1
|
Yin Y, Ding C, Tang X, Zhou Z, Nie M, Yuan Y, Qian Y, He L, Li Z, Guo Z, Li L, Zhao Q, Zhang T, Lai L, Wang Y, Wang X. Reducing cadmium and arsenic accumulation in rice grains: The coupled effect of sulfur's biomass dilution and soil immobilization analyzed using meta-analysis and machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177157. [PMID: 39490837 DOI: 10.1016/j.scitotenv.2024.177157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The biogeochemical cycling of sulfur (S) in paddy soil influences cadmium (Cd) and arsenic (As) migration. However, the impact of S application on Cd and As within the soil-rice system has not been fully explored. This study aimed to examine the effect of S application on Cd/As soil-rice system dynamics by conducting an extensive meta-analysis of 322 sets of observational data from 46 publications, which were published between 2004 and 2023. Furthermore, a machine learning model was only used to forecast the potential influence of S on Cd within the soil-rice system rather than the influence of As due to the limited data samples. The results indicated that the basal application of S mainly reduced the accumulation of Cd and As in the grains [Cd: 29.00 % (28.48 % to 29.52 %); As: 38.31 % (37.79 % to 38.85 %)] by the coupling effect of promoting rice growth 40.87 % (40.61 %-41.14 %) and reducing the soil bioavailable Cd/As by 18.20 % (18.05 % to 18.36 %)/19.59 % (19.44 % to 19.75 %). However, the efficacy of actual field farmland remediation is often suboptimal because the actual soil physical and chemical properties frequently do not meet the ideal conditions [pH: 6.5-7.5, Total S: < 200 mg/kg, soil organic matter (SOM): 30-40 g/kg, Total Fe: 20-30 g/kg] that are required to mitigate Cd and As accumulation in rice grains. Notably, the random forest machine learning model achieved an acceptable level of accuracy when compared to the excessive linear regression simulation. The model suggested that the decrease in the Cd/As accumulation in the rice was due to the soil available S content, which was primarily influenced by S application. This study provides novel insights for managers and researchers for the amelioration of Cd/As-contaminated farmland soil.
Collapse
Affiliation(s)
- Yuepeng Yin
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Tang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Min Nie
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Yuan
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Qian
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqin He
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyao Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Guo
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Taolin Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lai Lai
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
| | - Yurong Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Xingxiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Jiang O, Chen Y, Li C, Yang X, Gustave W, Tang X. Loss of microbial diversity increases methane emissions and arsenic release in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174656. [PMID: 38992367 DOI: 10.1016/j.scitotenv.2024.174656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Microorganisms are vital to the emission of greenhouse gases and transforming pollutants in paddy soils. However, the impact of microbial diversity loss on anaerobic methane (CH4) oxidation and arsenic (As) reduction under flooded conditions remains unclear. In this study, we inoculated microbial suspensions into natural As-contaminated paddy soils using a dilution approach (untreated, 10-2, 10-4, 10-6, 10-8 dilutions) to manipulate microbial diversity levels. The results revealed that the 10-4 and 10-6 dilutions resulted in the highest CH4 emissions (97.0 μmol and 102.3 μmol) compared to untreated groups (27.6 μmol). However, anaerobic CH4 oxidation was not observed in 10-4 dilution groups and higher dilutions, suggesting the loss of diversity inhibited the natural reduction of CH4. Moreover, the porewater As concentration in the dilution groups was 1.8-8.2 times greater than in the untreated groups. The loss of microbial diversity promoted the reductive dissolution of iron (Fe) minerals bearing As, leading to increased concentrations of Fe(II) and dissolved organic carbon (DOC), which further enhanced As release (Fe(II), R = 0.9, p < 0.001) (DOC, R = 0.8, p < 0.001) from soil to porewater. However, CH4-dependent As(V) reduction was almost entirely inhibited under diversity loss. The decline in microbial diversity increased the relative abundances of methanogens (e.g., Methanobacterium and Methanomassiliicoccus), Fe(III)/As(V)-reducing bacteria (e.g., Bacillus, Clostridium_sensu_stricto_10, and Geobacter), and the related functional genes (i.e., mcrA and Geo). These findings suggest that microbial diversity is critical for specialized soil processes, highlighting the detrimental effects of biodiversity loss on CH4 emissions and As release in As-contaminated paddies.
Collapse
Affiliation(s)
- Ouyuan Jiang
- Institute of Carbon Neutrality, Zhejiang University, Hangzhou 310027, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yun Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Chao Li
- Institute of Carbon Neutrality, Zhejiang University, Hangzhou 310027, China.
| | - Xueling Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Williamson Gustave
- Chemistry, Environmental & Life Sciences, University of The Bahamas, New Providence, Nassau, the Bahamas
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Liu Y, Zhang X, Zheng J, He J, Lü C. Reductive dissolution of As-bearing iron oxides: Mediating mechanism of fulvic acid and dissimilated iron reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173443. [PMID: 38782281 DOI: 10.1016/j.scitotenv.2024.173443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Fulvic acid (FA) and iron oxides often play regulating roles in the geochemical behavior and ecological risk of arsenic (As) in terrestrial ecosystems. FA can act as electron shuttles to facilitate the reductive dissolution of As-bearing iron (hydr)oxides. However, the influence of FA from different sources on the sequential conversion of Fe/As in As-bearing iron oxides under biotic and abiotic conditions remains unclear. In this work, we exposed prepared As-bearing iron oxides to FAs derived from lignite (FAL) and plant peat (FAP) under anaerobic conditions, tracked the fate of Fe and As in the aqueous phase, and investigated the reduction transformation of Fe(III)/As(V) with or without the presence of Shewanella oneidensis MR-1. The results showed that the reduction efficiency of Fe(III)/As(V) was increased by MR-1, through its metabolic activity and using FAs as electron shuttles. The reduction of Fe(III)/As(V) was closely associated with goethite being more conducive to Fe/As reduction compared to hematite. It is determined that functional groups such as hydroxy, carboxy, aromatic, aldehyde, ketone and aliphatic groups are the primary electron donors. Their reductive capacities rank in the following sequence: hydroxy> carboxy, aromatic, aldehyde, ketone> aliphatic group. Notably, our findings suggest that in the biotic reduction, Fe significantly reduction precedes As reduction, thereby influencing the latter's reduction process across all incubation systems. This work provides empirical support for understanding iron's role in modulating the geochemical cycling of As and is of significant importance for assessing the release risk of arsenic in natural environments.
Collapse
Affiliation(s)
- Yangzheng Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China
| | - Xin Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Forest Ecosystem National Observation and Research Station of Greater Khingan Mountains in Inner Mongolia, Genhe 022350, China.
| | - Jinli Zheng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China
| | - Jiang He
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Institute of Environmental Geology, Inner Mongolia University, 010021 Hohhot, China
| | - Changwei Lü
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Institute of Environmental Geology, Inner Mongolia University, 010021 Hohhot, China.
| |
Collapse
|
4
|
Sun X, Jiang C, Guo Y, Li C, Zhao W, Nie F, Liu Q. Suppression of OsSAUR2 gene expression immobilizes soil arsenic bioavailability by modulating root exudation and rhizosphere microbial assembly in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134587. [PMID: 38772107 DOI: 10.1016/j.jhazmat.2024.134587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
One of the factors influencing the behavior of arsenic (As) in environment is microbial-mediated As transformation. However, the detailed regulatory role of gene expression on the changes of root exudation, rhizosphere microorganisms, and soil As occurrence forms remains unclear. In this study, we evidence that loss-of-function of OsSAUR2 gene, a member of the SMALL AUXIN-UP RNA family in rice, results in significantly higher As uptake in roots but greatly lower As accumulation in grains via affecting the expression of OsLsi1, OsLsi2 in roots and OsABCC1 in stems. Further, the alteration of OsSAUR2 expression extensively affects the metabolomic of root exudation, and thereby leading to the variations in the composition of rhizosphere microbial communities in rice. The microbial community in the rhizosphere of Ossaur2 plants strongly immobilizes the occurrence forms of As in soil. Interestingly, Homovanillic acid (HA) and 3-Coumaric acid (CA), two differential metabolites screened from root exudation, can facilitate soil iron reduction, enhance As bioavailability, and stimulate As uptake and accumulation in rice. These findings add our further understanding in the relationship of OsSAUR2 expression with the release of root exudation and rhizosphere microbial assembly under As stress in rice, and provide potential rice genetic resources and root exudation in phytoremediation of As-contaminated paddy soil.
Collapse
Affiliation(s)
- Xueyang Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Cheng Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Yao Guo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Chunyan Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Wenjing Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Fanhao Nie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
5
|
Demin KA, Prazdnova EV, Minkina TM, Gorovtsov AV. Sulfate-reducing bacteria unearthed: ecological functions of the diverse prokaryotic group in terrestrial environments. Appl Environ Microbiol 2024; 90:e0139023. [PMID: 38551370 PMCID: PMC11022543 DOI: 10.1128/aem.01390-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
Sulfate-reducing prokaryotes (SRPs) are essential microorganisms that play crucial roles in various ecological processes. Even though SRPs have been studied for over a century, there are still gaps in our understanding of their biology. In the past two decades, a significant amount of data on SRP ecology has been accumulated. This review aims to consolidate that information, focusing on SRPs in soils, their relation to the rare biosphere, uncultured sulfate reducers, and their interactions with other organisms in terrestrial ecosystems. SRPs in soils form part of the rare biosphere and contribute to various processes as a low-density population. The data reveal a diverse range of sulfate-reducing taxa intricately involved in terrestrial carbon and sulfur cycles. While some taxa like Desulfitobacterium and Desulfosporosinus are well studied, others are more enigmatic. For example, members of the Acidobacteriota phylum appear to hold significant importance for the terrestrial sulfur cycle. Many aspects of SRP ecology remain mysterious, including sulfate reduction in different bacterial phyla, interactions with bacteria and fungi in soils, and the existence of soil sulfate-reducing archaea. Utilizing metagenomic, metatranscriptomic, and culture-dependent approaches will help uncover the diversity, functional potential, and adaptations of SRPs in the global environment.
Collapse
|
6
|
Yin Y, Wang Y, Ding C, Zhou Z, Tang X, He L, Li Z, Zhang T, Wang X. Impact of iron and sulfur cycling on the bioavailability of cadmium and arsenic in co-contaminated paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133408. [PMID: 38183938 DOI: 10.1016/j.jhazmat.2023.133408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The biogeochemical cycling of iron (Fe) or sulfur (S) in paddy soil influences the cadmium (Cd) and arsenic (As) migration. However, the influence of coupled reduction effects and reaction precedence of Fe and S on the bioavailability of Cd and As is still not fully understood. This study aimed to reveal the influence of Fe and S reduction on soil Cd and As mobility under various pe + pH conditions and to elucidate the related mechanism in subtropical China. According to the findings, higher adsorption from Fe reduction caused high-crystalline goethite (pe + pH > 2.80) to become amorphous ferrihydrite, which in turn caused water-soluble Cd (62.0%) to first decrease. Cd was further decreased by 72.7% as a result of the transformation of SO42- to HS-/S2- via sulfate reduction and the formation of CdS and FeS. As release (an increase of 8.1 times) was consequently caused by the initial reduction and dissolution of iron oxide (pe + pH > 2.80). FeS had a lesser impact on the immobilization of As than sulfate-mediated As (V) reduction in the latter stages of the reduction process (pe + pH < 2.80). pe + pH values between 3 and 3.5 should be maintained to minimize the bioavailability of As and Cd in moderate to mildly polluted soil without adding iron oxides and sulfate amendments. The practical remediation of severely co-contaminated paddy soil can be effectively achieved by using Fe and S additions at different pe + pH conditions. This technique shows promise in reducing the bioavailability of Cd and As.
Collapse
Affiliation(s)
- Yuepeng Yin
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurong Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Changfeng Ding
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Tang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqin He
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyao Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taolin Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
He X, Yan W, Chen X, Li Q, Li M, Yan Y, Yan B, Yao Q, Li G, Wu T, Jia Y, Liu C. Degradation of algae promotes the release of arsenic from sediments under high-sulfate conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123154. [PMID: 38101530 DOI: 10.1016/j.envpol.2023.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Sulfate concentrations in eutrophic waters continue to increase; however, the transformations of arsenic (As) in sediments under these conditions are unclear. In this study, we constructed a series of microcosms to investigate the effect of algal degradation on As transformations in sediments with high sulfate concentrations. The results showed that both the elevated sulfate levels and algal degradation enhanced the release of As from sediments to the overlying water, and degradation of algal in the presence of elevated sulfate levels could further contribute to As release. Sulfate competed with arsenate for adsorption in the sediments, leading to As desorption, while algal degradation created a strongly anaerobic environment, leading to the loss of the redox layer in the surface sediments. With high sulfate, algal degradation enhanced sulfate reduction, and sulfur caused the formation of thioarsenates, which may cause re-dissolution of the arsenides, enhancing As mobility by changing the As speciation. The results of sedimentary As speciation analysis indicated that elevated sulfur levels and algal degradation led to a shift of As from Fe2O3/oxyhydroxide-bound state to specifically adsorbed state at the sediment water interface. This study indicated that algal degradation increases the risk of As pollution in sulfate-enriched eutrophic waters.
Collapse
Affiliation(s)
- Xiangyu He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Wenming Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Qi Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Minjuan Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Yulin Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Binglong Yan
- Lianyungang Water Conservancy Planning and Designing Institute Co., Ltd., Lianyungang, 222006, China
| | - Qi Yao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Gaoxiang Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Tingfeng Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yushan Jia
- Shilianghe Reservoir Management Office, Lianyungang, 222006, China
| | - Congxian Liu
- Lianyungang Water Conservancy Bureau, Lianyungang, 222006, China
| |
Collapse
|
8
|
Zeng L, Yan C, Yang F, Zhen Z, Yang J, Chen J, Huang Y, Xiao Y, Zhang W. The Effects and Mechanisms of pH and Dissolved Oxygen Conditions on the Release of Arsenic at the Sediment-Water Interface in Taihu Lake. TOXICS 2023; 11:890. [PMID: 37999542 PMCID: PMC10675530 DOI: 10.3390/toxics11110890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
The pH and dissolved oxygen (DO) conditions are important environmental factors that control the migration of arsenic (As) at the sediment-water interface. This study investigates the distribution differences of reactive iron, manganese, and arsenic at the sediment-water interface under anaerobic and aerobic conditions at different pH levels. The strong buffering capacity of sediment to water pH results in a shift towards neutral pH values in the overlying water under different initial pH conditions. The level of DO becomes a key factor in the release of As from sediment, with lower DO environments exhibiting higher release quantities and rates of As compared to high DO environments. Under low DO conditions, the combined effects of ion exchange and anaerobic reduction lead to the most significant release of As, particularly under pH 9.5 conditions. The formation of amorphous ferrous sulfide compounds under low DO conditions is a significant factor contributing to increased arsenic concentration in the interstitial water. Therefore, the re-migration of endogenous arsenic in shallow lake sediments should consider the combined effects of multiple driving forces.
Collapse
Affiliation(s)
- Liqing Zeng
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (F.Y.); (Z.Z.)
| | - Fan Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (F.Y.); (Z.Z.)
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (F.Y.); (Z.Z.)
| | - Jiaming Yang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Jielun Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Yujie Huang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Yuhui Xiao
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Wen Zhang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| |
Collapse
|
9
|
Wu Z, Chen Z, Wang H, Liu H, Wei Z. Arsenic removal in flue gas through anaerobic denitrification and sulfate reduction cocoupled arsenic oxidation. CHEMOSPHERE 2023:139350. [PMID: 37399995 DOI: 10.1016/j.chemosphere.2023.139350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Arsenic in flue gas from municipal solid waste incineration can damage to human health and ecological environment. A sulfate-nitrate-reducing bioreactor (SNRBR) for flue gas arsenic removal was investigated. Arsenic removal efficiency attained 89.4%. An integrated metagenomic and metaproteomic investigation showed that three nitrate reductases (NapA, NapB and NarG), three sulfate reductases (Sat, AprAB and DsrAB), and arsenite oxidase (ArxA) regulated nitrate reduction, sulfate reduction and bacterial As(III)-oxidation, respectively. Citrobacter and Desulfobulbus could synthetically regulate the expression of arsenite-oxidizing gene, nitrate reductases and sulfate reducatases, which involved in As(III) oxidation, nitrate and sulfate reduction. A bacterial consortium containing Citrobacter, UG_Enterobacteriaceas, Desulfobulbus and Desulfovibrio could capable of simultaneously arsenic oxidation, sulfate reduction and denitrification. Anaerobic denitrification and sulfate reduction were cocoupled to arsenic oxidation. The biofilm was characterized by FTIR, XPS, XRD, EEM, and SEM. XRD and XPS spectra verified the formation of aarsenic species (As(V)) from flue gas As(III) conversion. Arsenic speciation in biofilms of SNRBR consisted of 77% residual arsenic, 15.9% organic matter-bound arsenic, and 4.3% strongly absorbed arsenic. Flue gas arsenic was bio-stabilized in the form of Fe-As-S and As-EPS through biodeposition, biosorption and biocomplexation. This provides a new way of flue gas arsenic removal using the sulfate-nitrate-reducing bioreactor.
Collapse
Affiliation(s)
- Zuotong Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| | - Zhuoyao Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| | - Huiying Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| | - Haixu Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| | - Zaishan Wei
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Qian Y, Hu L, Wang Y, Xu K. Arsenic methylation behavior and microbial regulation mechanisms in landfill leachate saturated zones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121064. [PMID: 36639043 DOI: 10.1016/j.envpol.2023.121064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is a potential contaminant in landfill. As methylation has been considered as a detoxification mechanism to address this problem. In this study, microcosm incubation was used to simulate leachate saturation zone (LSZ) and other landfill zones scenarios to explore the As methylation behavior. The As methylation rate of LSZ is 11.75%, which is slightly higher than that of other zone of landfill (10.87%). However, the difference was greatly increased by the addition of moderate content of As(III), with values of 29.25% in LSZ and 4.61% in other zones. The microbial community structure varied greatly between zones and a higher abundance of arsM was observed in the LSZ, which enhanced As methylation. Based on the annotated As functional genes from the KEGG database, the microbial As methylated pathway was summarized. Higher relative abundances of gst and arsC promoted the formation of more trivalent As substrates, stimulating the methylation behavior for As detoxification in the LSZ. According to microbial arsM contribution analysis, unclassified_p__Gemmatimonadetes, unclassified_p__Actinobacteria, unclassified_o_Hydrogenophilales, and Intrasporangium were the primary As methylation bacteria in the LSZ, while unclassified_f__Chitinophagaceae and unclassified_c_Gammaproteobacteria were the primary contributors in other landfill zones. These results highlight the specific As methylation process in the LSZ, and these insights could improve the control of As contamination in landfill sites.
Collapse
Affiliation(s)
- Yating Qian
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China.
| | - Yuqian Wang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Ke Xu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
11
|
Yan S, Yang J, Si Y, Tang X, Ma Y, Ye W. Arsenic and cadmium bioavailability to rice (Oryza sativa L.) plant in paddy soil: Influence of sulfate application. CHEMOSPHERE 2022; 307:135641. [PMID: 35817182 DOI: 10.1016/j.chemosphere.2022.135641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) and cadmium (Cd) accumulate easily in rice grains that pose a non-negligible threat to human health worldwide. Sulfur fertilizer has been shown to affect the mobilization of As and Cd in paddy soil, but the effect of co-contamination by As and Cd has not been explored. This study selected three soils co-contaminated with As and Cd from Shangyu (SY), Tongling (TL) and Ma'anshan (MA). Incubation experiments and pot experiments were carried out to explore the effect of sulfate supply (100 mg kg-1) on the bioavailability of As and Cd in soil and the rice growth. The results showed that the exogenous sulfate decreased As concentrations in porewater of SY and TL by 51.1% and 29.2% through forming arsenic-sulfide minerals. The exchangeable Cd in soil also declined by 25.6% and 18.6% and transformed into Fe and Mn oxides-bound Cd. The relative abundance of Desulfotomaculum, Desulfurispora and dsr gene increased remarkably indicated that sulfate addition stimulated the activity of sulfate-reducing bacteria. In MA soil, sulfate addition immobilized Cd but had little effect on As solubility, which was speculated to be related to the high sulfate background of the soil. Further pot experiments showed that sulfate application significantly increased rice tillers, biomass, chlorophyll content in shoots, and decreased electrolyte leakage in root. Finally, sulfate significantly reduced As and Cd in SY rice shoots by 60.2% and 40.8%, respectively, while As decreased by 39.6% in TL rice shoots and Cd decreased by 23.0% in MA rice shoots. These results indicate that the application of sulfate can reduce the bioavailability of As and Cd in the soil-rice system and promote rice growth, and it is possible to reduce the accumulation of As and Cd in rice plants simultaneously.
Collapse
Affiliation(s)
- Shiwei Yan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Jianhao Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Xianjin Tang
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, 310058, China
| | - Youhua Ma
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| | - Wenling Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Key Laboratory of Agri-Food Safety of Anhui Province, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| |
Collapse
|
12
|
Chi Y, Tam NFY, Li WC, Ye Z. Multiple geochemical and microbial processes regulated by redox and organic matter control the vertical heterogeneity of As and Cd in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156229. [PMID: 35643135 DOI: 10.1016/j.scitotenv.2022.156229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The heterogeneity of arsenic (As) and cadmium (Cd) in paddy soils seriously hinders the assessment of contamination status and prediction of rice uptake. Their vertical patterns across different environmental conditions and the underlying mechanisms remain largely unexplored. In this study, maximum vertical differences of bioavailable As and Cd within 0-30 cm depth in paddy soils were 4.1-fold and four orders of magnitude, respectively. The vertical patterns of As and Cd followed the vertical redox gradient in long-term reduced paddies, but were shaped by the vertical pH gradient derived from acidic wastewater irrigation in partly oxidized soils. Iron(III)- and sulfate-reducing bacteria played key roles in the formation of vertical pH gradient and the immobilization of As and Cd by iron (hydr)oxides and sulfides under varied redox conditions. Soil redox and organic matter determined the transition between these two mechanisms via regulating microbial iron(III) and sulfate reduction processes. The work proposes that soil vertical As and Cd patterns directly affect the accumulation of As and Cd in different rice cultivars with different vertical root patterns. This is the first study elucidating the controlling mechanisms governing the vertical As and Cd patterns in paddy fields, providing important references to identify, manage and remediate contaminated paddy fields.
Collapse
Affiliation(s)
- Yihan Chi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, The Hong Kong Metropolitan University, Kowloon, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Wai Chin Li
- Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China.
| | - Zhihong Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Huang L, Wang X, Chi Y, Huang L, Li WC, Ye Z. Rhizosphere bacterial community composition affects cadmium and arsenic accumulation in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112474. [PMID: 34214770 DOI: 10.1016/j.ecoenv.2021.112474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and arsenic (As) contamination in paddy soils poses serious health risks to humans. The accumulation of Cd and As in rice (Oryza sativa L.) depends on their bioavailability, which is affected by soil physicochemical properties and soil microbial activities. However, little is known about the intricate interplay between rice plants and their rhizosphere microbes during the uptake of Cd and As. In this study, different bacterial communities were established by sterilizing paddy soils with γ-radiation. A pot experiment using two paddy soils with different levels of contamination was conducted to explore how the bacterial community composition affects Cd and As accumulation in rice plants. The results showed that the sterilization treatment substantially changed the bacterial composition in the rhizosphere, and significantly increased the grain yield (by 33.5-38.3%). The sterilization treatment resulted in significantly decreased concentrations of Cd (by 18.2-38.7%) and As (by 20.3-36.7%) in the grain, straw, and root of rice plants. The accumulation of Cd and As in rice plants was negatively correlated with the relative abundance of sulfate-reducing bacteria and iron-oxidizing bacteria in the rhizosphere. Other specific taxa associated with the accumulation of Cd and As in rice plants were also identified. Our results suggest that regulating the composition of the rhizosphere bacterial community could simultaneously reduce Cd and As accumulation in rice grain and increase the grain yield. These results would be useful for developing strategies to cultivate safe rice crops in areas contaminated with Cd and As.
Collapse
Affiliation(s)
- Lu Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Yihan Chi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Linan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wai Chin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China.
| | - Zhihong Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|