1
|
Mourkas E, Valdebenito JO, Marsh H, Hitchings MD, Cooper KK, Parker CT, Székely T, Johansson H, Ellström P, Pascoe B, Waldenström J, Sheppard SK. Proximity to humans is associated with antimicrobial-resistant enteric pathogens in wild bird microbiomes. Curr Biol 2024; 34:3955-3965.e4. [PMID: 39142288 DOI: 10.1016/j.cub.2024.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Humans are radically altering global ecology, and one of the most apparent human-induced effects is urbanization, where high-density human habitats disrupt long-established ecotones. Changes to these transitional areas between organisms, especially enhanced contact among humans and wild animals, provide new opportunities for the spread of zoonotic pathogens. This poses a serious threat to global public health, but little is known about how habitat disruption impacts cross-species pathogen spread. Here, we investigated variation in the zoonotic enteric pathogen Campylobacter jejuni. The ubiquity of C. jejuni in wild bird gut microbiomes makes it an ideal organism for understanding how host behavior and ecology influence pathogen transition and spread. We analyzed 700 C. jejuni isolate genomes from 30 bird species in eight countries using a scalable generalized linear model approach. Comparing multiple behavioral and ecological traits showed that proximity to human habitation promotes lineage diversity and is associated with antimicrobial-resistant (AMR) strains in natural populations. Specifically, wild birds from urban areas harbored up to three times more C. jejuni genotypes and AMR genes. This study provides novel methodology and much-needed quantitative evidence linking urbanization to gene pool spread and zoonoses.
Collapse
Affiliation(s)
- Evangelos Mourkas
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - José O Valdebenito
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, 5110566 Valdivia, Chile; Centro de Humedales Río Cruces (CEHUM), Universidad Austral de Chile, Camino Cabo Blanco Alto s/n, 5090000 Valdivia, Chile; HUN-REN-DE Reproductive Strategies Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, 8320000 Santiago, Chile
| | - Hannah Marsh
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew D Hitchings
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, SA2 8PP Swansea, Wales
| | - Kerry K Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| | - Craig T Parker
- Produce Safety and Microbiology Unit, Western Region Research Center, USDA, Agricultural Research Service, Albany, CA 94710, USA
| | - Tamás Székely
- HUN-REN-DE Reproductive Strategies Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31 Kalmar, Sweden
| | - Patrik Ellström
- Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Ben Pascoe
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31 Kalmar, Sweden
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
2
|
Bean TG, Chadwick EA, Herrero-Villar M, Mateo R, Naidoo V, Rattner BA. Do Pharmaceuticals in the Environment Pose a Risk to Wildlife? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:595-610. [PMID: 36398854 DOI: 10.1002/etc.5528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The vast majority of knowledge related to the question "To what extent do pharmaceuticals in the environment pose a risk to wildlife?" stems from the Asian vulture crisis (>99% decline of some species of Old World vultures on the Indian subcontinent related to the veterinary use of the nonsteroidal anti-inflammatory drug [NSAID] diclofenac). The hazard of diclofenac and other NSAIDs (carprofen, flunixin, ketoprofen, nimesulide, phenylbutazone) to vultures and other avian species has since been demonstrated; indeed, only meloxicam and tolfenamic acid have been found to be vulture-safe. Since diclofenac was approved for veterinary use in Spain and Italy in 2013 (home to ~95% of vultures in Europe), the risk of NSAIDs to vultures in these countries has become one of the principal concerns related to pharmaceuticals and wildlife. Many of the other bodies of work on pharmaceutical exposure, hazard and risk to wildlife also relate to adverse effects in birds (e.g., poisoning of scavenging birds in North America and Europe from animal carcasses containing pentobarbital, secondary and even tertiary poisoning of birds exposed to pesticides used in veterinary medicine as cattle dips, migratory birds as a vector for the transfer of antimicrobial and antifungal resistance). Although there is some research related to endocrine disruption in reptiles and potential exposure of aerial insectivores, there remain numerous knowledge gaps for risk posed by pharmaceuticals to amphibians, reptiles, and mammals. Developing noninvasive sampling techniques and new approach methodologies (e.g., genomic, in vitro, in silico, in ovo) is important if we are to bridge the current knowledge gaps without extensive vertebrate testing. Environ Toxicol Chem 2024;43:595-610. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
| | | | - Marta Herrero-Villar
- Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Castilla-La-Mancha, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Castilla-La-Mancha, Spain
| | - Vinny Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Barnett A Rattner
- Eastern Ecological Science Center at the Patuxent Research Refuge, US Geological Survey, Laurel, Maryland, USA
| |
Collapse
|
3
|
Larrañaga-Tapia M, Betancourt-Tovar B, Videa M, Antunes-Ricardo M, Cholula-Díaz JL. Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. NANOSCALE ADVANCES 2023; 6:51-71. [PMID: 38125589 PMCID: PMC10729871 DOI: 10.1039/d3na00761h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
The world faces threats that the United Nations has classified into 17 categories with different objectives as solutions for each challenge that are enclosed in the Sustainable Development Goals (SDGs). These actions involved the widespread use of science and technology as pathways to ensure their implementation. In this regard, sustainability science seeks the research community's contribution to addressing sustainable development challenges. Specifically, nanotechnology has been recognized as a key tool to provide disruptive and effective strategies to reach the SDGs. This review proposes the application of bimetallic nanoparticle substances capable of providing possible solutions to achieve target SDG 3: good health and well-being, SDG 6: clean water and sanitation, and SDG 12: responsible consumption and production. Furthermore, the term green nanotechnology is introduced in each section to exemplify how green synthesized bimetallic nanoparticles have been used to resolve each target SDG. This review also outlines the current scenario regarding the utilization of metallic nanomaterials in the market, together with the upscaling challenges and the lack of understanding of the long-term effects and hazards to the environment regarding bimetallic nanoparticles.
Collapse
Affiliation(s)
- Mariana Larrañaga-Tapia
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Benjamín Betancourt-Tovar
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Marcelo Videa
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Marilena Antunes-Ricardo
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
- Institute for Obesity Research, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Jorge L Cholula-Díaz
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| |
Collapse
|
4
|
Chen Y, Lu Y, Xu J, Feng Y, Li X. Antibiotics and their associations with antibiotic resistance genes and microbial communities in estuarine and coastal sediment of Quanzhou Bay, Southeast China. MARINE POLLUTION BULLETIN 2023; 195:115539. [PMID: 37714074 DOI: 10.1016/j.marpolbul.2023.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
The antibiotic concentrations spanned from 11.2 to 173.8 ng/g, with quinolones and tetracyclines being observed to be prevalent. The amount of microbial biomass as determined by Phospholipid fatty acid (PLFA) ranged from 2.92 to 10.99 mg kg-1, with G- bacteria dominating. A total of 254 distinct ARGs and 10 MEGs were identified, with multidrug ARGs having the highest relative abundance (1.18 × 10-2 to 3.00 × 10-1 copies/16S rRNA gene copies), while vancomycin and sulfonamide resistance genes were the least abundant. Results from canonical-correlation analyses combined with redundancy analysis indicated that macrolides were significantly related to the shifts of microbial community structure in sediments, particularly in G+ bacteria that were more sensitive to antibiotic residues. It was observed that sulfonamide ARGs had a greater correlation with residual antibiotics than other ARGs. This study provided a field evidence that multiple residual antibiotics from coastal sites could cause fundamental shifts in microbial community and their associated ARGs.
Collapse
Affiliation(s)
- Yongshan Chen
- Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, 362000, Quanzhou 362000, PR China; School of Resource and Environmental Science, Quanzhou Normal University, Quanzhou 362000, PR China.
| | - Yue Lu
- School of Resource and Environmental Science, Quanzhou Normal University, Quanzhou 362000, PR China
| | - Jinghua Xu
- Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, 362000, Quanzhou 362000, PR China; School of Resource and Environmental Science, Quanzhou Normal University, Quanzhou 362000, PR China
| | - Ying Feng
- Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, 362000, Quanzhou 362000, PR China; School of Resource and Environmental Science, Quanzhou Normal University, Quanzhou 362000, PR China
| | - Xiaofeng Li
- School of Resource and Environmental Science, Quanzhou Normal University, Quanzhou 362000, PR China
| |
Collapse
|
5
|
Yuan Q, Wang X, Fang H, Cheng Y, Sun R, Luo Y. Coastal mudflats as reservoirs of extracellular antibiotic resistance genes: Studies in Eastern China. J Environ Sci (China) 2023; 129:58-68. [PMID: 36804242 DOI: 10.1016/j.jes.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/18/2023]
Abstract
Despite coastal mudflats serving as essential ecological zones interconnecting terrestrial/freshwater and marine systems, little is known about the profiles of antibiotic resistance genes (ARGs) in this area. In this study, characteristics of typical ARGs, involving both intracellular (iARGs) and extracellular ARGs (eARGs) at different physical states, were explored in over 1000 km of coastal mudflats in Eastern China. Results indicated the presence of iARGs and eARGs at states of both freely present or attached by particles. The abundance of eARGs was significantly higher than that of iARGs (87.3% vs 12.7%), and their dominance was more significant than those in other habitats (52.7%-76.3%). ARG abundance, especially for eARGs, showed an increasing trend (p < 0.05) from southern (Nantong) to northern (Lianyungang) coastal mudflats. Higher salinity facilitated the transformation from iARGs to eARGs, and smaller soil particle size was conducive to the persistence of eARGs in northern coastal mudflats. This study addresses the neglected function of coastal mudflats as eARGs reservoirs.
Collapse
Affiliation(s)
- Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xiaolin Wang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hui Fang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Li W, Zhao J, Tian H, Shen Y, Wang Y, Shao M, Xiong T, Yao Y, Zhang L, Chen X, Xiao H, Xiong Y, Yang S, Tan C, Xu H. Gut microbiota enhance energy accumulation of black-necked crane to cope with impending migration. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12598-x. [PMID: 37249588 DOI: 10.1007/s00253-023-12598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Less is known about the role of gut microbiota in overwintering environmental adaptation in migratory birds. Here, we performed metagenomic sequencing on fresh fecal samples (n = 24) collected during 4 periods of overwintering (Dec: early; Jan: middle I; Feb: middle II; Mar: late) to characterize gut microbial taxonomic and functional characteristics of black-necked crane (Grus nigricollis). The results demonstrated no significant change in microbial diversity among overwintering periods. Analysis of compositions of microbiomes with bias correction (ANCOM-BC) determined 15 Proteobacteria species enriched in late overwintering period. Based on previous reports, these species are associated with degradation of chitin, cellulose, and lipids. Meanwhile, fatty acid degradation and betalain biosynthesis pathways are enriched in late overwintering period. Furthermore, metagenomic binning obtained 91 high-quality bins (completeness >70% and contamination <10%), 5 of which enriched in late overwintering period. Carnobacterium maltaromaticum, unknown Enterobacteriaceae, and Yersinia frederiksenii have genes for chitin and cellulose degradation, acetate, and glutamate production. Unknown Enterobacteriaceae and Y. frederiksenii hold genes for synthesis of 10 essential amino acids required by birds, and the latter has genes for γ-aminobutyrate production. C. maltaromaticum has genes for pyridoxal synthesis. These results implied the gut microbiota is adapted to the host diet and may help black-necked cranes in pre-migratory energy accumulation by degrading the complex polysaccharide in their diet, supplying essential amino acids and vitamin pyridoxal, and producing acetate, glutamate, and γ-aminobutyrate that could stimulate host feeding. Additionally, enriched Proteobacteria also encoded more carbohydrate-active enzymes (CAZymes) and antibiotic resistance genes (ARGs) in late overwintering period. KEY POINTS: • Differences in gut microbiota function during overwintering period of black-necked cranes depend mainly on changes in core microbiota abundance • Gut microbiota of black-necked crane adapted to the diet during overwintering period • Gut microbiota could help black-necked cranes to accumulate more energy in the late overwintering period.
Collapse
Affiliation(s)
- Wenhao Li
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Junsong Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Hong Tian
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yanqiong Shen
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yuanjian Wang
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Mingcui Shao
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Tingsong Xiong
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Yunnan Province, Zhaotong, 657000, Yunnan, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Lin Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xinyu Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Hongtao Xiao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ying Xiong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Cui Tan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
7
|
Botts RT, Page DM, Bravo JA, Brown ML, Castilleja CC, Guzman VL, Hall S, Henderson JD, Kenney SM, Lensink ME, Paternoster MV, Pyle SL, Ustick L, Walters-Laird CJ, Top EM, Cummings DE. Polluted wetlands contain multidrug-resistance plasmids encoding CTX-M-type extended-spectrum β-lactamases. Plasmid 2023; 126:102682. [PMID: 37023995 PMCID: PMC10213127 DOI: 10.1016/j.plasmid.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
While most detailed analyses of antibiotic resistance plasmids focus on those found in clinical isolates, less is known about the vast environmental reservoir of mobile genetic elements and the resistance and virulence factors they encode. We selectively isolated three strains of cefotaxime-resistant Escherichia coli from a wastewater-impacted coastal wetland. The cefotaxime-resistant phenotype was transmissible to a lab strain of E. coli after one hour, with frequencies as high as 10-3 transconjugants per recipient. Two of the plasmids also transferred cefotaxime resistance to Pseudomonas putida, but these were unable to back-transfer this resistance from P. putida to E. coli. In addition to the cephalosporins, E. coli transconjugants inherited resistance to at least seven distinct classes of antibiotics. Complete nucleotide sequences revealed large IncF-type plasmids with globally distributed replicon sequence types F31:A4:B1 and F18:B1:C4 carrying diverse antibiotic resistance and virulence genes. The plasmids encoded extended-spectrum β-lactamases blaCTX-M-15 or blaCTX-M-55, each associated with the insertion sequence ISEc9, although in different local arrangements. Despite similar resistance profiles, the plasmids shared only one resistance gene in common, the aminoglycoside acetyltransferase aac(3)-IIe. Plasmid accessory cargo also included virulence factors involved in iron acquisition and defense against host immunity. Despite their sequence similarities, several large-scale recombination events were detected, including rearrangements and inversions. In conclusion, selection with a single antibiotic, cefotaxime, yielded conjugative plasmids conferring multiple resistance and virulence factors. Clearly, efforts to limit the spread of antibiotic resistance and virulence among bacteria must include a greater understanding of mobile elements in the natural and human-impacted environments.
Collapse
Affiliation(s)
- Ryan T Botts
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Dawne M Page
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Joseph A Bravo
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Madelaine L Brown
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Claudia C Castilleja
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Victoria L Guzman
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Samantha Hall
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Jacob D Henderson
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Shelby M Kenney
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Mariele E Lensink
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Megan V Paternoster
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Sarah L Pyle
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Lucas Ustick
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America; Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Chara J Walters-Laird
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Eva M Top
- Department of Biological Sciences, Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, United States of America
| | - David E Cummings
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America.
| |
Collapse
|
8
|
Zhang W, Lu X, Chen S, Liu Y, Peng D, Wang Z, Li R. Molecular epidemiology and population genomics of tet(X4), bla NDM or mcr-1 positive Escherichia coli from migratory birds in southeast coast of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114032. [PMID: 36084501 DOI: 10.1016/j.ecoenv.2022.114032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The emergence of multidrug-resistant (MDR) bacteria harboring tet(X4), blaNDM or mcr-1 posed a serious threat to public health. Wild birds, especially migratory birds, were considered as one of important transmission vectors for antibiotic resistance genes (ARGs) globally, however, few studies were performed on the genomic epidemiology of critical resistance genes among them. Isolates harboring tet(X4), mcr-1 or blaNDM from migratory birds were identified and characterized by PCR, antimicrobial susceptibility testing, conjugation assays, whole genome sequencing and bioinformatics analysis. A total of 14 tet(X4)-bearing E. coli, 4 blaNDM-bearing E. coli and 23 mcr-1-bearing E. coli isolates were recovered from 1060 fecal samples of migratory birds. All isolates were MDR bacteria and most plasmids carrying tet(X4), blaNDM or mcr-1 were conjugative. We first identified an E. coli of migratory bird origin carrying blaNDM-4, which was located on a conjugative IncHI2 plasmid and embedded on a novel MDR region flanked by IS26 that could generate the circular intermediate. The emergency of E. coli isolates co-harboring mcr-1 and blaNDM-5 in migratory birds indicated the coexistence of ARGs in migratory birds was a novel threat. This study revealed the prevalence and molecular characteristics of three important ARGs in migratory birds, provided evidence that migratory birds were potential vectors of novel resistance genes and highlighted the monitoring of ARGs in migratory birds should be strengthened to prevent the spread of ARGs in a One Health strategy.
Collapse
Affiliation(s)
- Wenhui Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiaoyu Lu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Sujuan Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, PR China
| | - Daxin Peng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, PR China.
| | - Ruichao Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
9
|
The shrunk genetic diversity of coral populations in North-Central Patagonia calls for management and conservation plans for marine resources. Sci Rep 2022; 12:14894. [PMID: 36050435 PMCID: PMC9437062 DOI: 10.1038/s41598-022-19277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
The Chilean Patagonia is a complex puzzle of numerous fjords, channels, bays, estuaries, and islands. The largest part of it is very remote, hampering the generation of scientific knowledge and effective management planning that could balance conservation of the marine resources with the increasing development of aquaculture activities. The present study focuses on the deep-water emergent cold-water coral Desmophyllum dianthus, dwelling in Chilean Patagonia, with the aim to illustrate its population genetic structure, demography and adaptation of the species along this coast. Microsatellite loci analysis included D. dianthus individuals from twelve sampling localities along bathymetric and oceanographic gradients from the latitude 40°S to 48°S. The results showed a lack of genetic structure with an asymmetric dispersion of individuals, and relevant heterozygosity deficiency in some populations. This study also analyses the natural and human impacts affecting the region (e.g., climate change, increasing salmon farming activities), and stresses the importance of including genetic information in the process of management and conservation of marine resources. In particular, the relevance of using interdisciplinary approaches to fill the gaps in scientific knowledge especially in remote and pristine areas of western Patagonia. Therefore, information on genetic spatial distribution of marine fauna could become pivotal to develop a holistic ecosystem-based approach for marine spatial planning.
Collapse
|
10
|
Ma Y, Choi CY, Thomas A, Gibson L. Review of contaminant levels and effects in shorebirds: Knowledge gaps and conservation priorities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113868. [PMID: 35863215 DOI: 10.1016/j.ecoenv.2022.113868] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution has emerged as a major threat to bird populations. Many shorebird populations are declining, although contamination has been documented in some shorebirds, evidence of negative impacts is sparse and this important topic remains understudied. To guide future research and develop effective conservation strategies, we carried out a comprehensive review of environmental pollutants and their consequences on shorebirds. In total, we found 93 relevant articles which examined pollutant contamination in ~37% (79 of 215) of all shorebird species, mostly from the Charadriidae and Scolopacidae families. Studies were geographically biased: the majority were conducted in American flyways, while only 1 was found from Australasia and few were conducted in Asian flyways. The main geographic gap for research includes East Africa, South Asia and Siberian Arctic. The most well-documented pollutants included mercury (Hg, 37 studies), cadmium (33), and lead (Pb, 28); less well studied pollutants were barium (1), calcium (1), strontium (1), dicofols (1), and other newly emerging contaminants, such as plastic debris/microplastics (4) and antibiotics resistance (2). Several pollutants have caused considerable concerns in shorebirds, including embryotoxicity caused by PCBs at non-optimum temperature (laboratory experiments); reduced reproduction performance linked to maternal Hg and paternal Pb (field evidence); and reduced refueling and flight performance related to oil contamination (both field and laboratory evidence). Our results confirm that an in-depth understanding of the local, regional and global factors that influence population trends of shorebirds in light of increasing pollution threats is essential for accurate and effective management and conservation strategies.
Collapse
Affiliation(s)
- Yanju Ma
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chi-Yeung Choi
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Alex Thomas
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Luke Gibson
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
11
|
Affiliation(s)
- Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
12
|
Makkaew P, Kongprajug A, Chyerochana N, Sresung M, Precha N, Mongkolsuk S, Sirikanchana K. Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters. Int J Hyg Environ Health 2021; 238:113859. [PMID: 34655856 DOI: 10.1016/j.ijheh.2021.113859] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are pollutants of worldwide concern that threaten human health and ecosystems. Anthropogenic activities and wastewater could be ARB and ARG pollution sources; however, research on ARG abundance and microbial source tracking (MST) of contamination in tropical marine waters is limited. This study examined spatiotemporal variations of six ARGs (blaNDM, blaTEM, blaVIM, mcr-1, sul1, and tetQ) against the widely used antibiotic groups and a class 1 integron-integrase gene (intI1) at two Thai tropical recreational beaches (n = 41). Correlations between ARGs and sewage-specific MST markers (i.e., crAssphage and human polyomaviruses [HPyVs]) and fecal indicator bacteria (i.e., total coliforms, fecal coliforms, and enterococci) were also investigated. BlaTEM, intI1, sul1, and tetQ were ubiquitous at both beaches (85.4-100% detection rate); intI1 was the most abundant (3-6 orders in log10 copies/100 mL), followed by blaTEM (2-4 orders), sul1 (2-3 orders), and tetQ (2-4 orders). BlaNDM was found in 7.3% (up to 4 orders), and no mcr-1 was detected. Interestingly, blaVIM was prevalent at one beach (2-5 orders; n = 17), but found in only one sample at the other (4 orders). Temporal, but not spatial, differences were noticed; blaTEM was at higher levels in the wet season. IntI1 correlated with sul1 and tetQ (Spearman's rho = 0.47-0.97), suggesting potential horizontal gene transfer. CrAssphage, but not HPyVs, correlated with intI1, sul1, and tetQ (Spearman's rho = 0.50-0.74). Higher numbers of ARGs tended to co-occur in samples with higher crAssphage concentrations, implying sewage contribution to the marine water, with a persisting ARG background. This study provides insight into the ARG pollution status of tropical coastal waters and suggests crAssphage as a proxy for ARG pollution, which could facilitate effective management policies to minimize ARG dissemination in marine environments.
Collapse
Affiliation(s)
- Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology EHT, Ministry of Education, Bangkok, 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology EHT, Ministry of Education, Bangkok, 10400, Thailand.
| |
Collapse
|
13
|
Affiliation(s)
- Juan G Navedo
- Estación Experimental Quempillén (Chiloé), Facultad de Ciencias, Universidad Austral de Chile, Chile. .,Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Chile.,Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.,Centro FONDAP de Investigaciones en Dinámica de Ecosistemas Marinos de Altas Latitudes, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.,Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|