1
|
Yan Z, Qin G, Shi X, Jiang X, Cheng Z, Zhang Y, Nan N, Cao F, Qiu X, Sang N. Multilevel Screening Strategy to Identify the Hydrophobic Organic Components of Ambient PM 2.5 Associated with Hepatocellular Steatosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10458-10469. [PMID: 38836430 DOI: 10.1021/acs.est.3c10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Hepatic steatosis is the first step in a series of events that drives hepatic disease and has been considerably associated with exposure to fine particulate matter (PM2.5). Although the chemical constituents of particles matter in the negative health effects, the specific components of PM2.5 that trigger hepatic steatosis remain unclear. New strategies prioritizing the identification of the key components with the highest potential to cause adverse effects among the numerous components of PM2.5 are needed. Herein, we established a high-resolution mass spectrometry (MS) data set comprising the hydrophobic organic components corresponding to 67 PM2.5 samples in total from Taiyuan and Guangzhou, two representative cities in North and South China, respectively. The lipid accumulation bioeffect profiles of the above samples were also obtained. Considerable hepatocyte lipid accumulation was observed in most PM2.5 extracts. Subsequently, 40 of 695 components were initially screened through machine learning-assisted data filtering based on an integrated bioassay with MS data. Next, nine compounds were further selected as candidates contributing to hepatocellular steatosis based on absorption, distribution, metabolism, and excretion evaluation and molecular dockingin silico. Finally, seven components were confirmed in vitro. This study provided a multilevel screening strategy for key active components in PM2.5 and provided insight into the hydrophobic PM2.5 components that induce hepatocellular steatosis.
Collapse
Affiliation(s)
- Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Xiaodi Shi
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xing Jiang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Zhen Cheng
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Fuyuan Cao
- Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Shanxi 030006, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| |
Collapse
|
2
|
Pardo M, Li C, Jabali A, Petrick LM, Ben-Ari Z, Rudich Y. Toxicity mechanisms of biomass burning aerosols in in vitro hepatic steatosis models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166988. [PMID: 37704129 DOI: 10.1016/j.scitotenv.2023.166988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that contributes to the global rise in liver-related morbidity and mortality. Wood tar (WT) aerosols are a significant fraction of carbonaceous aerosol originating from biomass smoldering, contributing to air pollution particles smaller than 2.5 mm (PM2.5). Mechanistic biological associations exist between exposure to PM2.5 and increased NAFLD phenotypes in both cell and animal models. Therefore, this study examines whether an existing NAFLD-like condition can enhance the biological susceptibility of liver cells exposed to air pollution in the form of WT material. Liver cells were incubated with lauric or oleic acid (LA, OA, respectively) for 24 h to accumulate lipids and served as an in vitro hepatic steatosis model. When exposed to 0.02 or 0.2 g/L water-soluble WT aerosols, both steatosis model cells showed increased cell death compared to the control cells (blank-treated cells with or without pre-incubation with LA or OA) or compared to WT-treated cells without pre-incubation with LA or OA. Furthermore, alterations in oxidative status included variations in reactive oxygen species (ROS) levels, elevated levels of lipid peroxidation adducts, and decreased expression of antioxidant genes associated with the NRF2 transcription factor. In addition, steatosis model cells exposed to WT had a higher degree of DNA damage than the control cells (blank-treated cells with or without pre-incubation with LA or OA). These results support a possible systemic effect through the direct inflammatory and oxidative stress response following exposure to water-soluble WT on liver cells, especially those predisposed to fatty liver. Furthermore, the liver steatosis model can be influenced by the type of fatty acid used; increased adverse effects of WT on metabolic dysregulation were observed in the LA model to a higher extent compared to the OA model.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Amani Jabali
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Lauren M Petrick
- The Bert Strassburger Metabolic Center, Sheba Medical Center, Tel Hashomer, Israel; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ziv Ben-Ari
- Liver Disease Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Xing Q, Zhang L, Liu H, Zhu C, Yao M. Exhaled VOC Biomarkers from Rats Injected with PMs from Thirty-One Major Cities in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20510-20520. [PMID: 38039547 DOI: 10.1021/acs.est.3c06074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Particulate matter (PMs) of different origins can cause diverse health effects. Here, a homemade box was used to facilitate real-time measurements of breath-borne volatile organic compounds (VOCs) by gas chromatography-ion mobility spectrometry. We have tracked exhaled VOC changes in 228 Wistar rats that were injected with water-soluble PM suspension filtrates (after 0.45 μm) from 31 China cities for 1 h to up to 1-6 days during the experiments. Rats exposed to the filtrates exhibited significant changes in breath-borne VOCs within hours, featuring dynamic fluctuations in the levels of acetone, butan-2-one, heptan-2-one-M, acetic acid-M, and ethanol. Subsequently, on the fifth to sixth day after the injection, there was a notable increase in the proportion of aldehydes (including hexanal-M, hexanal-D, pentanal, heptanal-M, and (E)-2-hexenal). The 10 dynamic VOC fingerprint patterns mentioned earlier showcased the capability to indirectly differentiate urban PM toxicity and categorize the 31 cities into four distinct groups based on their health effects. This study provides valuable insights into the mechanisms of exhaled VOCs and underscores their critical role as biomarkers for differentiating the toxicity of different PMs and detecting the early signs of potential diseases. The results from this work also provide a scientific basis for city-specific air pollution control and policy development.
Collapse
Affiliation(s)
- Qisong Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huaying Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyu Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Dong Z, Ma J, Qiu J, Ren Q, Shan Q, Duan X, Li G, Zuo YY, Qi Y, Liu Y, Liu G, Lynch I, Fang M, Liu S. Airborne fine particles drive H1N1 viruses deep into the lower respiratory tract and distant organs. SCIENCE ADVANCES 2023; 9:eadf2165. [PMID: 37294770 PMCID: PMC10256160 DOI: 10.1126/sciadv.adf2165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
Mounting data suggest that environmental pollution due to airborne fine particles (AFPs) increases the occurrence and severity of respiratory virus infection in humans. However, it is unclear whether and how interactions with AFPs alter viral infection and distribution. We report synergetic effects between various AFPs and the H1N1 virus, regulated by physicochemical properties of the AFPs. Unlike infection caused by virus alone, AFPs facilitated the internalization of virus through a receptor-independent pathway. Moreover, AFPs promoted the budding and dispersal of progeny virions, likely mediated by lipid rafts in the host plasma membrane. Infected animal models demonstrated that AFPs favored penetration of the H1N1 virus into the distal lung, and its translocation into extrapulmonary organs including the liver, spleen, and kidney, thus causing severe local and systemic disorders. Our findings revealed a key role of AFPs in driving viral infection throughout the respiratory tract and beyond. These insights entail stronger air quality management and air pollution reduction policies.
Collapse
Affiliation(s)
- Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qing’e Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Mānoa, Honolulu, HI 96822, USA
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Mānoa, Honolulu, HI 96822, USA
| | - Yu Qi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Liu
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing 100035, China
| | - Guoliang Liu
- Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
- National Center for Respiratory Medicine, Beijing 100029, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
5
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
6
|
Yan Z, Li S, Chen R, Xie H, Wu M, Nan N, Xing Q, Yun Y, Qin G, Sang N. Effects of differential regional PM 2.5 induced hepatic steatosis and underlying mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121220. [PMID: 36746292 DOI: 10.1016/j.envpol.2023.121220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Emerging evidence suggests that exposure to PM2.5 is associated with a high risk of nonalcoholic fatty liver disease (NAFLD). NAFLD is typically characterised by hepatic steatosis. However, the underlying mechanisms and critical components of PM2.5-induced hepatic steatosis remain to be elucidated. In this study, ten-month-old C57BL/6 female mice were exposed to PM2.5 from four cities in China (Taiyuan, Beijing, Hangzhou, and Guangzhou) via oropharyngeal aspiration every other day for four weeks. After the exposure period, hepatic lipid accumulation was evaluated by biochemical and histopathological analyses. The expression levels of genes related to lipid metabolism and metabolomic profiles were assessed in the mouse liver. The association between biomarkers of hepatic steatosis (hepatic Oil Red O staining area and serum and liver triglyceride contents) and typical components of PM2.5 was identified using Pearson correlation analysis. Oil Red O staining and biochemical results indicated that PM2.5 from four cities significantly induced hepatic lipid accumulation. The most severe hepatic steatosis was observed after Guangzhou PM2.5 exposure. Moreover, Guangzhou PM2.5-induced the most significant changes in gene expression associated with lipid metabolism, including increased hepatic fatty acid uptake and lipid droplet formation and decreased fatty acid synthesis and lipoprotein secretion. Contemporaneously, exposure to Guangzhou PM2.5 significantly perturbed hepatic lipid metabolism. According to metabolomic analysis, disturbed hepatic lipid metabolism was primarily concentrated in linoleic acid, α-linoleic acid, and arachidonic acid metabolism. Finally, correlation analysis revealed that copper (Cu) and other inorganic components, as well as the majority of polycyclic aromatic hydrocarbons (PAHs), were related to changes in biomarkers of hepatic steatosis. These findings showed that PM2.5 exposure caused hepatic steatosis in aged mice, which could be related to the critical chemical components of PM2.5. This study provides critical information regarding the components of PM2.5, which cause hepatic steatosis.
Collapse
Affiliation(s)
- Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Shuyue Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China
| | - Haohan Xie
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China
| | - Meiqiong Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China; School of Public Health, Shanxi Medical University, Shanxi, 030001, PR China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Qisong Xing
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| |
Collapse
|
7
|
Xing Q, Wu M, Xue Z, Nan N, Yan Z, Li S, Yun Y, Qin G, Sang N. Biochemical evidence of PM 2.5 critical components for inducing myocardial fibrosis in vivo and in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159258. [PMID: 36216045 DOI: 10.1016/j.scitotenv.2022.159258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
PM2.5 constituents are tightly linked to the initiation of many cardiovascular diseases (CVDs). Little is known, however, about the events which critical components of PM2.5 can induce the initiating events in CVDs. C57BL/6 female mice were exposed to PM2.5 (3 mg/kg b.w.) from four different cities (Taiyuan, Beijing, Hangzhou, and Guangzhou) by oropharyngeal aspiration every other day. PM2.5 from Taiyuan increased the diastolic function of the hearts and induced myocardial fibrosis with increased areas of interstitial fibrosis through the NOX4/TGF-β1/Smad 3/Col1a1 pathways. Pb, Cr, Mn, Zn, and most of the polycyclic aromatic hydrocarbons (PAHs) were positively associated with the related indicators of cardiac diastolic function and myocardial fibrosis by using Pearson correlation (R2 = 0.9085-0.9897). To determine the critical components in PM2.5 that can induce the occurrence of myocardial fibrosis, BEAS-2b cells were treated with one or more of five candidate components with/without Guangzhou PM2.5, and then the conditioned medium of BEAS-2b was used to culture AC16 cells. The results showed that Zn + Pb + Mn + BaP with PM2.5 from Guangzhou exposure significantly increased reactive oxygen species production of BEAS-2b cells and induced a dramatic increase of myocardial fiber-related gene expression (Col1a1 and TGF-β) in AC16 cells. It indicated that the different mass concentrations of Zn, Pb, Mn, and ΣPAHs in PM2.5 might be the critical factors that modulated myocardial fibrosis induction by targeted. Our study provided a novel avenue for further elucidation of molecular mechanisms of PM2.5 components-induced myocardial fibrosis.
Collapse
Affiliation(s)
- Qisong Xing
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Meiqiong Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China; School of Public Health, Shanxi Medical University, Shanxi 030001, PR China
| | - Zhen Xue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shuyue Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
8
|
Wu M, Xing Q, Duan H, Qin G, Sang N. Suppression of NADPH oxidase 4 inhibits PM 2.5-induced cardiac fibrosis through ROS-P38 MAPK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155558. [PMID: 35504386 DOI: 10.1016/j.scitotenv.2022.155558] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) has been consistently linked to cardiovascular diseases, and cardiac fibrosis plays a crucial role in the occurrence and development of heart diseases. It is reported that NOX4-dependent redox signaling are responsible for TGFβ-mediated profibrotic responses. The current study was designed to explore the possible mechanisms of cardiac fibrosis by PM2.5 both in vitro and in vivo. Female C57BL/6 mice received PM2.5 (3 mg/kg b.w.) exposure with/without NOX4 inhibitor (apocynin, 25 mg/kg b.w.) or ROS scavenger (NALC, 50 mg/kg b.w.), every other day, for 4 weeks. H9C2 cells were incubated with PM2.5 (3 μg/mL) with/without 5 mM NALC, TGFβ inhibitor (SB431542, 10 μM), or siRNA-NOX4 for 24 h. The results demonstrated that PM2.5 induced evident collagen deposition and elevated expression of fibrosis biomarkers (Col1a1 & Col3a1). Significant systemic inflammatory response and cardiac oxidative stress were triggered by PM2.5. PM2.5 increased the protein expression of TGFβ1, NOX4, and P38 MAPK. Notably, the increased effects of PM2.5 could be suppressed by SB431542, siRNA-NOX4 in vitro or apocynin in vivo, and NALC. The reverse verification experiments further supported the involvement of the TGFβ/NOX4/ROS/P38 MAPK signaling pathway in the myocardial fibrosis induced by PM2.5. In summary, the current study provided evidence that PM2.5 challenge led to cardiac fibrosis through oxidative stress, systemic inflammation, and subsequent TGFβ/NOX4/ROS/P38 MAPK pathway and may offer new therapeutic targets in cardiac fibrosis.
Collapse
Affiliation(s)
- Meiqiong Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | - Qisong Xing
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huiling Duan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
9
|
Pardo M, Offer S, Hartner E, Di Bucchianico S, Bisig C, Bauer S, Pantzke J, Zimmermann EJ, Cao X, Binder S, Kuhn E, Huber A, Jeong S, Käfer U, Schneider E, Mesceriakovas A, Bendl J, Brejcha R, Buchholz A, Gat D, Hohaus T, Rastak N, Karg E, Jakobi G, Kalberer M, Kanashova T, Hu Y, Ogris C, Marsico A, Theis F, Shalit T, Gröger T, Rüger CP, Oeder S, Orasche J, Paul A, Ziehm T, Zhang ZH, Adam T, Sippula O, Sklorz M, Schnelle-Kreis J, Czech H, Kiendler-Scharr A, Zimmermann R, Rudich Y. Exposure to naphthalene and β-pinene-derived secondary organic aerosol induced divergent changes in transcript levels of BEAS-2B cells. ENVIRONMENT INTERNATIONAL 2022; 166:107366. [PMID: 35763991 DOI: 10.1016/j.envint.2022.107366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with β-pinene SOA (SOAβPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAβPin-SP mostly contained oxygenated aliphatic compounds from β-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAβPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the β-pinene-derived SOA.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, ISR-7610001 Rehovot, Israel.
| | - Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Xin Cao
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Seongho Jeong
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Uwe Käfer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Arunas Mesceriakovas
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Jan Bendl
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Werner- Heisenberg-Weg 39, D-85577 Neubiberg, Germany; Institute for Environmental Studies, Faculty of Science, Charles University, Albertov 6, CZE-12800 Prague, Czech Republic
| | - Ramona Brejcha
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Angela Buchholz
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Daniela Gat
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, ISR-7610001 Rehovot, Israel
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Gert Jakobi
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Markus Kalberer
- Department of Environmental Sciences, University of Basel, Klingelbergstr. 27, CH-4056 Basel, Switzerland
| | - Tamara Kanashova
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Yue Hu
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Christoph Ogris
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Annalisa Marsico
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Tali Shalit
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Andreas Paul
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Zhi-Hui Zhang
- Department of Environmental Sciences, University of Basel, Klingelbergstr. 27, CH-4056 Basel, Switzerland
| | - Thomas Adam
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Werner- Heisenberg-Weg 39, D-85577 Neubiberg, Germany
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, Wilhelm-Johen-Str., D-52428 Jülich, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, ISR-7610001 Rehovot, Israel
| |
Collapse
|
10
|
Fu M, Luo F, Wang E, Jiang Y, Liu S, Peng J, Liu B. Magnolol Attenuates Right Ventricular Hypertrophy and Fibrosis in Hypoxia-Induced Pulmonary Arterial Hypertensive Rats Through Inhibition of the JAK2/STAT3 Signaling Pathway. Front Pharmacol 2021; 12:755077. [PMID: 34764873 PMCID: PMC8576411 DOI: 10.3389/fphar.2021.755077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
Right ventricular (RV) remodeling is one of the essential pathological features in pulmonary arterial hypertension (PAH). RV hypertrophy or fibrosis are the leading causes of RV remodeling. Magnolol (6, 6′, 7, 12-tetramethoxy-2,2′-dimethyl-1-β-berbaman, C18H18O2) is a compound isolated from Magnolia Officinalis. It possesses multiple pharmacological activities, such as anti-oxidation and anti-inflammation. This study aims to evaluate the effects and underlying mechanisms of magnolol on RV remodeling in hypoxia-induced PAH. In vivo, male Sprague Dawley rats were exposed to 10% O2 for 4 weeks to establish an RV remodeling model, which showed hypertrophic and fibrotic features (increases of Fulton index, cellular size, hypertrophic and fibrotic marker expression), accompanied by an elevation in phosphorylation levels of JAK2 and STAT3; these changes were attenuated by treating with magnolol. In vitro, the cultured H9c2 cells or cardiac fibroblasts were exposed to 3% O2 for 48 h to induce hypertrophy or fibrosis, which showed hypertrophic (increases in cellular size as well as the expression of ANP and BNP) or fibrotic features (increases in the expression of collagen Ⅰ, collagen Ⅲ, and α-SMA). Administration of magnolol and TG-101348 or JSI-124 (both JAK2 selective inhibitors) could prevent myocardial hypertrophy and fibrosis, accompanied by the decrease in the phosphorylation level of JAK2 and STAT3. Based on these observations, we conclude that magnolol can attenuate RV hypertrophy and fibrosis in hypoxia-induced PAH rats through a mechanism involving inhibition of the JAK2/STAT3 signaling pathway. Magnolol may possess the potential clinical value for PAH therapy.
Collapse
Affiliation(s)
- Minyi Fu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Fangmei Luo
- Department of Pharmacy, Hunan Children's Hospital, Changsha, China
| | - Eli Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|