1
|
He X, Yan W, Chen X, Wang Y, Li M, Li Q, Yu Z, Wu T, Luan C, Shao Y, Wu J. Arsenic distribution characteristics and release mechanisms in aquaculture lake sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135141. [PMID: 38986404 DOI: 10.1016/j.jhazmat.2024.135141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
It is well known that aquaculture can alter the microenvironments of lakes at sediment-water interface (SWI). However, the main mechanisms underlying the effects of aquaculture activities on arsenic (As) transformations are still unclear. In this context, the present study aims to investigate the variations in the sediment As contents in Yangcheng Lake, as well as to assess its chemical transformations, release fluxes, and release mechanisms. The results showed substantial spatial differences in the dissolved As concentrations in the sediment pore water. The As release fluxes at the SWI ranged from 1.32 to 112.09 μg/L, with an average value of 33.68 μg/L. In addition, the highest As fluxes were observed in the aquaculture areas. The transformation of crystalline hydrous Fe oxide-bound As to adsorbed-As in the aquaculture lake sediments increased the ability of As release. The Partial least squares path modeling results demonstrated the great contributions of organic matter (OM) to the As transformations by influencing the sediment microbial communities and Fe/Mn minerals. The changes in the As fractionation and competing adsorption increased the dissolved As concentrations in the 0-10 mm surface sediment. Non-specifically and specifically adsorbed As were the major sources of dissolved As in the sediments. Specifically, microbial reduction of As[V] and dissolution of Fe oxides increased the dissolved As concentrations at the SWI (20 to -20 mm). The results of the current study highlight the positive enhancement effects of aquaculture on As release from sediments.
Collapse
Affiliation(s)
- Xiangyu He
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Wenming Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Minjuan Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Qi Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Zhongbo Yu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Tingfeng Wu
- Yangtze Institute for conservation and development, Hohai University, Nanjing 210098, China
| | - Chengmei Luan
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing 210027, China
| | - Yichun Shao
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Jingwei Wu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Zhang Z, Lou S, Liu S, Zhou X, Zhou F, Yang Z, Chen S, Zou Y, Radnaeva LD, Nikitina E, Fedorova IV. Potential risk assessment and occurrence characteristic of heavy metals based on artificial neural network model along the Yangtze River Estuary, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32091-32110. [PMID: 38648002 DOI: 10.1007/s11356-024-33400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Pollution from heavy metals in estuaries poses potential risks to the aquatic environment and public health. The complexity of the estuarine water environment limits the accurate understanding of its pollution prediction. Field observations were conducted at seven sampling sites along the Yangtze River Estuary (YRE) during summer, autumn, and winter 2021 to analyze the concentrations of seven heavy metals (As, Cd, Cr, Pb, Cu, Ni, Zn) in water and surface sediments. The order of heavy metal concentrations in water samples from highest to lowest was Zn > As > Cu > Ni > Cr > Pb > Cd, while that in surface sediments samples was Zn > Cr > As > Ni > Pb > Cu > Cd. Human health risk assessment of the heavy metals in water samples indicated a chronic and carcinogenic risk associated with As. The risks of heavy metals in surface sediments were evaluated using the geo-accumulation index (Igeo) and potential ecological risk index (RI). Among the seven heavy metals, As and Cd were highly polluted, with Cd being the main contributor to potential ecological risks. Principal component analysis (PCA) was employed to identify the sources of the different heavy metals, revealing that As originated primarily from anthropogenic emissions, while Cd was primarily from atmospheric deposition. To further analyze the influence of water quality indicators on heavy metal pollution, an artificial neural network (ANN) model was utilized. A modified model was proposed, incorporating biochemical parameters to predict the level of heavy metal pollution, achieving an accuracy of 95.1%. This accuracy was 22.5% higher than that of the traditional model and particularly effective in predicting the maximum 20% of values. Results in this paper highlight the pollution of As and Cd along the YRE, and the proposed model provides valuable information for estimating heavy metal pollution in estuarine water environments, facilitating pollution prevention efforts.
Collapse
Affiliation(s)
- Zhirui Zhang
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Sha Lou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Shuguang Liu
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Xiaosheng Zhou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Feng Zhou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Zhongyuan Yang
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Shizhe Chen
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Yuwen Zou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Larisa Dorzhievna Radnaeva
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Republic of Buryatia, Russia
| | - Elena Nikitina
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Republic of Buryatia, Russia
| | - Irina Viktorovna Fedorova
- Institute of Earth Sciences, Saint Petersburg State University, 7-9 Universitetskaya Embankment, 199034, St Petersburg, Russia
| |
Collapse
|
3
|
Li Y, Rong Q, Han C, Li H, Luo J, Yan L, Wang D, Jones KC, Zhang H. Development and validation of an in situ high-resolution technique for measuring antibiotics in sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133551. [PMID: 38301441 DOI: 10.1016/j.jhazmat.2024.133551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Important biogeochemical processes occur in sediments at fine scales. Sampling techniques capable of yielding information with high resolution are therefore needed to investigate chemical distributions and fluxes and to elucidate key processes affecting chemical fates. In this study, a high-resolution diffusive gradients in thin-films (DGT) technique was systematically developed and tested in a controlled sediment system to measure organic contaminants, antibiotics, for the first time. The DGT probe was used to resolve compound distributions at the mm scale. It also reflected the fluxes from the sediment pore-water and remobilization from the solid phase, providing more dynamic information. Through the fine scale detection, a reduction of re-supply was observed over time, which was concentration and location dependent. Compared to the Rhizon sampling method, antibiotic concentrations obtained by DGT probes were less than the pore-water concentrations, as DGT measures the labile fraction of the compounds. The DGT probe was also tested on an intact sediment core sampled from a lake in China and used to measure the distribution of labile antibiotics with depth in the core at the mm scale. ENVIRONMENTAL IMPLICATION: The abuse of antibiotics and widespread of their residues influences the ecosystem, induces the generation of super-bacteria, and finally poses threat to human health. Sediments adsorbs pollutants from the aquatic environment, while may also release them back to the environment. We systematically developed DGT probe approach for measuring antibiotics in sediment in situ in high resolving power, it provides information at fine scale to help us investigate biogeochemical processes take place in sediment and sediment-water interface.
Collapse
Affiliation(s)
- Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Chao Han
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Hanbing Li
- Department of Environmental Science, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
4
|
Duan L, Song J, Zhang Y, Yin M, Yuan H, Li X. Unraveling seasonal shifts in microbial and geochemical mediated arsenic mobilization at the estuarine sediment-water interface under redox changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168939. [PMID: 38029978 DOI: 10.1016/j.scitotenv.2023.168939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
The mobilization of arsenic (As) at the sediment-water interface (SWI) is crucial for determining the accumulation of dissolved As to potentially toxic levels. However, the specific impacts of redox processes involving iron (Fe) and sulfur (S), as well as microbial activities occurring in sediments, on As mobilization at the marine SWI remain poorly understood. In this study, we investigated As mobilization at the SWI in the Changjiang Estuary during three different seasons with different benthic redox conditions. The preferential reduction of arsenate (As(V)) to arsenite (As(III)) and subsequent re-adsorption onto newly formed crystalline Fe oxides restricted As release in the As(V) reduction layer. Enhanced Fe(III) reduction in the Fe(III) reduction layer contributed to As release, while the presence of low As-high Fe-high SO42- levels resulted in As removal through adsorption onto pyrite in the sulfate reduction layer. Analysis of functional genes indicated that As(V) in sediments was released into porewater through the reductive dissolution of As(V)-bearing Fe(III) oxides by Geobacter species, followed by microbial reduction of the liberated As(V) to As(III) by microbes carrying the arrA gene. The dominant pathway governing As mobilization at the SWI in the Changjiang Estuary shifted from microbial reduction control during the hypoxic summer to Fe redox control during the aerobic autumn and winter. These findings provide valuable insights into the complex mechanisms driving As mobilization and highlight the importance of considering seasonal variations in understanding As dynamics at the marine SWI.
Collapse
Affiliation(s)
- Liqin Duan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Yuting Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Meiling Yin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huamao Yuan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xuegang Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
5
|
Zhang G, Liu T, Zhao D, Sun X, Xing W, Zhang S, Yan L. External magnetic field have significant effects on diversity of magnetotactic bacteria in sediments from Yangtze River, Chagan Lake and Zhalong Wetland in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115604. [PMID: 37871562 DOI: 10.1016/j.ecoenv.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Magnetotactic bacteria (MTB) can rapidly relocate to optimal habitats by magnetotaxis, and play an important role in iron biogeochemical cycling. This study aimed to evaluate the contribution of the external magnetostatic field to the diversity of MTB in freshwater sediments from Yangtze River (Changjiang River, CJ), Chagan Lake (CGH) and Zhalong Wetland (ZL). The magnetic field intensity was tightly associated with the community richness of MTB in CJ, whereas it was closely related to the diversity of MTB in CGH and ZL (p < 0.05), elucidating a significant variation in the community composition of MTB. Magnetic exposure time appeared more significant correlation with community richness than diversity for MTB in CJ and CGH (p < 0.05), while an opposite relationship existed in ZL (p < 0.01). Herbaspirillum (93.81-96.48 %) dominated in the sediments of these surfacewatesr regardless of waterbody types, while it shifted to Magnetospirillum in ZL under 100 Gs magnetic field. The network connectivity and stability of MTB deteriorate with the increase of magnetic field intensity. Functional analysis showed that the Two-component system and ABC transporter system of MTB obviously responded to magnetic field intensity and exposure time. Our findings will pave the way to understanding the response mechanism of MTB community in freshwater sediments to the external magnetostatic field.
Collapse
Affiliation(s)
- Guojing Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Key Laboratory of Low‑Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Xindi Sun
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Weijia Xing
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Key Laboratory of Low‑Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| |
Collapse
|
6
|
Duan L, Song J, Zhang Y, Yuan H, Li X, Sun L. Role of marine algal blooms in the release of arsenic at the sediment-seawater interface: Evidence from microcosm experiments. WATER RESEARCH 2023; 244:120508. [PMID: 37633211 DOI: 10.1016/j.watres.2023.120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Algal blooms can aggravate arsenic (As) release from sediments and thus pose a pollution risk in the marine environment. However, the driving mechanism of algal blooms on sedimentary As cycling remains unclear. This study undertakes the first comprehensive examination of As release mechanisms under algal bloom conditions based on the evidence provided by temporal and depth profile changes of As species in the overlying water column, porewater and sediment, as well as As-related functional genes over the course of a 30-day incubation experiment using algal addition. The higher rate of increase of dissolved total As (dTAs) concentrations in a high biomass algal group (HAG) than an experimental control group (CG) suggested that algal degradation promoted the release of sedimentary As. The solid phase in all experimental groups remained rich in As(V), while in porewater As(III) and As(V) were the dominant As species during the initial rapid and subsequent slow degradation phases of organic matter, respectively, indicating that microbial reduction of As(V) and Fe(III) controlled the release of As during these two periods. A pronounced increase in arrA gene copies, and not a corresponding increase in the Geobacter copies, in HAG relative to CG supported the notion that algal blooms promoted microbial As(V) reduction. Additionally, the lower concentration of dissolved As(III) and cumulative dTAs flux in the sterilized-HAG treatment than in the sterilized-CG one further suggested that geochemically-mediated processes were not the main pathways of As release. Finally, it is estimated that summer algal blooms in the Changjiang Estuary can cause the release of 1440 kg of sedimentary As into the overlying water.
Collapse
Affiliation(s)
- Liqin Duan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Yuting Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huamao Yuan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xuegang Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Lingling Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Public Technology Service Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
7
|
Lai X, Li X, Song J, Yuan H, Duan L, Li N, Wang Y. Nitrogen loss from the coastal shelf of the East China Sea: Implications of the organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158805. [PMID: 36113798 DOI: 10.1016/j.scitotenv.2022.158805] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Organic matter is a critical factor which regulates nitrogen loss pathways of denitrification and anammox for microbes in marine ecosystems. However, only a little attention has been paid to contrasting studies on denitrification and anammox in sandy and muddy sediments, especially in the coastal continental shelf dominated by sandy sediments. This study determined the bulk properties and associated microbial nitrogen transformation processes of surface sediments in the East China Sea coastal shelf, with the aim of gaining insight into the interaction of nitrogen loss with organic matter at the molecular level. The results illustrate that nitrogen loss dominates in organic-rich muddy sediments, and its denitrification rate (14.39 nmol N g-1 h-1) and anammox rate (2.73 nmol N g-1 h-1) are greater than those of sandy sediments (denitrification rate = 5.55 nmol N g-1 h-1, anammox rate = 1.57 nmol N g-1 h-1). Furthermore, determination of the mean summed ladderanes shows higher anammox generated in the muddy sediments with a value of 167.78 ng g-1dw. Quantitative analysis demonstrated that organic-rich muddy sediments enhanced the copy number of the denitrifying functional gene nosZ and anammox functional gene hzsB. We inferred that the greater rate of nitrogen loss in muddy sediments was due to the coupling relationship between anammox and denitrification. Overall, the community distribution and abundance of denitrifying bacteria and anammox bacteria changed intricately under the influence of organic matter. Moreover, this study further improves the understanding of nitrogen loss pathways and mechanistic factors from sediments.
Collapse
Affiliation(s)
- Xiaoshuang Lai
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xuegang Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Jinming Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Huamao Yuan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Liqin Duan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ning Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Public Technology Service Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yingxia Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Public Technology Service Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
8
|
Yan W, He X, Wu T, Chen M, Lin J, Chen X, Li Q, Li M, Yan Y, Yao Q. A combined study on Vallisneria spiralis and lanthanum modified bentonite to immobilize arsenic in sediments. ENVIRONMENTAL RESEARCH 2023; 216:114689. [PMID: 36323350 DOI: 10.1016/j.envres.2022.114689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Submerged plants and lanthanum-modified bentonite (LMB) have important applications for the remediation of contaminated sediments; however, their combined effect on arsenic (As) removal has not been comprehensively evaluated. In this study, the physicochemical properties and changes in soluble As in sediments treated with LMB, Vallisneria spiralis (V. spiralis), and LMB + V. spiralis were observed at three time points (days 15, 35, and 66), and the changes in microbial and As species in sediments on day 66 were analyzed. LMB + V. spiralis treatment was the most effective for As removal. On day 66, the average concentrations of soluble As at a depth of 0-100 mm decreased by 12.71%, 48.81%, and 59.73% following treatment with LMB, V. spiralis, and LMB + V. spiralis, respectively. Further analysis showed that LMB is more effective at removing As(V) than V. spiralis, while V. spiralis is more effective at removing As(III), and the combination of LMB + V. spiralis is more effective for removing both As(III) and As(V) than individual LMB and V. spiralis treatments. LMB + V. spiralis enhanced the transformation of mobile As to Fe2O3/oxyhydroxide-bound As in sediments and the activity of As-oxidizing microorganisms. LMB promoted the growth of V. spiralis and enhanced the removal of As. This study indicates that this combination is an effective method for removing mobile As from sediments, and could effectively inhibit the release of As from sediments to overlying water.
Collapse
Affiliation(s)
- Wenming Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| | - Xiangyu He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Tingfeng Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Juan Lin
- School of Geographic Science, Nantong University, Nantong, 226000, China
| | - Xiang Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Qi Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Minjuan Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Yulin Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Qi Yao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
9
|
Liu X, Sheng Y, Liu Q, Jiang M. Dissolved oxygen drives the environmental behavior of heavy metals in coastal sediments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:297. [PMID: 35338431 DOI: 10.1007/s10661-022-09975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
In this study, the impacts of dissolved oxygen (DO) on dynamics concentrations of heavy metals (Cu, Cd, Cr, and Pb) from estuary sediments were investigated in a 49-day laboratory simulation. The exchange flux method, Bureau Communautaire de Référence (BCR) sequential extraction procedure, and risk assessment code (RAC) were used to analyze the behavior of heavy metals. The results indicated that oxic environments promoted the concentrations of Cu and Cd in overlying water compared to the anoxic environments. The exchange fluxes showed that the diffusion of Cu, Cd, Cr, and Pb from sediments was the predominant process in the first 9 days, and a metastable equilibrium state was gradually reached in the later period under anoxic conditions. However, oxic conditions extended the time required to reach metastable equilibrium for Cu over the sediment-water (overlying water) interface (SWI). Although the reducible fractions of Cu, Cd, and Pb accounted for a large proportion of their total levels, the release ability of Cu, Cd, and Pb was limited by the high content of sulfide under anoxic conditions. The RAC values indicated that anoxic environments increased the proportion of acid-soluble fraction. The information obtained from this study highlights the potential risk for re-release of heavy metal from sediments under different redox conditions.
Collapse
Affiliation(s)
- Xiaozhu Liu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Sheng
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Qunqun Liu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Jiang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|