned on biochar as a robust peroxymonosulfate activator for removal of tetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Li H, Liu Y, Jiang F, Bai X, Li H, Lang D, Wang L, Pan B. Persulfate adsorption and activation by carbon structure defects provided new insights into ofloxacin degradation by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150968. [PMID: 34656585 DOI: 10.1016/j.scitotenv.2021.150968] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Cellulose and lignin derived biochars with significant differences in persistent free radicals (PFRs), oxygen-containing functional groups, and defective structure were prepared to explore the mechanism of biochar mediated persulfate (PS) activation. EPR spin trapping and quenching technique coupled with degradation experiments confirmed that the defective structures could activate PS to generate superoxide anions (O2•-), which was converted to singlet oxygen (1O2), especially in the acidic condition. 1O2 dominated the degradation of ofloxacin (OFL, a fluoroquinolone antibiotic). An improved iodometric measurement was applied for direct quantification of adsorbed PS on biochar. The amounts of adsorbed PS were consistent with the degradation of OFL and the measured electric current during the reaction indicated that PS adsorption was a prerequisite for PS activation, which may be neglected in previous studies. The results of this study highlighted the key roles of defective structure and adsorption of PS on biochar for the activation of PS.
Collapse
Affiliation(s)
- Hao Li
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yi Liu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Feng Jiang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Xing Bai
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Huijie Li
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Di Lang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Lin Wang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| |
Collapse
|
21
|
He Z, He Y, Chang F, Li Z, Niu J, Li M, Zhang S, Li X, Shi R, Hu G. Efficient pH-universal degradation of antibiotic tetracycline via Co 2P decorated Neosinocalamus affinis biochar. CHEMOSPHERE 2022; 286:131759. [PMID: 34388433 DOI: 10.1016/j.chemosphere.2021.131759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Considering the complexity of traditional cobalt phosphide (Co2P) loaded biochar synthesis research on a simple and efficient synthesis method has practical significance. In this study, after phosphoric acid activation, Neosinocalamus affinis biochar (NAB) and nanoplate Co3O4 quickly formed a Co2P-NAB composite material with high Co2P crystallinity and was uniformly dispersed on the surface of NAB in a microwave reactor. Co2P-NAB has an excellent catalytic degradation effect in the activation of peroxymonosulfate (PMS) to degrade tetracycline (TC). The optimal TC degradation efficiency was achieved with the addition of 50 mg L-1 TC concentration, 0.2 g L-1 catalysts, 0.406 mM PMS and pH = 6.02. In addition, according to the pseudo-first-order reaction rate constant calculation, the composite of Co2P-NAB and PMS the synergy efficiency is 81.55 %. Compared with Co2P-NAB (10.83 %) and PMS (7.62 %) alone, the Co2P-NAB/PMS system has a significant promotion effect on the degradation of TC molecules. Additionally, the Co2P-NAB/PMS system had a TC mineralization rate of 68 % in 30 min. Furthermore, after a series of characterization, detection and analysis, and influencing factor experiments, we proposed a potential mechanism for the Co2P-NAB/PMS reaction system to degrade TC and found that singlet oxygen (1O2) plays an essential role in the non-radical degradation process. Finally, according to the liquid chromatography-mass spectrometry (LC-MS) detection of TC degradation intermediates, a possible degradation route was proposed. Therefore, this work uses microwave technology to present a novel and simple synthesis method for transition metal phosphides, which provides potential application value for the treatment of actual wastewater with heterogeneous catalysts.
Collapse
Affiliation(s)
- Zhuang He
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Institute of International Rivers and Eco-Security, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yingnan He
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Institute of International Rivers and Eco-Security, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Institute of International Rivers and Eco-Security, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Jianrui Niu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Meng Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaohua Li
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China.
| | - Rongguang Shi
- Agro-environmental Protection Institute Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Institute of International Rivers and Eco-Security, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| |
Collapse
|