1
|
Wang L, Xiang L, Wang X, Liu T, Chen H, Li D, Jian C, Guo W, Xiao Z, He Y. Utilization patterns strongly dominated the dynamics of CO 2 and CH 4 emissions from small artificial lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123613. [PMID: 39662434 DOI: 10.1016/j.jenvman.2024.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Small lakes are significant sources of CO2 and CH4 emissions to atmosphere. The dynamics and controls of CO2 and CH4 emissions from human-dominated small lakes with diverse functions remain poorly understood. We investigated the spatiotemporal dynamics of CO2 and CH4 concentrations and fluxes in 33 small lakes around the urban area with different landscape properties and utilization patterns, to clarify the impact of human-dominated functional shift on their greenhouse gas emissions. Meanwhile, we used microcosm cultivation methods to assess the CO2 and CH4 production rates of sediments in these lakes. The results indicated that the utilization ways significantly influence the CO2 and CH4 emissions in these lakes, with urban landscape lakes and aquaculture lakes showing significantly higher emissions compared to irrigation water-supplying lakes and drinking-water lakes. Extensive urbanization and aquaculture practices could increase the risk of that small lakes turn into hotspots of CO2 and CH4 emissions, and further complicate their spatial heterogeneity. Meanwhile, the production potential of CO2 and CH4 in sediments, as well as gas fluxes in small lakes, exhibited consistent functional differentiation across different utilization patterns. They were mainly driven by changes in sediment organic carbon and microbial carbon. Additionally, the difference of organic carbon and nitrogen loads were another drives for the variability in CO2 and CH4 emissions. We highlighted that the continuous accumulation of nutrient loads in water and sediments in human-dominated small lakes has greatly enhanced the potential for carbon gas emissions. We also found that utilization ways can significantly affect the key controls of CO2 and CH4 emission from small lakes, and also influence the reliability of carbon emission prediction models based on water chemistry parameters. To accurately estimate the contribution of small lakes to the global greenhouse gas inventory, it is essential to establish adaptive predictive models that consider the uncertainties in lake carbon emissions resulting from human utilization patterns.
Collapse
Affiliation(s)
- Lijun Wang
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Lingyi Xiang
- Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; Chongqing Huadi Resources and Environmental Science and Technology Co., LTD, Chongqing, 400000, China
| | - Xiaofeng Wang
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China.
| | - Tingting Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Honglin Chen
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Dongfeng Li
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Chen Jian
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Wentao Guo
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Zuolin Xiao
- Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, Chongqing Normal University, Chongqing, 401331, China; Chongqing Field Observation and Research Station of Earth Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing, 405400, China; School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Yixin He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
2
|
Wang J, Zhang Y, Zhou L, Gao Y, Li K, Sun S. Multiple effects of carbon, sulfur and iron on microbial mercury methylation in black-odorous sediments. ENVIRONMENTAL RESEARCH 2024; 263:120048. [PMID: 39313174 DOI: 10.1016/j.envres.2024.120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Black-odorous sediments provide ideal conditions for microbial mercury methylation. However, the multiple effects of carbon, sulfur, and iron on the microbial methylmercury of mercury in black-odorous sediments remains unclear. In this study, we conducted mercury methylation experiments using sediments collected from organically contaminated water bodies, as well as black-odorous sediments simulated in the laboratory. The results showed that black-odorous sediments exhibit a high capacity for mercury methylation. By simulating the blackening and odorization process in sediments, it was confirmed that dissolved oxygen, organic matter and sulfide were the primary factors triggering the black-odorous phenomenon in sediments. Regarding the influence of key factors in sediments on methylmercury formation, the batch tests demonstrated that high concentrations of organics additions (above 200 mg/L) may reduce bacterial activity and weaken mercury methylation in sediments. Under five different iron-sulfur ratios, the concentrations of methylmercury in the black-odorous sediments showed an increasing trend, the ratio of 5.0 Fe/S exhibited the highest MeHg accumulation. The iron-sulfur ratio in the sediment had a significant effect on the mercury methylation process, which was mainly due to the competition between Fe2+ and Hg2+ for sulfide sites and the adsorption/coprecipitation of Hg2+ by FeS. These findings offer a potential avenue for further understanding and controlling mercury methylation, contributing to the mitigation of the potential threat of mercury pollution to the environment and human health.
Collapse
Affiliation(s)
- Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China.
| | - Yan Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Kai Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China.
| |
Collapse
|
3
|
Chen X, Li Z, Fu S, Liang L, Liu X, Hu F, Zhang W, Bi Y, Jiao Y, Gu S, Li Q. Sequential oxidation procedures with KMnO 4: Component characteristics of labile reducing capacity fractions in anaerobic sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177126. [PMID: 39461528 DOI: 10.1016/j.scitotenv.2024.177126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Reducing substances are a mixture of different forms and types and play extremely important roles in manipulating the redox status of sediments, benthic habitats, and substance exchanges at the sediment-water interface in aquatic ecosystems. However, little is known about their abundance, forms, and reducibility in sediments. In this study, the procedures were developed to sequentially fractionate sediment reducing capacity (RC) fractions with the pH dependence of KMnO4 oxidability. The procedures were then applied to 60 sediments from 2 lakes and 3 reservoirs, generating an RCpH7.0 fraction (oxidized at ~0.48 V [reference: SHE]) and an RCpH2.0 fraction (oxidized at ~0.95 V [reference: SHE]), and the component of each fraction was characterized. The RCpH7.0 fraction amounted to 45.4 ± 25.9 cmol e-·kg-1 DW, and the RCpH2.0 fraction amounted to 42.8 ± 22.9 cmol e-·kg-1 DW; fraction sizes depended greatly on sediment origin. Reducing organic substances (ROS) were the main contributors to the RC fractions, with mean value of 30.0 ± 24.1 and 38.5 ± 22.2 cmol e-·kg-1 DW in RCpH7.0 (% contribution: 68.0 ± 5.3 % of RCpH7.0) and RCpH2.0 (90.0 ± 1.5 % of RCpH2.0), respectively. The next contributor was Fe(II), with mean value of 13.5 ± 8.2 and 3.8 ± 3.7 cmol e-·kg-1 DW in RCpH7.0 (28.3 ± 5.2 %) and in RCpH2.0 (9.9 ± 8.6 %), respectively. The smallest component was sulfide (Sn), which had a mean of 2.0 ± 3.1 cmol e-·kg-1 DW in RCpH7.0 and was essentially negligible in RCpH2.0. The number of electrons lost per mole of reducing substances (Ni) differed between the two RC fractions and among sediments of different origins. NROS was lower in the RCpH7.0 fraction (0.22 ± 0.09) compared to the RCpH2.0 fraction (0.31 ± 0.12) and significantly related to levels of active Fe(III) and sulfides (Sn) (p < 0.05). The opposite pattern was seen for NFe(II) and NSn. Based on the compositive reducing capacity (CRC) for the RCpH7.0 fraction, sediment redox status could be classified as ROS-Fe(II) (3.8 ± 1.7 cmol e-·kg-1 DW) or ROS-Sn (10.1 ± 4.8 cmol e-·kg-1 DW) (weaker vs. stronger, respectively; p < 0.01). The RC-based index provides a more comprehensive perspective on characterizing sediment redox status compared to the Eh.
Collapse
Affiliation(s)
- Xuemei Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijun Li
- Weifang Xiashan Reservoir Management Service Center, Weifang 261325, China
| | - Songjie Fu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Lanwei Liang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaohan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Wen Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Yonghong Bi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Jiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen Gu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingman Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Zhou C, Xu X, Peng Y, Wang G, Liu H, Jin Q, Jia R, Ma J, Kinouchi T, Wang G. Response of sulfate concentration to eutrophication on spatio-temporal scale in freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176142. [PMID: 39255939 DOI: 10.1016/j.scitotenv.2024.176142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/30/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The dramatical increase of sulfur concentration in eutrophic lakes, especially sulfate (SO42-), has brought attention to the impact on the lake ecosystem; however, the mechanisms driving the intensification of eutrophication and the role of SO₄2- concentrations remain poorly understood. To assess the impact of eutrophication on SO42- dynamics in lakes, this study monitored SO42- concentrations in water and sediments across seven lakes with varying trophic statuses on a spatial scale, and in the eutrophic Lake Taihu over one year on a temporal scale, as well as a series of microcosms with different initial SO42- concentrations. Exogenous sulfur input is the primary driver of increased SO42- concentrations in lakes, the highest SO42- concentration in overlying water was 100 mg/L, as well as which reached 310.9 mg/L in sediment. The concurrent input of nutrients such as nitrogen and phosphorus exacerbated eutrophication, resulting in the destabilization of the sulfur cycle. Eutrophication promoted the SO42- concentration on the spatio-temporal scale, especially in sediment, and trophic lake index (TLI) showed a positive correlation with the SO42- in sediments (R2 = 0.99; 0.88). The SO42- concentration in water and TLI showed a nonlinear correlation on the temporal scale (R2 = 0.44), and showed a positive correlation on the spatial scale (R2 = 0.49). Microscopic experiments demonstrate that the anaerobic environment created by cyanobacteria decomposition induced sulfate reduction and significantly reduces SO42- concentrations. Concurrently, the anaerobic environment facilitates the coupling of iron reduction with sulfate reduction, leading to a substantial increase in Acid Volatile Sulfides (AVS) in the sediment. These findings reveal that eutrophication has a dual effect on the dynamic change of SO42- concentrations in overlying water, which is helpful to accurately evaluate and predict the change of SO42- concentrations in lakes.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yu Peng
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Guanshun Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huazu Liu
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Qiu Jin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Ruoyu Jia
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210024, China.
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
5
|
Zhang L, Yu M, Yu S, Chen H, Xiao M, Wang G, Zhao Y. Mobilization of phosphorus in sediments of eutrophic lakes induced by elevated sulfate levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176146. [PMID: 39265686 DOI: 10.1016/j.scitotenv.2024.176146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Elevated sulfate levels in eutrophic lakes have been observed to induce the release of endogenous phosphorus. While previous studies have predominantly examined its impact on iron-bound phosphorus (FeP), the influence on organic phosphorus (OP), a crucial active phosphorus component in sediments, remains poorly understood. In this study, mesocosms were established with lactate supplementation and varying sulfate concentrations to explore sulfate reduction and its impacts on phosphorus mobilization in freshwater sediments. Lactate addition induced hypoxia and provided substrates, thereby stimulating sulfate reduction with a decline of sulfate levels, an increase of sulfide concentrations, and fluctuations of sulfate-reducing bacteria. Meanwhile, concentrations of total dissolved phosphorus and phosphate were dramatically promoted during lactate decomposition, with a higher sulfate concentration associated with greater phosphorus elevation, correlating with the decrease of total phosphorus in sediment. The increase in phosphorus of the overlying water was partly attributed to FeP release from the sediment, confirmed by a decrease in its sediment content. FeP release was ascribed to dissimilatory reduction of iron oxides or chemical reduction mediated by sulfides in anoxic sediments, leading to the desorption and subsequent release of phosphorus. Evidences included the proliferation of iron-reducing bacteria, a decrease in Fe(II) concentrations in sediment pore- water, and the continuous accumulation of solid iron sulfides in surface sediments. Furthermore, OP mineralization in sediment also contributed to the increase in phosphorus in water columns, confirmed by a reduction in its content and the abundance of fermentation bacteria in surface sediment. Notably, the decrease in OP content accounted for >80 % of the total phosphorus reduction in surface sediment in the end. Thus, sulfur cycling plays a critical role in iron and phosphorus cycling, significantly stimulating not only the mobilization of FeP but also OP in sediments, with OP mineralization potentially being the primary contributor to endogenous phosphorus release.
Collapse
Affiliation(s)
- Lanqing Zhang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Miaotong Yu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Simin Yu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Huaizhi Chen
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Mengmeng Xiao
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Yanping Zhao
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China.
| |
Collapse
|
6
|
Zhou L, Zeng Y, Xu C, Al-Dhabi NA, Wang S, Sun S, Wang J, Tang W, Li T, Wang X. Exogenous paths regulate electron transfer enhancing sediment phosphorus immobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175689. [PMID: 39173749 DOI: 10.1016/j.scitotenv.2024.175689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The lack of electron acceptors in anaerobic sediments leads to endogenous phosphorus release and low removal efficiency of organic pollutants. This study introduced electrodes and iron oxides into sediments to construct electron network transport chains to supplement electron acceptors. The sediment total organic carbon (TOC) removal efficiencies of closed-circuit (CC) and closed-circuit with Fe addition (CC-Fe) were estimated to be 1.4 and 1.7 times of the control. Unlike the fluctuation of phosphorus in the overlying water of the controls, the CC-Fe was stabled at 0.04-0.08 mg/L during the 84-d operation. The phosphorus in interstitial water of CC-Fe was 30 % less than in control, whereas in sediment, the redox sensitive phosphorus was increased by 14 %, indicating phosphorus was preferred to fix into sediments rather than interstitial water. This is important to reduce the risk of endogenous phosphorus returning to the overlying water. Microbial community analysis showed that the multiplication of Fonticella in CC-Fe (20 %) was 1.8-fold of control (11 %) which improved the TOC removal efficiency. While electroactive microorganisms accumulated near the electrode reduced the abundance of Fe-reducing bacteria, such as Desulfitobacterium (2.4 %), leading to better phosphorus fixation. These findings suggest a strategy for the efficient bioremediation of endogenous pollution in water, with broader implications for regulating electron transport paths and element cycles in aquatic environments.
Collapse
Affiliation(s)
- Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yuting Zeng
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Chong Xu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shu Wang
- PowerChina Northwest Engineering Corporation Limited, Xi'an 710065, China
| | - Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jinting Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Bofah-Buoh R, Li Y, Norgbey E, Zhu Y, Banahene P, Nuamah LA. Assessing the influence of thermal structure variation on Fe and P mobility in sediments cores using Yellow Spring Instrument, diffusive gradient technology, and HR Peeper for sustainable water quality management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61491-61506. [PMID: 39425852 DOI: 10.1007/s11356-024-35360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The freshwater ecological characteristics in terms of the daily inventory of thermal stratification, spatial variation of O2 distribution, and the mobility of potentially toxic elements (PTEs) at the water sediment interface (WSI) are prudent freshwater assessment indices for water quality management protocol. The study conducted daily observations within a monsoon-influenced region, utilizing high-resolution techniques such as HR Peeper, Yellow Spring Instrument (YSI), and ZrO-Chelex diffusive gradient technology (DGT) to analyze PTEs, specifically phosphorus (P) and iron (Fe),within the water-sediment interface (WSI) under different temperatures and oxygen conditions. The 66-day field study showed that high thermal structure contributed significantly to production Fe ions and P from sediment under reductive dissolution of FeOOH. The study also revealed that P and Fe exhibited comparable spatial distribution patterns at the WSI, indicating a linked relationship between these PTEs. This correlation was reinforced by high Pearson correlation coefficients ranging from 0.7 to 0.9 (bilateral, p < 0.05) indicating that the concentrations of labile P were predominantly influenced by the release of phosphorus bound to iron. The fluxes of the PTEs were positive with a range of Fe, 3.3-81.5 mg/m2 day and P, 0.03-0.5 mg/m2 day showing the sediments liberated the PTEs into the benthic water. Again, high positive fluxes (Fe≈60 mg/m2 day, P≈0.5 mg/m2 day) for PTEs were obtained when stratification was high (anoxic conditions) and low (Fe≈5 mg/m2 day, P≈0.08 mg/m2 day) when stratification did not exist. This depicts that Fe/P dynamics were hinged mainly on hypoxic conditions in the benthic water under the reductive dissolution of FeOOH. The findings showed that organic materials (both solid and dissolved) correlated (> 0.7) significantly with (positive high values) Fe. This indicates that their interaction contributed to the reservoir water deterioration. However, Ca2⁺ and Mg2⁺ had little impact on the liberation of Fe-DOC-P from sediments due to their inability to compete with Fe for binding to DOC and P, as shown by their low correlation values. The research provides in-depth insights into the dynamics of PTEs on a daily timescale and offers valuable information for water management practices in inland reservoirs, particularly concerning the cycling of phosphorus (P) and its effects on ecosystem health.
Collapse
Affiliation(s)
- Robert Bofah-Buoh
- Key Laboratory of Integrated Regulation and Resources Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resources Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Eyram Norgbey
- Key Laboratory of Integrated Regulation and Resources Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Ya Zhu
- Key Laboratory of Integrated Regulation and Resources Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Patrick Banahene
- Key Laboratory of Integrated Regulation and Resources Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Linda Akosua Nuamah
- Key Laboratory of Integrated Regulation and Resources Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
8
|
Zhou C, Zhou M, Peng Y, Xu X, Terada A, Wang G, Zhong H, Kinouchi T. Unexpected increase of sulfate concentrations and potential impact on CH 4 budgets in freshwater lakes. WATER RESEARCH 2024; 261:122018. [PMID: 38971077 DOI: 10.1016/j.watres.2024.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
The continuous increase in sulfate (SO42-) concentrations discharged by anthropogenic activities lacks insights into their dynamics and potential impact on CH4 budgets in freshwater lakes. Here we conducted a field investigation in the lakes along the highly developed Yangtze River basin, China, additionally, we analyzed long-term data (1950-2020) from Lake Taihu, a typical eutrophic lake worldwide. We observed a gradual increase in SO42- concentrations up to 100 mg/L, which showed a positive correlation with the trophic state of the lakes. The annual variations indicated that eutrophication intensified the fluctuation of SO42- concentrations. A random forest model was applied to assess the impact of SO42- concentrations on CH4 emissions, revealing a significant negative effect. Synchronously, a series of microcosms with added SO42- were established to simulate cyanobacteria decomposition processes and explore the coupling mechanism between sulfate reduction and CH4 production. The results showed a strong negative correlation between CH4 concentrations and initial SO42- levels (R2 = 0.83), indicating that higher initial SO42- concentrations led to lower final CH4 concentrations. This was attributed to the competition for cyanobacteria-supplied substrates between sulfate reduction bacteria (SRB) and methane production archaea (MPA). Our study highlights the importance of considering the unexpectedly increasing SO42- concentrations in eutrophic lakes when estimating global CH4 emission budgets.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Muchun Zhou
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China; Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Yu Peng
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Xiaoguang Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China.
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Guoxiang Wang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Zhong
- School of Environment, Nanjing University, Nanjing 210023, China
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| |
Collapse
|
9
|
Li S, Zhang L, Fang W, Shen Z. Variations in bacterial community succession and assembly mechanisms with mine age across various habitats in coal mining subsidence water areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174822. [PMID: 39029748 DOI: 10.1016/j.scitotenv.2024.174822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Microorganisms play a pivotal role as catalysts in the biogeochemical cycles of aquatic ecosystems within coal mining subsidence areas. Despite their importance, the succession of microbial communities with increasing mine age, particularly across different habitats, and variations in phylogenetically-based community assembly mechanisms are not well understood. To address this knowledge gap, we collected 72 samples from lake sediments, water, and surrounding topsoil (0-20 cm) at various mining stages (early: 16 years, middle: 31 years, late: 40 years). We analyzed these samples using 16S rRNA gene sequencing and multivariate statistical methods to explore the dynamics and assembly mechanisms of bacterial communities. Our findings reveal that increases in phosphorus and organic matter in sediments, correlating with mining age, significantly enhance bacterial alpha diversity while reducing species richness (P < 0.001). Homogenizing selection (49.9 %) promotes species asynchrony-complementarity, augmenting the bacterial community's ability to metabolize sulfur, phosphorus, and organic matter, resulting in more complex-stable co-occurrence networks. In soil, elevated nitrogen and organic carbon levels markedly influence bacterial community composition (Adonis R2 = 0.761), yet do not significantly alter richness or diversity (P > 0.05). The lake's high connectivity with surrounding soil leads to substantial species drift and organic matter accumulation, thereby increasing bacterial richness in later stages (P < 0.05) and enhancing the ability to metabolize dissolved organic matter, including humic-like substances, fulvic acids, and protein-like materials. The assembly of soil bacterial communities is largely governed by stochastic processes (79.0 %) with species drift (35.8 %) significantly shaping these communities over a broad spatial scale, also affecting water bacterial communities. However, water bacterial community assembly is primarily driven by stochastic processes (51.2 %), with a substantial influence from habitat quality (47.6 %). This study offers comprehensive insights into the evolution of microbial community diversity within coal mining subsidence water areas, with significant implications for enhancing environmental management and protection strategies for these ecosystems.
Collapse
Affiliation(s)
- Shuo Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Lei Zhang
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou, 239000, China.
| | - Wangkai Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zhen Shen
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
10
|
Cao X, Han X, Chen Y, Li J, Zhai Y. Flood irrigation increases the release of phosphorus from aquifer sediments into groundwater. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104297. [PMID: 38219282 DOI: 10.1016/j.jconhyd.2024.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Nonpoint source pollution caused by agricultural activities has long attracted widespread attention from people in society and academia. Many studies have found that human activities not only convey exogenous pollutants into aquifers but also affect the mobilization and transport of geogenic pollutants in aquifers. Geogenic groundwater with high phosphorus concentrations has been found, but it is unclear whether the changes in hydrogeochemical conditions caused by flood irrigation in paddy fields affect the fate of phosphorus. We investigated the temporal and spatial distribution characteristics of phosphorus in groundwater under the influence of flood irrigation through laboratory experiments, proved its impact on phosphorus in groundwater, and explored the mechanisms influencing P concentrations. The results show that flood irrigation can increase the release of phosphorus in the aquifer media and greatly increase the phosphorus concentration in the groundwater of the study area, which has a negative impact on groundwater quality. The main mechanism of increase in phosphorus concentration in groundwater involves an increase in the reducibility of the aquifer via flood irrigation; as a result, iron oxides are reductively dissolved and iron-bound phosphorus is released into the groundwater. Changes in pH also result in the dissolution of calcium phosphate minerals and the release calcium-bound phosphorus. This study not only advances the theory of multielement-coupled hydrogeochemistry but also provides a reference for agricultural planning and groundwater pollution prevention and control in rice-growing areas.
Collapse
Affiliation(s)
- Xinyi Cao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xu Han
- Department of Ecology and Environment of Heilongjiang Province, Harbin 150090, China
| | - Yaoxuan Chen
- China Institute of Geo-Environmental Monitoring, Beijing 100081, China
| | - Jian Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
Li Z, Wu S, Yu H, Qiu H, Jiang Q, Deng Y, Gui H, Wang G, Xu X. Distribution pattern of dissolved organic matter in pore water of sediments from three typical areas of western Lake Taihu and its environmental implications. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2733-2750. [PMID: 38096065 PMCID: wst_2023_364 DOI: 10.2166/wst.2023.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The migration, transformation, and accumulation of dissolved organic matter (DOM) in pore water of sediment cores play a pivotal role in lacustrine carbon cycling. In order to understand the dynamics of DOM in the sediments of large shallow eutrophic lakes, we examined the vertical profiles of DOM and the benthic fluxes of dissolved organic carbon (DOC) in sediment cores located in algae accumulated, dredged, and central areas of eutrophic Lake Taihu, China. Optical properties showed the significant influence of terrestrial inputs on the DOM components of pore water in the algae accumulated area but an abundant accumulation of autochthonous DOM in the central area. The benthic fluxes of DOC ranging from -458.2 to -139.4 mg·m-2·d-1 in the algae accumulated area displayed an opposite diffusion direction to the other two areas. The flux ranges of 9.5-31.2 mg·m-2·d-1 in the dredged area and 14.6-48.0 mg·m-2·d-1 in the central area were relatively smaller than those in the previously reported lake ecosystems with low trophic levels. Dredging engineering disturbed the pre-dredging distribution patterns of DOM in sediment cores. The deposition, accumulation, and transformation of massive algae scums in eutrophic lakes probably promoted the humification degree of sediments.
Collapse
Affiliation(s)
- Zhichun Li
- Engineering Research Center of Coal Mine Exploration of Anhui Province, Suzhou University, Suzhou 23400, China; School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China E-mail:
| | - Songjun Wu
- Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin 12587, Germany
| | - Hao Yu
- Engineering Research Center of Coal Mine Exploration of Anhui Province, Suzhou University, Suzhou 23400, China
| | - Huili Qiu
- Engineering Research Center of Coal Mine Exploration of Anhui Province, Suzhou University, Suzhou 23400, China; School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Quanliang Jiang
- Engineering Research Center of Coal Mine Exploration of Anhui Province, Suzhou University, Suzhou 23400, China
| | - Yang Deng
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Herong Gui
- Engineering Research Center of Coal Mine Exploration of Anhui Province, Suzhou University, Suzhou 23400, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
12
|
Jin S, Lin J, Zhan Y. Immobilization of phosphorus in water-sediment system by iron-modified attapulgite, calcite, bentonite and dolomite under feed input condition: Efficiency, mechanism, application mode effect and response of microbial communities and iron mobilization. WATER RESEARCH 2023; 247:120777. [PMID: 37897994 DOI: 10.1016/j.watres.2023.120777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Four kinds of iron-based materials, i.e., iron-modified attapulgite, calcite, bentonite and dolomite (abbreviated as Fe-ATP, Fe-CA, Fe-BT and Fe-DOL, respectively) were prepared and used to immobilize the phosphorus in the system of overlying water (O-water) and sediment under the feed input condition, and their immobilization efficiencies and mechanisms were investigated. The influence of application mode on the immobilization of phosphorus in the water-sediment system by Fe-ATP, Fe-CA, Fe-BT and Fe-DOL was researched. The effects of Fe-ATP, Fe-CA, Fe-BT and Fe-DOL on the concentration of labile iron in the water-sediment system and the microbial communities in sediment were also studied. The results showed that the Fe-ATP, Fe-CA, Fe-BT and Fe-DOL addition all can effectively immobilize the soluble reactive phosphorus (SRP), dissolved total phosphorus (DTP) and diffusive gradients in thin-films (DGT)-labile phosphorus in O-water under the feed input condition, and also had the ability to inactivate the DGT-labile phosphorus in the top sediment. Although the change in the application mode from the one-time addition to the multiple addition reduced the inactivation efficiencies of SRP and DTP in O-water in the early period of application, it increased the immobilization efficiencies in the later period of application. Although Fe-ATP, Fe-CA, Fe-BT and Fe-DOL had a certain releasing risk of iron into the pore water, they had negligible risk of iron release into O-water. The addition of Fe-ATP, Fe-CA, Fe-BT or Fe-DOL reshaped the sediment bacterial community structure and can affect the microorganism-driven phosphorus cycle in the sediment. Results of this work suggest that Fe-ATP, Fe-CA, Fe-BT and Fe-DOL are promising phosphorus-inactivation materials to immobilize the phosphorus in the water-sediment system under the feed input condition.
Collapse
Affiliation(s)
- Siyu Jin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
13
|
Zhou M, Zhou C, Peng Y, Jia R, Zhao W, Liang S, Xu X, Terada A, Wang G. Space-for-time substitution leads to carbon emission overestimation in eutrophic lakes. ENVIRONMENTAL RESEARCH 2023; 219:115175. [PMID: 36584848 DOI: 10.1016/j.envres.2022.115175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Lacustrine eutrophication is generally considered as an important contributor of carbon emissions to the atmosphere; however, there is still a huge challenge in accuracy estimating carbon emissions from lakes. To test the effect of widely used space-for-time substitution on lake carbon emissions, this study monitored different processes of carbon emissions, including the carbon production potential, dissolved carbon concentrations, and carbon release fluxes in eight lakes along the trophic gradients on a spatial scale and the typical eutrophic Lake Taihu for one year on a temporal scale. Eutrophication promoted carbon production potential, dissolved carbon concentrations, and carbon release fluxes, especially for CH4. Trophic lake index (TLI) showed positive correlations with the CH4 production potential, dissolved CH4 concentrations, and CH4 release fluxes, and also positive correlations with the CO2 production potential, dissolved CO2 concentrations, and CO2 release fluxes. The space-for-time substitution led to an overestimation for the influence of eutrophication on carbon emissions, especially the further intensification of lake eutrophication. On the spatial scale, the average CH4 production potential, dissolved CH4 concentrations and CH4 release fluxes in eutrophic lakes were 268.6, 0.96 μmol/L, and 587.6 μmol m-2·h-1, respectively, while they were 215.8, 0.79 μmol/L, and 548.6 μmol m-2·h-1 on the temporal scale. Obviously, CH4 and CO2 emissions on the spatial scale were significantly higher than those on the temporal scale in eutrophic lakes. The primary influencing factors were the seasonal changes in the physicochemical environments of lake water, including dissolved oxygen (DO) and temperature. The CH4 and CO2 release fluxes showed negative correlations with DO, while temperature displayed positive correlations, respectively. These results suggest that the effects of DO and temperature on lake carbon emissions should be considered, which may be ignored during the accurate assessment of lake carbon budget via space-for-time substitution in eutrophic lakes.
Collapse
Affiliation(s)
- Muchun Zhou
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China; Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Chuanqiao Zhou
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yu Peng
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Ruoyu Jia
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Wenpeng Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Shuoyuan Liang
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China.
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| |
Collapse
|
14
|
Wang J, Chu YX, Tian G, He R. Estimation of sulfur fate and contribution to VSC emissions from lakes during algae decay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159193. [PMID: 36202355 DOI: 10.1016/j.scitotenv.2022.159193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Algae decay is an important process influencing environmental variables and emissions of volatile sulfur compounds (VSCs) in eutrophic lakes. However, effects of algae decay on VSC emissions from eutrophic lakes as well as fate of algae-derived sulfur remain poorly understood. In this study, simulated algae-sediment systems were used to explore the flow and distribution of sulfur during algae decay. VSCs including hydrogen sulfide (H2S), methanethiol (CH3SH), carbon disulfide (CS2) and dimethyl sulfide ((CH3)2S) were detected during algae decay, which increased with algae biomass and eutrophic levels in lakes. During algae decay, the highest H2S, CH3SH and (CH3)2S emission rates of 10.45, 21.82 and 43.26 μg d-1 occurred in the first 1-2 days, respectively, while the highest CS2 emission rates were observed between days 8 and 11. The maximum emissions of H2S and CS2 from algae decay were estimated at 0.51 and 0.35 mg m-2 d-1 in Lake Taihu, accounting for 1.57% and 0.69% of the total H2S and CS2 emissions of in situ, respectively. Algae decay could significantly increase the contents of total sulfur and total carbon in sediments by 2.90%-21.11% and 4.23%-45.05%, respectively. The VSC emissions during algae decay could be predicted using the multiple regression models with the contents of total carbon, total nitrogen and sulfur-containing compounds in sediments. Partial least squares path modelling demonstrated that algae decay had a low direct effect on VSC emissions with a strength of 0.06, while it had a significant influence on environmental variables with a strength of 0.63, which could affect VSC emissions with a strength of 0.85, indicating VSC emissions from eutrophic lakes were affected by the environmental variables rather than the direct influence of algae decay. These findings illustrated the mechanisms of VSC emissions during algae decay and provided insights into VSC control and mitigation for eutrophic lakes.
Collapse
Affiliation(s)
- Jing Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Guangming Tian
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
He J, Feng H, Diao Z, Su D. Effect of temperature variation on phosphorus flux at the sediment-water interface of the steppe wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12441-12452. [PMID: 36112283 DOI: 10.1007/s11356-022-23015-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Environmental factors are generally considered to be important factors affecting the release process of phosphorus (P) in sediments. However, little is known about the effect of temperature increased at first and then decreased with the season change on the P flux rate and flux amount at the sediment-water interface in the steppe wetlands. The effects of the temperature variation on P flux at the sediment-water interface in the steppe wetlands during the vegetation growing season under simulated wetland habitat were studied. The results showed that the release of P from sediments to overlying water was greatly affected by temperature changes. When the temperature rose, P was released from the sediment into the overlying water, while P was precipitated from the water into the sediment with the temperature dropped. During simulation period, the total P in water flux rates between sediment and overlying water (FP) was ranged from - 4.51 to 4.99 mg·m-2·day-1, while the dissolved reactive P in water flux rates between sediment and overlying water (FDP) was changed from - 5.37 to 5.14 mg·m-2·day-1. The FP and FDP were negatively correlated with the content of total P in water (WTP), dissolved reactive P in water (WDRP), pH of sediment (pH), and microbial biomass P (MBP), but increased with temperature (T), aluminum phosphate (Al.P), and occluded phosphate (Oc.P). The P flux rates were affected by temperature variation both directly and indirectly; the mechanism of how temperature influenced the fate of P in the wetland is still not clear. Therefore, the physicochemical properties and kinetic, thermodynamic, and microbiology characteristics should be combined together to clarify the mechanism in future research.
Collapse
Affiliation(s)
- Jing He
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Haiying Feng
- Beijing Technology and Business University, Beijing, 100083, China
| | - Zhaoyan Diao
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Derong Su
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
16
|
Wang WH, Wang Y, Yang PL, Wang M, Zhou K. Physi-chemical mechanism and control effect of CaO 2 inhibiting phosphorus release from sediments under different dosing modes. CHEMOSPHERE 2022; 303:135283. [PMID: 35688200 DOI: 10.1016/j.chemosphere.2022.135283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
CaO2 is known as an outstanding restoration agent to control phosphorus (P) release from sediments, and its mechanism is believed to depend on chemical passivation. However, we found that the physical actions might also be involved in inhibiting endogenous P release induced by CaO2. To further explore the mechanism of CaO2 controlling P release and optimize the dosing method, a 94-day incubation experiment was conducted under different CaO2 dosing modes. The results showed that CaO2 could form a dense passivation layer near its dosing position by reducing the median diameter of sediments, thereby inhibiting P release through physical obstruction. At the same time, the increase in the specific surface area and Ca content of sediments induced by CaO2 could synchronously enhance the physical and chemical adsorption properties of sediments to P. In addition, CaO2 could significantly reduce the P concentration in sediment interstitial water and the mobile-P and BAP contents in sediments through chemical oxidation and chemical precipitation. Under the combined actions of physical obstruction, physi-chemical adsorption, chemical oxidation, and chemical precipitation, CaO2 effectively inhibited endogenous P release. Finally, the P release flux in each reactor showed that multiple coverage and shallow injection had the optimal effect on inhibiting P release, and the former is recommended for the water systems with shallow sediments, and the latter is suitable for the water systems with deep sediments. In general, this experiment proposed the physi-chemical mechanism of P immobilization mediated by CaO2, studied the formation characteristics of the passivation layer, and optimized the dosing mode, which can provide valuable reference for the research and application of CaO2 controlling P release.
Collapse
Affiliation(s)
- Wen-Huai Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Peng-Li Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Miao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Ke Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| |
Collapse
|
17
|
Yao Y, Li D, Chen Y, Han X, Wang G, Han R. High-resolution characteristics and mechanisms of endogenous phosphorus migration and transformation impacted by algal blooms decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:152907. [PMID: 35065123 DOI: 10.1016/j.scitotenv.2021.152907] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Extremely high phosphorus (P) concentrations can be found in eutrophic freshwater sediments during algal blooms (ABs). However, few investigations have revealed the mechanism of labile P production in anoxic sediments following ABs decomposition. This limits our understanding of P cycling and mitigation of ABs in aquatic ecosystems. To identify such a mechanism, we conducted a microcosm experiment to identify how ABs decomposition enhances endogenous P release, using the combined techniques of diffusive gradients in thin films, high-resolution dialysis, and 16S rRNA amplicon sequencing. We show the concentrations of labile iron, manganese, sulfide, and P can be well predicted by quality and quantity of algal biomass. The relative abundance of iron reduction bacteria positively correlated with the decrease of pH induced by ABs decomposition, suggesting that this decomposition facilitates microbial iron and manganese reduction. In addition, the reductive dissolution of iron and manganese oxides leads to the labile P release, resulting in higher concentrations of labile P in those sediments affected by ABs compared with those not affected. The P fluxes in the algae-dominated regions exhibited higher values in the algae group than in the control group, with gains of 14.07-100.04%. Furthermore, endogenous P release is strongly controlled by Mn when the Fe(II):Mn(II) ratio is low (below 0.47), and by both Fe and Mn when the Fe(II):Mn(II) ratio is high (above 0.63). Our results quantify the endogenous P diffusion fluxes across the sediment-water interface can be attributed to ABs decomposition, and are therefore useful for further understanding of P cycling in freshwater.
Collapse
Affiliation(s)
- Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Dujun Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Ying Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoxiang Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Ruiming Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
18
|
Zhou C, Peng Y, Deng Y, Yu M, Chen L, Zhang L, Xu X, Zhao F, Yan Y, Wang G. Increasing sulfate concentration and sedimentary decaying cyanobacteria co-affect organic carbon mineralization in eutrophic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151260. [PMID: 34715224 DOI: 10.1016/j.scitotenv.2021.151260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Sulfate (SO42-) concentrations in eutrophic lakes are continuously increasing; however, the effect of increasing SO42- concentrations on organic carbon mineralization, especially the greenhouse gas emissions of sediments, remains unclear. Here, we constructed a series of microcosms with initial SO42- concentrations of 0, 30, 60, 90, 120, 150, and 180 mg/L to study the effects of increased SO42- concentrations, coupled with cyanobacterial blooms, on organic carbon mineralization in Lake Taihu. Cyanobacterial blooms promoted sulfate reduction and released a large amount of inorganic carbon. The SO42- concentrations in cyanobacteria treatments significantly decreased and eventually reached close to 0. As the initial SO42- concentration increased, the sulfate reduction rates significantly increased, with maximum values of 9.39, 9.44, 28.02, 30.89, 39.68, and 54.28 mg/L∙d for 30, 60, 90, 120, 150, and 180 mg/L SO42-, respectively. The total organic carbon content in sediments (51.16-52.70 g/kg) decreased with the initial SO42- concentration (R2 = 0.97), and the total inorganic carbon content in overlying water (159.97-182.73 mg/L) showed the opposite pattern (R2 = 0.91). The initial SO42- concentration was positively correlated with carbon dioxide (CO2) emissions (R2 = 0.68) and negatively correlated with methane (CH4) emissions (R2 = 0.96). The highest CO2 concentration and lowest CH4 concentration in the 180 mg/L SO42- treatment were 1688.78 and 1903 μmol/L, respectively. These biogeochemical processes were related to competition for organic carbon sources between sulfate reduction bacteria (SRB) and methane production archaea (MPA) in sediments. The abundance of SRB was positively correlated with the initial SO42- concentration and ranged from 6.65 × 107 to 2.98 × 108 copies/g; the abundance of MPA showed the opposite pattern and ranged from 1.99 × 108 to 3.35 × 108copies/g. These findings enhance our understanding of the effect of increasing SO42- concentrations on organic carbon mineralization and could enhance the accuracy of assessments of greenhouse gas emissions in eutrophic lakes.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Yu Peng
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Yang Deng
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Miaotong Yu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Li Chen
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Lanqing Zhang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China.
| | - Fenjun Zhao
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| | - Yan Yan
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| |
Collapse
|
19
|
Wang WH, Wang Y, Zhao KX, Zhu Z, Han XY. Active and synchronous control of nitrogen and organic matter release from sediments induced with calcium peroxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149855. [PMID: 34455280 DOI: 10.1016/j.scitotenv.2021.149855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In order to realize the active and synchronous control of nitrogen (N) and organic matter (OM) release from sediments, this study compared the spatiotemporal changes in the physical, chemical, and biological indicators in the water system under different CaO2 dosing modes. Results from 90-day incubation experiment showed that CaO2 formed a dense barrier layer near its dosing position, improved the anoxic condition of water system, increased the physical adsorption of pollutants by sediments, and reduced the nutrients in overlying water, interstitial water, and sediments. Comprehensive comparison, the improvement effect of shallow injection group (I1) was the most obvious. Meanwhile, the activities of ammonia oxidizing bacteria and nitrite oxidizing bacteria near dosing position and those of denitrifiers and anammox bacteria adjacent to dosing site were significantly increased in all test groups (p < 0.01), thereby realizing the biological removal of N and OM in sediments. In addition, DO and ORP were steadily higher than 5 mg L-1 and 100 mV in I1, where the NH4+-N concentration in overlying water was stable below 1 mg L-1, and the easily released N content in the upper (0-3 cm) and middle (4-6 cm) sediments decreased by 41.64% and 43.56%, respectively. Compared with the large pollutant flux in control (14.31 TN mg m-2 d-1 and 194.05 mg TCOD m-2 d-1), I1 completely inhibited the pollutant release and reduced the original nutrients in overlying water. In general, CaO2 efficiently and synchronously controlled the endogenous release of N and OM under the combined actions of physical interception, physical adsorption, chemical oxidation, and biological transformation. Therefore, this study may provide valuable reference and guidance for the active and synchronous removal of N and OM in sediments and inhibition of endogenous pollutant release under anoxic condition.
Collapse
Affiliation(s)
- Wen-Huai Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Ke-Xin Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zheng Zhu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xue-Yi Han
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
20
|
Lei J, Lin J, Zhan Y, Zhang Z, Ma J. Effectiveness and mechanism of aluminum/iron co-modified calcite capping and amendment for controlling phosphorus release from sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113471. [PMID: 34358942 DOI: 10.1016/j.jenvman.2021.113471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
The effectiveness and mechanism of aluminum/iron co-modified calcite (Al/Fe-CA) for the control of phosphorus (P) liberation from sediments was investigated. The results showed that Al/Fe-CA possessed good sorption performance for phosphate, and the maximum phosphate sorption capacity for Al/Fe-CA could reach 27.0 mg/g. The major mechanisms involved the surface adsorption of phosphate on calcite, the precipitation between phosphate and Ca2+ leached from calcite, and the ligand exchange between Al/Fe-bound hydroxyl groups and phosphate to form the Al-O-P and Fe-O-P inner-sphere complexes. The re-releasing risk of Al/Fe-CA-bound P under the circumstances of normal pH (5-9) and reducing environment was very low. Al/Fe-CA addition could significantly reduce the risk of P releasing from sediment to overlying water (OL-water), and the inactivation of mobile P, reactive soluble P (SRP) and diffusive gradient in thin-films (DGT)-labile P in sediment by Al/Fe-CA had a great part in the suppression of sediment-P liberation to OL-water by the Al/Fe-CA amendment. Al/Fe-CA capping and fabric-wrapped Al/Fe-CA capping both could greatly reduce the risk of P releasing from sediment into OL-water, and the formation of a static layer with low concentrations of SRP and DGT-labile P in the upper sediment was the key to sustaining a high P controlling efficiency. When the applied mode of Al/Fe-CA varied from capping to amendment, although the inactivation efficiency of DGT-labile P in the overlying water and upper sediment by Al/Fe-CA would decrease to a certain degree, the inactivation efficiency of DGT-labile P in the lower sediment by Al/Fe-CA would increase. Results of this study suggest that Al/Fe-CA has the high potential to be used as an active capping or amendment material for the management of internal P loading in surface water bodies.
Collapse
Affiliation(s)
- Jiajia Lei
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China.
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jiawen Ma
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| |
Collapse
|