1
|
Li L, Li P, Tian Y, Kou X, He S. Nitrate sources and transformation in surface water and groundwater in Huazhou District, Shaanxi, China: Integrated research using hydrochemistry, isotopes and MixSIAR model. ENVIRONMENTAL RESEARCH 2024; 263:120052. [PMID: 39322058 DOI: 10.1016/j.envres.2024.120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Global water resources affected by excessive nitrate (NO3-) have caused a series of human health and ecological problems. Therefore, identification of NO3- sources and transformations is of pivotal significance in the strategic governance of widespread NO3- contaminant. In this investigation, a combination of statistical analysis, chemical indicators, isotopes, and MixSIAR model approaches was adopted to reveal the hydrochemical factors affecting NO3- concentrations and quantify the contribution of each source to NO3- concentrations in surface water and groundwater. The findings revealed that high groundwater NO3- concentration is concentrated in the southwestern region, peaking at 271 mg/L. NO3- concentration in the Wei River and Yuxian River exhibited an increase from upstream to downstream, but in the Shidi River and Luowen River, its concentration was highest in the upstream. Groundwater NO3- has noticeable correlation with Na+, Ca2+, Mg2+, Cl-, HCO3-, TDS, EC, and ORP. In surface water, NO3- level is significantly correlated with NH4+ and ORP. Major sources of NO3- in surface and groundwater comprise manure & sewage and soil nitrogen. Source contribution for surface water was calculated by MixSIAR model to obtain soil nitrogen (57.7%), manure & sewage (23.8%), chemical fertilizer (12%), and atmospheric deposition (6.4%). In groundwater, soil nitrogen and manure & sewage accounted for 19% and 63.8% of nitrate sources, respectively. Both surface water and groundwater exhibited strong oxidation, with nitrification the primary process. It is expected that this study will provide insights into the dynamics of NO3- and contribute to the development of effective strategies for mitigating NO3- contaminant, leading to sustainable management of water resources.
Collapse
Affiliation(s)
- Lingxi Li
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Yan Tian
- PowerChina Sinohydro Bureau 3 Co., LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an, 710024, Shaanxi Province, China
| | - Xiaomei Kou
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| | - Song He
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| |
Collapse
|
2
|
Ding H, Gao H, Zhu M, Yu M, Sun Y, Zheng M, Su J, Xi B. Spectral and molecular insights into the characteristics of dissolved organic matter in nitrate-contaminated groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124202. [PMID: 38788994 DOI: 10.1016/j.envpol.2024.124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/11/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The characteristics of dissolved organic matter (DOM) serve as indicators of nitrate pollution in groundwater. However, the specific DOM components associated with nitrate in groundwater systems remain unclear. In this study, dual isotopes of nitrate, three-dimensional Excitation emission matrices (EEMs) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were utilized to uncover the sources of nitrate and their associations with DOM characteristics. The predominant nitrate in the targeted aquifer was derived from soil organic nitrogen (mean 46.0%) and manure &sewage (mean 34.3%). The DOM in nitrate-contaminated groundwater (nitrate-nitrogen >20 mg/L) exhibited evident exogenous characteristics, with a bioavailable content 2.58 times greater than that of uncontaminated groundwater. Regarding the molecular characteristics, DOM molecules characterized by CHO + 3N, featuring lower molecular weights and H/C ratios, indicated potential for mineralization, while CHONS formulas indicated the exogenous features, providing the potential for accurate traceability. These findings provided insights at the molecular level into the characterization of DOM in nitrate-contaminated groundwater and offer scientific guidance for decision-making regarding the remediation of groundwater nitrate pollution.
Collapse
Affiliation(s)
- Hongyu Ding
- College of Water Science, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huan Gao
- CCCC Water Transportation Consultants Co., Ltd, Beijing, 100010, China
| | - Mingtan Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Minda Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingxia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- College of Water Science, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Shehata M, Zaid SM, Al-Goul ST, Shami A, Al Syaad KM, Ahmed AE, Mostafa YS, Al-Quwaie DA, Ashkan MF, Alqahtani FS, Hassan YA, Taha TF, El-Tarabily KA, AbuQamar SF. Integrated management of groundwater quantity, physicochemical properties, and microbial quality in West Nile delta using a new MATLAB code and geographic information system mapping. Sci Rep 2024; 14:7762. [PMID: 38565529 PMCID: PMC10987591 DOI: 10.1038/s41598-024-57036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Groundwater is an excellent alternative to freshwater for drinking, irrigation, and developing arid regions. Agricultural, commercial, industrial, residential, and municipal activities may affect groundwater quantity and quality. Therefore, we aimed to use advanced methods/techniques to monitor the piezometric levels and collect groundwater samples to test their physicochemical and biological characteristics. Our results using software programs showed two main types of groundwater: the most prevalent was the Na-Cl type, which accounts for 94% of the groundwater samples, whereas the Mg-Cl type was found in 6% of samples only. In general, the hydraulic gradient values, ranging from medium to low, could be attributed to the slow movement of groundwater. Salinity distribution in groundwater maps varied between 238 and 1350 mg L-1. Although lower salinity values were observed in northwestern wells, higher values were recorded in southern ones. The collected seventeen water samples exhibited brackish characteristics and were subjected to microbial growth monitoring. Sample WD12 had the lowest total bacterial count (TBC) of 4.8 ± 0.9 colony forming unit (CFU mg L-1), while WD14 had the highest TBC (7.5 ± 0.5 CFU mg L-1). None of the tested water samples, however, contained pathogenic microorganisms. In conclusion, the current simulation models for groundwater drawdown of the Quaternary aquifer system predict a considerable drawdown of water levels over the next 10, 20, and 30 years with the continuous development of the region.
Collapse
Affiliation(s)
- Mohamed Shehata
- Geology Department, Faculty of Science, Zagazig University, Zagazig, 44511, Egypt
| | - Samir M Zaid
- Geology Department, Faculty of Science, Zagazig University, Zagazig, 44511, Egypt
| | - Soha T Al-Goul
- Department of Chemistry, College of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Khalid M Al Syaad
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha, 61421, Saudi Arabia
| | - Yasser S Mostafa
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Diana A Al-Quwaie
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Mada F Ashkan
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Fatimah S Alqahtani
- Department of Biology, Faculty of Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Yusuf A Hassan
- Geology Department, Faculty of Science, Zagazig University, Zagazig, 44511, Egypt
| | - Taha F Taha
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| |
Collapse
|
4
|
Matiatos I, Lazogiannis K, Papadopoulos A, Skoulikidis NT, Boeckx P, Dimitriou E. Stable isotopes reveal organic nitrogen pollution and cycling from point and non-point sources in a heavily cultivated (agricultural) Mediterranean river basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166455. [PMID: 37607634 DOI: 10.1016/j.scitotenv.2023.166455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
The Pinios River Basin (PRB) is the most intensively cultivated area in Greece, which hosts numerous industries and other anthropogenic activities. The analysis of water samples collected monthly for ∼1 ½ years in eight monitoring sites in the PRB revealed nitrate pollution of organic origin extending from upstream to downstream and occurring throughout the year, masking the signal from the application of synthetic fertilizers. Nitrate concentrations reached up to 3.6 mg/l as NO3--N, without exceeding the drinking water threshold of ∼11.0 mg/l (as NO3--N). However, the water quality status was "poor" or "bad" in ∼50 % of the samples based on a local index, which considers the potential impact of nitrate on aquatic biological communities. The δ15Ν-ΝΟ3- and δ18O-NO3- values ranged from +4.4 ‰ to +20.3 ‰ and from -0.5 ‰ to +14.4 ‰, respectively. The application of a Bayesian model showed that the proportional contribution of organic pollution from industries, animal breeding facilities and manure fertilizers exceeded 70 % in most river sites with an overall uncertainty of ∼0.3 (UI90 index). The δ18O-NO3- and its relationship with δ18O-H2O revealed N-cycling and mixing processes, which were difficult to identify apart from the uptake of nutrients by phytoplankton during the growing season and metabolic activities. The strong correlation of δ15Ν-ΝΟ3- values with a Land Use Index (LUI) and a Point Source Index (PSI) highlighted not only the role of non-point nitrate sources but also of point sources of nitrate pollution on water quality degradation, which are usually overlooked. The nitrification of organic wastes is the dominant nitrate source in most rivers in Europe. The systematic monitoring of rivers for nitrate isotopes will help improve the understanding of N-cycling and the impact of these pollutants on ecosystems and better inform policies for protection measures so to achieve good ecological status.
Collapse
Affiliation(s)
- Ioannis Matiatos
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19013 Anavissos Attikis, Greece.
| | - Konstantinos Lazogiannis
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19013 Anavissos Attikis, Greece
| | - Anastasios Papadopoulos
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19013 Anavissos Attikis, Greece
| | - Nikolaos Th Skoulikidis
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19013 Anavissos Attikis, Greece
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Department of Green Chemistry and Technology, Ghent University, Belgium
| | - Elias Dimitriou
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19013 Anavissos Attikis, Greece
| |
Collapse
|
5
|
Zaryab A, Farahmand A, Mack TJ. Identification and apportionment of groundwater nitrate sources in Chakari Plain (Afghanistan). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7813-7827. [PMID: 37462844 DOI: 10.1007/s10653-023-01684-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 10/29/2023]
Abstract
The Chakari alluvial aquifer is the primary source of water for human, animal, and irrigation applications. In this study, the geochemistry of major ions and stable isotope ratios (δ2H-H2O, δ18O-H2O, δ15N-NO3̄, and δ18O-NO3̄) of groundwater and river water samples from the Chakari Plain were analyzed to better understand characteristics of nitrate. Herein, we employed nitrate isotopic ratios and BSIMM modeling to quantify the proportional contributions of major sources of nitrate pollution in the Chakari Plain. The cross-plot diagram of δ15N-NO3̄ against δ18O-NO3̄ suggests that manure and sewage are the main source of nitrate in the plain. Nitrification is the primary biogeochemical process, whereas denitrification did not have a significant influence on biogeochemical nitrogen dynamics in the plain. The results of this study revealed that the natural attenuation of nitrate in groundwater of Chakari aquifer is negligible. The BSIMM results indicate that nitrate originated mainly from sewage and manure (S&M, 75‰), followed by soil nitrogen (SN, 13‰), and chemical fertilizers (CF, 9.5‰). Large uncertainties were shown in the UI90 values for S&M (0.6) and SN (0.47), whereas moderate uncertainty was exhibited in the UI90 value for CF (0.29). The findings provide useful insights for decision makers to verify groundwater pollution and develop a sustainable groundwater management strategy.
Collapse
Affiliation(s)
- Abdulhalim Zaryab
- Engineering Geology and Hydrogeology, Faculty of Geology and Mines, Kabul Polytechnic University, Kabul, Afghanistan.
- Highland Groundwater Research Group, Kabul, Afghanistan.
| | - Asadullah Farahmand
- Department of Hydrogeology, Ministry of Energy and Water, Kabul, Afghanistan
| | | |
Collapse
|
6
|
Boumaiza L, Ben Ammar S, Chesnaux R, Stotler RL, Mayer B, Huneau F, Johannesson KH, Levison J, Knöller K, Stumpp C. Nitrate sources and transformation processes in groundwater of a coastal area experiencing various environmental stressors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118803. [PMID: 37611515 DOI: 10.1016/j.jenvman.2023.118803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
In coastal salinized groundwater systems, contamination from various nitrate (NO3) inputs combined with complex hydrogeochemical processes make it difficult to distinguish NO3 sources and identify potential NO3 transformtation processes. Effective field-based NO3 studies in coastal areas are needed to improve the understanding of NO3 contamination dynamics in groundwater of such complex coastal systems. This study focuses on a typical Mediterranean coastal agricultural area, located in Tunisia, experiencing substantial NO3 contamination from multiple anthropogenic sources. Here, multiple isotopic tracers (δ18OH2O, δ2HH2O, δ15NNO3, δ18ONO3, and δ11B) combined with a Bayesian isotope MixSIAR model are used (i) to identify the major NO3 sources and their contributions, and (ii) to describe the potential NO3 transformation processes. The measured NO3 concentrations in groundwater are above the natural baseline threshold, suggesting anthropogenic influence. The measured isotopic composition of NO3 indicates that manure, soil organic matter, and sewage are the potential sources of NO3, while δ11B values constrain the NO3 contamination to manure; a finding that is supported by the results of MixSIAR model revealing that manure-derived NO3 dominates over other likely sources. Nitrate derived from manure in the study area is attributed to organic fertilizers used to promote crop growth, and livestock that deposit manure directly on the ground surface. Evidence for ongoing denitrification in groundwaters of the study area is supported by an enrichment in both 15N and 18O in the remaining NO3, although isotopic mass balances between the measured and the theoretical δ18ONO3 values also suggest the occurrence of nitrification. The simultaneous occurrence of these biogeochemical processes with heterogeneous distribution across the study area reflect the complexity of interactions within the investigated coastal aquifer. The multiple isotopic tracer approach used here can identify the effect of multiple NO3 anthropogenic activities in coastal environments, which is fundamental for sustainable groundwater resources management.
Collapse
Affiliation(s)
- Lamine Boumaiza
- University of Waterloo, Department of Earth and Environmental Sciences, Waterloo, Ontario, N2T 0A4, Canada.
| | - Safouan Ben Ammar
- Université de Carthage, Institut Supérieur des Technologies de L'Environnement de L'Urbanisme et de Bâtiment, Tunis, 2035, Tunisia
| | - Romain Chesnaux
- Université Du Québec à Chicoutimi, Département des Sciences Appliquées, Saguenay, Québec, G7H 2B1, Canada
| | - Randy L Stotler
- University of Waterloo, Department of Earth and Environmental Sciences, Waterloo, Ontario, N2T 0A4, Canada
| | - Bernhard Mayer
- University of Calgary, Department of Geoscience, Calgary, Alberta, T2N 1N4 Canada
| | - Frédéric Huneau
- Université de Corse, CNRS UMR 6134 SPE, Département d'Hydrogéologie, Campus Grimaldi BP52, Corte, 20250, France
| | - Karen H Johannesson
- University of Massachusetts Boston, School for the Environment, Boston, MA, 02125, USA
| | - Jana Levison
- University of Guelph, School of Engineering, Morwick G360 Groundwater Research Institute, Guelph, Ontario, N1G 2W1, Canada
| | - Kay Knöller
- Helmholtz Centre for Environmental Research, Department of Catchment Hydrology, Halle, Saale, 06120, Germany
| | - Christine Stumpp
- University of Natural Resources and Life Sciences, Institute of Soil Physics and Rural Water Management, Vienna, 1190, Austria
| |
Collapse
|
7
|
Biddau R, Dore E, Da Pelo S, Lorrai M, Botti P, Testa M, Cidu R. Geochemistry, stable isotopes and statistic tools to estimate threshold and source of nitrate in groundwater (Sardinia, Italy). WATER RESEARCH 2023; 232:119663. [PMID: 36796152 DOI: 10.1016/j.watres.2023.119663] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/15/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In the European Union, nitrate vulnerable zone (NVZ) should be designed for the mitigation of nitrate (NO3-) contamination caused by agricultural practices. Before establishing new NVZ, the sources of NO3- must be recognized. A geochemical and multiple stable isotopes approach (hydrogen, oxygen, nitrogen, sulfur and boron) and statistical tools were applied to define the geochemical characteristics of groundwater (60 samples), calculate the local NO3- threshold and assess potential sources of NO3- contamination in two study areas (hereafter Northern and Southern), located in a Mediterranean environment (Sardinia, Italy). Results of the integrated approach applied to two case study, permits to highlight the strengths of integrating geochemical and statistical methods to provide nitrate source identification as a reference by decision makers to remediate and mitigate nitrate contamination in groundwater. Hydrogeochemical features in the two study areas were similar: near neutral to slightly alkaline pH, electrical conductivity in the range of 0.3 to 3.9 mS/cm, and chemical composition ranging from Ca-HCO3- at low salinity to Na-Cl- at high salinity. Concentrations of NO3- in groundwater were in the range of 1 to 165 mg/L, whereas the nitrogen reduced species were negligible, except few samples having NH4+ up to 2 mg/L. Threshold values in the studied groundwater samples were between 4.3 and 6.6 mg/L NO3-, which was in agreement with previous estimates in Sardinian groundwater. Values of δ34S and δ18OSO4 of SO42- in groundwater samples indicated different sources of SO42-. Sulfur isotopic features attributed to marine SO42- were consistent with groundwater circulation in marine-derived sediments. Other source of SO42- were recognize due to the oxidation of sulfide minerals, to fertilizers, manure, sewage fields, and SO42- derived from a mix of different sources. Values of δ15N and δ18ONO3 of NO3- in groundwater samples indicated different biogeochemical processes and NO3- sources. Nitrification and volatilization processes might have occurred at very few sites, and denitrification was likely to occur at specific sites. Mixing among various NO3- sources in different proportions might account for the observed NO3- concentrations and the nitrogen isotopic compositions. The SIAR modeling results showed a prevalent NO3- source from sewage/manure. The δ11B signatures in groundwater indicated the manure to be the predominant NO3- source, whereas NO3- from sewage was recognized at few sites. Geographic areas showing either a predominant process or a defined NO3- source where not recognize in the studied groundwater. Results indicate widespread contamination of NO3- in the cultivated plain of both areas. Point sources of contamination, due to agricultural practices and/or inadequate management of livestock and urban wastes, were likely to occur at specific sites.
Collapse
Affiliation(s)
- Riccardo Biddau
- Department of Chemical and Geological Sciences, University of Cagliari, Blocco A - Monserrato, Italy
| | - Elisabetta Dore
- Department of Chemical and Geological Sciences, University of Cagliari, Blocco A - Monserrato, Italy.
| | - Stefania Da Pelo
- Department of Chemical and Geological Sciences, University of Cagliari, Blocco A - Monserrato, Italy
| | - Mario Lorrai
- Regione Autonoma della Sardegna-ADIS-Servizio tutela e gestione delle risorse idriche, via Mameli 88, 09100, Cagliari, Italy
| | - Paolo Botti
- Regione Autonoma della Sardegna-ADIS-Servizio tutela e gestione delle risorse idriche, via Mameli 88, 09100, Cagliari, Italy
| | - Maurizio Testa
- Agenzia Regionale per la Protezione dell'Ambiente della Sardegna - Servizio Controlli, Monitoraggi e Valutazione Ambientale della Direzione Tecnico Scientifica, via Carloforte, 09100, Cagliari, Italy
| | - Rosa Cidu
- Department of Chemical and Geological Sciences, University of Cagliari, Blocco A - Monserrato, Italy
| |
Collapse
|
8
|
Kelepertzis E, Matiatos I, Botsou F, Antonopoulou C, Lappas I, Dotsika E, Chrastný V, Boeckx P, Karavoltsos S, Komárek M. Assessment of natural and anthropogenic contamination sources in a Mediterranean aquifer by combining hydrochemical and stable isotope techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159763. [PMID: 36309271 DOI: 10.1016/j.scitotenv.2022.159763] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The Atalanti basin is an intensively cultivated area in central Greece, facing groundwater quality deterioration threats due to natural and anthropogenic-related contamination sources. A combination of statistical and hydrogeochemical techniques, and stable isotope compositions (δ2H-H2O and δ18Ο-Η2Ο, δ15Ν-ΝΟ3- and δ18Ο-ΝΟ3-, δ34S-SO42- and δ18O-SO42-) were applied to elucidate the origin of salinity and nitrate contamination, and shed light on the potential associations between geogenic Cr(VI) and NO3- sources and transformations. Nitrate and Cr(VI) concentrations reached up to 337 mg L-1 and 76.1 μg L-1, respectively, exceeding WHO threshold values in places. The cluster of samples with the high salinity was mostly influenced by irrigation return flow and marine aerosols, and less by seawater intrusion, as evidenced by the ionic ratios (e.g., Na+/Cl-) and the stable isotopes of oxygen and hydrogen in water, and sulphur and oxygen in sulphates. The δ15Ν-ΝΟ3- and δ18O-NO3- values ranged from +2.0 ‰ to +14.5 ‰ and + 0.3 ‰ to +11.0 ‰, respectively. We found that the dominant sources of NO3- in groundwater were fertilizers in the central part of the area and sewage waste in the northern part around the residential area of Livanates. The occurrence of denitrification was evident in the northern part of the basin, where the DO levels were lowest (≤ 2.2 mg L-1), whereas nitrification of NH4+-fertilizers prevailed in the central part. Elevated Cr(VI) values (≥ 20 μg/l) were associated with the lowest deviation of the measured from the theoretical nitrification δ18Ο-NO3- values, whereas the lowest Cr(VI) values were observed in the denitrified water samples. Our isotope findings revealed the strong influence of redox conditions on the biogeochemical transformations of N species and the mobilization of Cr(VI) that will help improve the understanding of the fate of these contaminants from the unsaturated zone to the groundwater in areas of agricultural and urban land use.
Collapse
Affiliation(s)
- Efstratios Kelepertzis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784, Athens, Greece.
| | - Ioannis Matiatos
- Hellenic Centre for Marine Research, 46.7 km of Athens-Sounio Ave., 19013 Anavissos Attikis, Greece
| | - Fotini Botsou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 157 84 Athens, Greece
| | - Christina Antonopoulou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784, Athens, Greece
| | - Ioannis Lappas
- Ministry of Environment and Energy, General Directorate of Water, Directorate of Protection and Management of Aquatic Environment, Department of Surface and Ground Water, 119 Mesogeion Ave., 115 26 Athens, Greece
| | - Elissavet Dotsika
- Stable Isotope Unit, National Centre for Scientific Research (N.C.S.R.) "Demokritos", Institute of Nanoscience and Nanotechnology, Patriarchou Gregoriou (End) and Neapoleos Street, 15341 Agia Paraskevi, Greece
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague-Suchdol, Czech Republic
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Department of Green Chemistry and Technology, Ghent University, Belgium
| | - Sotirios Karavoltsos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 157 84 Athens, Greece
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague-Suchdol, Czech Republic
| |
Collapse
|
9
|
Boumaiza L, Walter J, Chesnaux R, Zahi F, Huneau F, Garel É, Stotler RL, Bordeleau G, Johannesson KH, Vystavna Y, Drias T, Re V, Knöller K, Stumpp C. Combined effects of seawater intrusion and nitrate contamination on groundwater in coastal agricultural areas: A case from the Plain of the El-Nil River (North-Eastern Algeria). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158153. [PMID: 35988595 DOI: 10.1016/j.scitotenv.2022.158153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
This study focuses on coastal aquifers subject to uncontrolled land use development by investigating the combined effects of seawater intrusion and nitrate contamination. The research is undertaken in a Mediterranean coastal agricultural area (Plain of the El-Nil River, Algeria), where water resources are heavily impacted by anthropogenic activities. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, δ15NNO3 and δ18ONO3), is combined with a hydrochemical facies evolution diagram, and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination with its inland intrusion, and distinguish the nitrate sources and their apportionment. Results show that seawater intrusion is circumscribed to the sector neighboring the Mediterranean Sea, with two influencing functions including classic inland intrusion through the aquifer, and upstream seawater impact through the river mouth connected to the Mediterranean Sea. Groundwater and surface water samples reveal nitrate concentrations above the natural baseline threshold, suggesting anthropogenic influence. Results from nitrate isotopic composition, NO3 and Cl concentrations, and the MixSIAR model show that nitrate concentrations chiefly originate from sewage and manure sources. Nitrate derived from the sewage is related to wastewater discharge, whereas nitrate derived from the manure is attributed to an excessive use of animal manure to fertilise agricultural areas. The dual negative impact of seawater intrusion and nitrate contamination degrades water quality over a large proportion of the study area. The outcomes of this study are expected to contribute to effective and sustainable water resources management in the Mediterranean coastal area. Furthermore, this study may improve scientists' ability to predict the combined effect of various anthropogenic stressors on coastal environments and help decision-makers elsewhere to prepare suitable environmental strategies for other regions currently undergoing an early stage of water resources deterioration.
Collapse
Affiliation(s)
- Lamine Boumaiza
- Université du Québec à Chicoutimi, Département des Sciences Appliquées, Saguenay, Québec G7H 2B1, Canada; Centre d'études sur les ressources minérales, Groupe de recherche Risque Ressource Eau, Saguenay, Québec G7H 2B1, Canada.
| | - Julien Walter
- Université du Québec à Chicoutimi, Département des Sciences Appliquées, Saguenay, Québec G7H 2B1, Canada; Centre d'études sur les ressources minérales, Groupe de recherche Risque Ressource Eau, Saguenay, Québec G7H 2B1, Canada
| | - Romain Chesnaux
- Université du Québec à Chicoutimi, Département des Sciences Appliquées, Saguenay, Québec G7H 2B1, Canada; Centre d'études sur les ressources minérales, Groupe de recherche Risque Ressource Eau, Saguenay, Québec G7H 2B1, Canada
| | - Faouzi Zahi
- Université Mohammed Seddik Ben Yahia, Département des Sciences de la Terre et de l'Univers, Jijel 18000, Algeria
| | - Frédéric Huneau
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, Corte 20250, France; CNRS, UMR 6134 SPE, Corte 20250, France
| | - Émilie Garel
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, Corte 20250, France; CNRS, UMR 6134 SPE, Corte 20250, France
| | - Randy L Stotler
- University of Waterloo, Department of Earth and Environmental Sciences, Waterloo, Ontario N2T 0A4, Canada
| | - Geneviève Bordeleau
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Québec G1K 9A9, Canada
| | - Karen H Johannesson
- University of Massachusetts Boston, School for the Environment, Boston, MA 02125, USA
| | - Yuliya Vystavna
- International Atomic Energy Agency, Isotope Hydrology Section, Vienna 1400, Austria
| | - Tarek Drias
- Université Mustapha Benboulaïd, Département de Géologie, Campus de Fesdiss, 05030 Batna, Algeria
| | - Viviana Re
- University of Pisa, Department of Earth Sciences, Pisa 56126, Italy
| | - Kay Knöller
- Helmholtz Centre for Environmental Research, Department of Catchment Hydrology, Halle, Saale 06120, Germany
| | - Christine Stumpp
- University of Natural Resources and Life Sciences, Institute of Soil Physics and Rural Water Management, Vienna 1190, Austria
| |
Collapse
|
10
|
Boubakri A, Al-Tahar Bouguecha S, Hafiane A. FO–MD integrated process for nitrate removal from contaminated groundwater using seawater as draw solution to supply clean water for rural communities. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Richa A, Touil S, Fizir M. Recent advances in the source identification and remediation techniques of nitrate contaminated groundwater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115265. [PMID: 35576711 DOI: 10.1016/j.jenvman.2022.115265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Researchers have long been committed to identify nitrate sources in groundwater and to develop an advanced technique for its remediation because better apply remediation solution and management of water quality is highly dependent on the identification of the NO3- sources contamination in water. In this review, we systematically introduce nitrate source tracking tools used over the past ten years including dual isotope and multi isotope techniques, water chemistry profile, Bayesian mixing model, microbial tracers and land use/cover data. These techniques can be combined and exploited to track the source of NO3- as mineral or organic fertilizer, sewage, or atmospheric deposition. These available data have significant implications for making an appropriate measures and decisions by water managers. A continuous remediation strategy of groundwater was among the main management strategies that need to be applied in the contaminated area. Nitrate removal from groundwater can be accomplished using either separation or reduction based process. The application of these processes to nitrate removal is discussed in this review and some novel methods were presented for the first time. Moreover, the advantages and limitations of each approach are critically summarized and based on our own understanding of the subject some solutions to overcomes their drawbacks are recommended. Advanced techniques are capable to attain significantly higher nitrate and other co-contaminants removal from groundwater. However, the challenges of by-products generation and high energy consumption need to be addressed in implementing these technologies for groundwater remediation for potable use.
Collapse
Affiliation(s)
- Amina Richa
- University of Djilali Bounaama, Khemis Miliana, Algeria.
| | - Sami Touil
- University of Djilali Bounaama, Khemis Miliana, Algeria.
| | - Meriem Fizir
- Laboratoire de Valorisation des Substances Naturelles, Université Djilali Bounaâma, Khemis Miliana, Algeria.
| |
Collapse
|
12
|
Zaryab A, Nassery HR, Knoeller K, Alijani F, Minet E. Determining nitrate pollution sources in the Kabul Plain aquifer (Afghanistan) using stable isotopes and Bayesian stable isotope mixing model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153749. [PMID: 35150690 DOI: 10.1016/j.scitotenv.2022.153749] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The Kabul urban aquifer (Afghanistan), which is the main source of drinking water for Kabul city's inhabitants, is highly vulnerable to anthropogenic pollution. In this study, the geochemistry of major ions (including reactive nitrogen species such as NO3-, NO2-, and NH4+) and stable isotope ratios (δ15N-NO3-, δ18O-NO3-, δ18O-H2O, and δ2H-H2O) of surface and groundwater samples from the Kabul Plain were analyzed over two sampling periods (dry and wet seasons). A Bayesian stable isotope mixing model (BSIMM) was also employed to trace potential nitrate sources, transformation processes, and proportional contributions of nitrate sources in the Kabul aquifer. The plotting of δ15N-NO3- against δ18O-NO3̄ (δ15N-NO3- and δ18O-NO3- values ranged from +4.8 to +25.4‰ and from -11.7 to +18.6‰, respectively) suggests that NO3- primarily originated from the nitrification of sewage rather than artificial fertilizer. The plotting of δ15N-NO3- versus NO3-/Cl- ratios also supported the assumption that sewage is the dominant nitrate source. The results indicate that denitrification did not influence the NO3- isotopic composition in the Kabul aquifer. The BSIMM model suggests that nitrate in the dry season originated mainly from sewage (~81%), followed by soil organic N (10.5%), and chemical fertilizer (8.5%). In the wet season, sewage (~87.5%), soil organic N (6.7%), and chemical fertilizer (5.8%) were the main sources of NO3- in the Kabul aquifer. Effective land management measures should be taken to improve the sewage collection system in the Kabul Plain.
Collapse
Affiliation(s)
- Abdulhalim Zaryab
- Department of Minerals and Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Evin Ave, Tehran, Iran; Engineering Geology and Hydrogeology, Faculty of Geology and Mines, Kabul Polytechnic University, District 5, Kabul, Afghanistan
| | - Hamid Reza Nassery
- Department of Minerals and Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Evin Ave, Tehran, Iran.
| | - Kay Knoeller
- Department Catchment Hydrology, Helmholtz-Centre for Environmental Research - UFZ, D-06120 Halle, Germany
| | - Farshad Alijani
- Department of Minerals and Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Evin Ave, Tehran, Iran
| | - Eddy Minet
- Environmental Protection Agency (EPA), Dublin, Ireland
| |
Collapse
|
13
|
Niu C, Zhai T, Zhang Q, Wang H, Xiao L. Research Advances in the Analysis of Nitrate Pollution Sources in a Freshwater Environment Using δ 15N-NO 3- and δ 18O-NO 3. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211805. [PMID: 34831560 PMCID: PMC8623930 DOI: 10.3390/ijerph182211805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Nitrate is usually the main pollution factor in the river water and groundwater environment because it has the characteristics of stable properties, high solubility and easy migration. In order to ensure the safety of water supply and effectively control nitrate pollution, it is very important to accurately identify the pollution sources of nitrate in freshwater environment. At present, as the most accurate source analysis method, isotope technology is widely used to identify the pollution sources of nitrate in water environment. However, the complexity of nitrate pollution sources and nitrogen migration and transformation in the water environment, coupled with the isotopic fractionation, has changed the nitrogen and oxygen isotopic values of nitrate in the initial water body, resulting in certain limitations in the application of this technology. This review systematically summarized the typical δ15N and δ18O-NO3- ranges of NO3- sources, described the progress in the application of isotope technique to identify nitrate pollution sources in water environment, analyzed the application of isotope technique in identifying the migration and transformation of nitrogen in water environment, and introduced the method of quantitative source apportionment. Lastly, we discussed the deficiency of isotope technique in nitrate pollution source identification and described the future development direction of the pollution source apportionment of nitrate in water environment.
Collapse
Affiliation(s)
- Chao Niu
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (C.N.); (L.X.)
| | - Tianlun Zhai
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China;
| | - Qianqian Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China;
- Correspondence: (Q.Z.); (H.W.)
| | - Huiwei Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China;
- Correspondence: (Q.Z.); (H.W.)
| | - Lele Xiao
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (C.N.); (L.X.)
| |
Collapse
|