1
|
Lei H, Lu Y, Wang P, Xie X, Li J, An X, Liang Z, Sun B, Wang C. Shift from legacy to emerging per- and polyfluoroalkyl substances for watershed management along the coast of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125153. [PMID: 39427954 DOI: 10.1016/j.envpol.2024.125153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Per- and polyfluoroalkyl substances and their short-chain alternatives have attracted world-wide attention due to their widespread presence and persistence in the environment. However, the sources, environmental fate, and driving forces of PFAS in coastal ecosystems remain poorly understood. In this study, the spatial distribution, source apportionment, and driving mechanisms of PFAS were investigated through a comprehensive analysis of water samples collected along the China's coastline. The concentrations of Σ25PFAS in water samples followed a general pattern, with higher levels observed in northern coastal zones of China than the south, ranging from 0.72 to 1872.21 ng L-1. PFOA and PFBA were dominant. Emerging short-chain PFAS, such as PFBS, PFBA, F-53B and GenX, were frequently detected, with detection rates of 97%, 99%, 95% and 77%, respectively. This indicated a shift in coastal PFAS contamination from legacy compounds to emerging short-chain alternatives. Source apportionment using the Positive Matrix Factorization model identified key contributors to PFAS pollution, including textile production, volatile precursors, precious metal industries, aqueous film-forming foam, metal-plating, electrochemical fluorination, and fluoropolymer manufacturing. Additionally, PFAS concentrations were significantly positively correlated with cultivated land, urban area, and wastewater discharge, while negatively correlated with annual precipitation and woodland coverage (p < 0.05). Socio-economic development was identified as a major driver of PFAS emissions, while the hydrological factors and vegetation coverage can significantly enhance watershed resilience against PFAS pollution.
Collapse
Affiliation(s)
- Haojie Lei
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pei Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xingwei Xie
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Jialong Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xupeng An
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Zian Liang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| |
Collapse
|
2
|
Kee KH, Seo JI, Kim SM, Shiea J, Yoo HH. Per- and polyfluoroalkyl substances (PFAS): Trends in mass spectrometric analysis for human biomonitoring and exposure patterns from recent global cohort studies. ENVIRONMENT INTERNATIONAL 2024; 194:109117. [PMID: 39612744 DOI: 10.1016/j.envint.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants that have been shown to contribute to human exposure, thereby raising a range of health concerns. In this context, human biomonitoring is essential for linking exposure levels of PFAS with their potential health risks. Mass spectrometry-based analytical techniques have been extensively adopted for the evaluation of PFAS levels across various cohorts. However, challenges arising from the use of biological samples (e.g., plasma, serum, urine, etc.) necessitate ongoing research and refinement of analytical methodologies. This review provides an overview of current trends in mass spectrometry-based approaches for human biomonitoring of PFAS, including sample collection and preparation, and instrumental techniques. We also explore analytical strategies to overcome challenges in obtaining PFAS-free blank matrices and address the risk of background contamination. Moreover, this review examines differing PFAS exposure patterns across regions by analyzing recent international cohort studies, specifically those conducted in the US and China over the past five years. Accordingly, several key research gaps in biomonitoring studies that need to be addressed moving forward are highlighted.
Collapse
Affiliation(s)
- Kyung Hwa Kee
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jeong In Seo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Su Min Kim
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
3
|
Lada ZG, Mathioudakis GN, Soto Beobide A, Andrikopoulos KS, Voyiatzis GA. Generic method for the detection of short & long chain PFAS extended to the lowest concentration levels of SERS capability. CHEMOSPHERE 2024; 363:142916. [PMID: 39043274 DOI: 10.1016/j.chemosphere.2024.142916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
The detection of the highly toxic per- and polyfluoroalkyl substances, PFAS, constitutes a challenging task in terms of developing a generic method that could be rapid and applicable simultaneously to both long and short-chain PFAS at ppt concentration level. In the present study, the method introduced by the USA Environmental Protection Agency, EPA, to detect surfactants, using methylene blue, MB, which is identified an ideal candidate for PFAS-MB ion pairing, is extended at the lowest concentration range by a simple additional step that involves the dissociation of the ion pairs in water. In this work, Surface Enhanced Raman Scattering, SERS, is applied via Ag nanocolloidal suspensions to probe MB and indirectly either/or both short-chain (perfluorobutyric acid, PFBA) and long-chain (perfluoloctanoic acid, PFOA) PFAS downt to 5 ppt. This method, which can be further optimized to sub-ppt level via a custom-made SERS-PFAS dedicated Raman system, offers the possibility to be applied to either specific PFAS (both short and long-chain) in a targeted analysis or to total PFAS in a non-targeted analysis at very low detection limits, following any type of MB detection method in aqueous solutions and obviously with any type of SERS substrate.
Collapse
Affiliation(s)
- Zoi G Lada
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences, (FORTH/ICE-HT), Stadiou Str. Platani, 265 04, Patras, Greece
| | - Georgios N Mathioudakis
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences, (FORTH/ICE-HT), Stadiou Str. Platani, 265 04, Patras, Greece
| | - Amaia Soto Beobide
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences, (FORTH/ICE-HT), Stadiou Str. Platani, 265 04, Patras, Greece
| | - Konstantinos S Andrikopoulos
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences, (FORTH/ICE-HT), Stadiou Str. Platani, 265 04, Patras, Greece; Department of Physics, University of Patras, GR-26504, Patras, Greece
| | - George A Voyiatzis
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences, (FORTH/ICE-HT), Stadiou Str. Platani, 265 04, Patras, Greece.
| |
Collapse
|
4
|
Adewuyi A, Li Q. Emergency of per- and polyfluoroalkyl substances in drinking water: Status, regulation, and mitigation strategies in developing countries. ECO-ENVIRONMENT & HEALTH 2024; 3:355-368. [PMID: 39281067 PMCID: PMC11399586 DOI: 10.1016/j.eehl.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 09/18/2024]
Abstract
The detection of per- and polyfluoroalkyl substances (PFAS) in water presents a significant challenge for developing countries, requiring urgent attention. This review focuses on understanding the emergence of PFAS in drinking water, health concerns, and removal strategies for PFAS in water systems in developing countries. This review indicates the need for more studies to be conducted in many developing nations due to limited information on the environmental status and fate of PFAS. The health consequences of PFAS in water are enormous and cannot be overemphasized. Efforts are ongoing to legislate a national standard for PFAS in drinking water. Currently, there are few known mitigation efforts from African countries, in contrast to several developing nations in Asia. Therefore, there is an urgent need to develop economically viable techniques that could be integrated into large-scale operations to remove PFAS from water systems in the region. However, despite the success achieved with removing long-chain PFAS from water, more studies are required on strategies for eliminating short-chain moieties in water.
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX 77005, USA
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
5
|
Zeng T, Chen X, van de Lavoir M, Robeyns R, Zhao L, Delgado Povedano MDM, van Nuijs ALN, Zhu L, Covaci A. Serum untargeted lipidomic characterization in a general Chinese cohort with residual per-/polyfluoroalkyl substances by liquid chromatography-drift tube ion mobility-mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172483. [PMID: 38631629 DOI: 10.1016/j.scitotenv.2024.172483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) remain controversial due to their high persistency and potential human toxicity. Although occupational exposure to PFAS has been widely investigated, the implications of PFAS occurrence in the general population remain to be unraveled. Considering that serum from most people contains PFAS, the aim of this study was to characterize the lipidomic profile in human serum from a general cohort (n = 40) with residual PFAS levels. The geometric means of ∑PFAS (11.8 and 4.4 ng/mL) showed significant differences (p < 0.05) for the samples with the highest (n = 20) and lowest (n = 20) concentrations from the general population respectively. Reverse-phase liquid chromatography coupled to drift tube ion mobility and high-resolution mass spectrometry using dual polarity ionization was used to characterize the lipid profile in both groups. The structural elucidation involved the integration of various parameters, such as retention time, mass-to-charge ratio, tandem mass spectra and collision cross section values. This approach yielded a total of 20 potential biomarkers linked to the perturbed glycerophospholipid metabolism, energy metabolism and sphingolipid metabolism. Among these alterations, most lipids were down-regulated and some specific lipids (PC 36:5, PC 37:4 and PI O-34:2) exhibited a relatively strong Spearman correlation and predictive capacity for PFAS contamination. This study could support further toxicological assessments and mechanistic investigations into the effects of PFAS exposure on the lipidome.
Collapse
Affiliation(s)
- Ting Zeng
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Xin Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Maria van de Lavoir
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Rani Robeyns
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Lu Zhao
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | | | - Alexander L N van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Lingyan Zhu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium.
| |
Collapse
|
6
|
Zhang H, Zhu L, Zhang Y, Héroux P, Cai L, Liu Y. Removal of per- and polyfluoroalkyl substances from water by plasma treatment: Insights into structural effects and underlying mechanisms. WATER RESEARCH 2024; 253:121316. [PMID: 38377926 DOI: 10.1016/j.watres.2024.121316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Non-thermal plasma emerges as a promising technology for per- and polyfluoroalkyl substances (PFAS) decomposition due to its notable efficacy and environmentally friendly characteristics. In this study, we demonstrated the efficacy of a falling film dielectric barrier discharge (DBD) system for the removal of 10 PFAS, including perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs) and hexafluoropropylene oxide (HFPO) oligomer acids. Results showed that compounds with fluoroalkyl chain length>4 were effectively decomposed within 100 min, with long-chain PFAS demonstrating more pronounced removal performance than their short-chain analogues. The superior removal but low defluorination observed in HFPO oligomer acids could be ascribed to their ether-based structural features. The integration of experimental results with density functional theory (DFT) calculations revealed that the synergistic effects of various reactive species are pivotal to their efficient decomposition, with electrons, OH•, and NO2• playing essential roles. In contrast, the degradation of PFSAs was more dependent on electron attack than that of PFCAs and HFPO oligomer acids. Significantly, the most crucial degradation pathway for HFPO oligomer acids was the cleavage of ether CO, whether through radical or electron attack. Furthermore, the demonstrated effective removal in various water matrices showed the potential of the plasma system for removing PFAS in complex aquatic environments. This study provided mechanistic insights into PFAS degradation behavior in plasma processes, and it underscored the vital influence of molecular structures on degradability, thereby contributing to the further development and regulation of plasma-based technologies for treating PFAS in water.
Collapse
Affiliation(s)
- Han Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Luxiang Zhu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yinyin Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China.
| |
Collapse
|
7
|
Bui TH, Zuverza-Mena N, Dimkpa CO, Nason SL, Thomas S, White JC. PFAS remediation in soil: An evaluation of carbon-based materials for contaminant sequestration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123335. [PMID: 38211874 PMCID: PMC10922530 DOI: 10.1016/j.envpol.2024.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The presence of per- and poly-fluoroalkyl substances (PFAS) in soils is a global concern as these emerging contaminants are highly resistant to degradation and cause adverse effects on human and environmental health at very low concentrations. Sequestering PFAS in soils using carbon-based materials is a low-cost and effective strategy to minimize pollutant bioavailability and exposure, and may offer potential long-term remediation of PFAS in the environment. This paper provides a comprehensive evaluation of current insights on sequestration of PFAS in soil using carbon-based sorbents. Hydrophobic effects originating from fluorinated carbon (C-F) backbone "tail" and electrostatic interactions deriving from functional groups on the molecules' "head" are the two driving forces governing PFAS sorption. Consequently, varying C-F chain lengths and polar functional groups significantly alter PFAS availability and leachability. Furthermore, matrix parameters such as soil organic matter, inorganic minerals, and pH significantly impact PFAS sequestration by sorbent amendments. Materials such as activated carbon, biochar, carbon nanotubes, and their composites are the primary C-based materials used for PFAS adsorption. Importantly, modifying the carbon structural and surface chemistry is essential for increasing the active sorption sites and for strengthening interactions with PFAS. This review evaluates current literature, identifies knowledge gaps in current remediation technologies and addresses future strategies on the sequestration of PFAS in contaminated soil using sustainable novel C-based sorbents.
Collapse
Affiliation(s)
- Trung Huu Bui
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Nubia Zuverza-Mena
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Christian O Dimkpa
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Sara L Nason
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Sara Thomas
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA.
| |
Collapse
|
8
|
Nason SL, Thomas S, Stanley C, Silliboy R, Blumenthal M, Zhang W, Liang Y, Jones JP, Zuverza-Mena N, White JC, Haynes CL, Vasiliou V, Timko MP, Berger BW. A comprehensive trial on PFAS remediation: hemp phytoextraction and PFAS degradation in harvested plants. ENVIRONMENTAL SCIENCE. ADVANCES 2024; 3:304-313. [PMID: 38322792 PMCID: PMC10841816 DOI: 10.1039/d3va00340j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of recalcitrant, highly toxic contaminants, with limited remediation options. Phytoremediation - removal of contaminants using plants - is an inexpensive, community-friendly strategy for reducing PFAS concentrations and exposures. This project is a collaboration between the Mi'kmaq Nation, Upland Grassroots, and researchers at several institutions who conducted phytoremediation field trials using hemp to remove PFAS from soil at the former Loring Air Force base, which has now been returned to the Mi'kmaq Nation. PFAS were analyzed in paired hemp and soil samples using targeted and non-targeted analytical approaches. Additionally, we used hydrothermal liquefaction (HTL) to degrade PFAS in the harvested hemp tissue. We identified 28 PFAS in soil and found hemp uptake of 10 of these PFAS. Consistent with previous studies, hemp exhibited greater bioconcentration for carboxylic acids compared to sulfonic acids, and for shorter-chain compounds compared to longer-chain. In total, approximately 1.4 mg of PFAS was removed from the soil via uptake into hemp stems and leaves, with an approximate maximum of 2% PFAS removed from soil in the most successful area. Degradation of PFAS by HTL was nearly 100% for carboxylic acids, but a portion of sulfonic acids remained. HTL also decreased precursor PFAS and extractable organic fluorine. In conclusion, while hemp phytoremediation does not currently offer a comprehensive solution for PFAS-contaminated soil, this project has effectively reduced PFAS levels at the Loring site and underscores the importance of involving community members in research aimed at remediating their lands.
Collapse
Affiliation(s)
- Sara L Nason
- The Connecticut Agricultural Experiment Station New Haven CT 06511 USA
| | - Sara Thomas
- The Connecticut Agricultural Experiment Station New Haven CT 06511 USA
| | | | - Richard Silliboy
- Upland Grassroots Limestone ME 04750 USA
- Mi'kmaq Nation Presque Isle ME 04679 USA
| | | | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York Albany NY 12222 USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York Albany NY 12222 USA
| | - Jasmine P Jones
- The Connecticut Agricultural Experiment Station New Haven CT 06511 USA
| | | | - Jason C White
- The Connecticut Agricultural Experiment Station New Haven CT 06511 USA
| | | | - Vasilis Vasiliou
- Yale School of Public Health, Department of Environmental Health Sciences New Haven CT 06510 USA
| | - Michael P Timko
- University of Virginia, Department of Biology Charlottesville VA 22903 USA
| | - Bryan W Berger
- University of Virginia, Department of Chemical Engineering Charlottesville VA 22903 USA
| |
Collapse
|
9
|
Han BC, Liu JS, Bizimana A, Zhang BX, Kateryna S, Zhao Z, Yu LP, Shen ZZ, Meng XZ. Identifying priority PBT-like compounds from emerging PFAS by nontargeted analysis and machine learning models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122663. [PMID: 37783416 DOI: 10.1016/j.envpol.2023.122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
As traditional per and polyfluoroalkyl substances (PFAS) are phased out, emerging PFAS are being developed and widely used. However, little is known about their properties, including persistence, bioaccumulation, and toxicity (PBT). Screening for emerging PFAS relies on available chemical inventory databases. Here, we compiled a database of emerging PFAS obtained from nontargeted analysis and assessed their PBT properties using machine learning models, including qualitative graph attention networks, Insubria PBT Index and quantitative EAS-E Suite, VEGA, and ProTox-II platforms. Totally 282 homologues (21.8% of emerging PFAS) were identified as PBT based on the combined qualitative and quantitative prediction, in which 140 homologues were detected in industrial and nonbiological/biological samples, belong to four categories, i.e. modifications of perfluoroalkyl carboxylic acids, perfluoroalkane sulfonamido substances, fluorotelomers and modifications of perfluoroalkyl sulfonic acids. Approximately 10.1% of prioritized emerging PFAS were matched to chemical vendors and 19.6% to patents. Aqueous film-forming foams and fluorochemical factories are the predominant sources for prioritized emerging PFAS. The database and screening results can update the assessment related to legislative bodies such as the US Toxic Substances Control Act and the Stockholm Convention. The combined qualitative and quantitative machine learning models can provide a methodological tool for prioritizing other emerging organic contaminants.
Collapse
Affiliation(s)
- Bao-Cang Han
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jin-Song Liu
- College of Advanced Materials Engineering, Jiaxing Nanhu University. 572 South Yuexiu Road, Jiaxing, 314001, Zhejiang Province, China
| | - Aaron Bizimana
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bo-Xuan Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Sukhodolska Kateryna
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Yu
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Zhong-Zeng Shen
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
10
|
Rosen Vollmar AK, Lin EZ, Nason SL, Santiago K, Johnson CH, Ma X, Godri Pollitt KJ, Deziel NC. Per- and polyfluoroalkyl substances (PFAS) and thyroid hormone measurements in dried blood spots and neonatal characteristics: a pilot study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:737-747. [PMID: 37730931 PMCID: PMC10541328 DOI: 10.1038/s41370-023-00603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Pediatric thyroid diseases have been increasing in recent years. Environmental risk factors such as exposures to chemical contaminants may play a role but are largely unexplored. Archived neonatal dried blood spots (DBS) offer an innovative approach to investigate environmental exposures and effects. OBJECTIVE In this pilot study, we applied a new method for quantifying per- and polyfluoroalkyl substances (PFAS) to 18 archived DBS from babies born in California from 1985-2018 and acquired thyroid hormone measurements from newborn screening tests. Leveraging these novel data, we evaluated (1) changes in the concentrations of eight PFAS over time and (2) the relationship between PFAS concentrations, thyroid hormone concentrations, and neonatal characteristics to inform future research. METHODS PFAS concentrations in DBS were measured using ultra-high-performance liquid chromatography-mass spectrometry. Summary statistics and non-parametric Wilcoxon rank-sum and Kruskal-Wallis tests were used to evaluate temporal changes in PFAS concentrations and relationships between PFAS concentrations, thyroid hormone concentrations, and neonatal characteristics. RESULTS The concentration and detection frequencies of several PFAS (PFOA, PFOS, and PFOSA) declined over the assessment period. We observed that the timing of specimen collection in hours after birth was related to thyroid hormone but not PFAS concentrations, and that thyroid hormones were related to some PFAS concentrations (PFOA and PFOS). IMPACT STATEMENT This pilot study examines the relationship between concentrations of eight per- and polyfluoroalkyl substances (PFAS), thyroid hormone levels, and neonatal characteristics in newborn dried blood spots (DBS) collected over a period of 33 years. To our knowledge, 6 of the 22 PFAS we attempted to measure have not been quantified previously in neonatal DBS, and this is the first study to examine both PFAS and thyroid hormone concentrations using DBS. This research demonstrates the feasibility of using newborn DBS for quantifying PFAS exposures in population-based studies, highlights methodological considerations in the use of thyroid hormone data for future studies using newborn DBS, and indicates potential relationships between PFAS concentrations and thyroid hormones for follow-up in future research.
Collapse
Affiliation(s)
- Ana K Rosen Vollmar
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Sara L Nason
- Departments of Environmental Science and Forestry and Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Katerina Santiago
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
11
|
Lin EZ, Nason SL, Zhong A, Fortner J, Godri Pollitt KJ. Trace analysis of per- and polyfluorinated alkyl substances (PFAS) in dried blood spots - Demonstration of reproducibility and comparability to venous blood samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163530. [PMID: 37094673 PMCID: PMC10248884 DOI: 10.1016/j.scitotenv.2023.163530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that have been widely used in consumer, personal care, and household products for their stain- and water-repellent properties. PFAS exposure has been linked to various adverse health outcomes. Such exposure has commonly been evaluated in venous blood samples. While this sample type can be obtained from healthy adults, a less invasive method of blood collection is required when evaluating vulnerable populations. Dried blood spots (DBS) have gained attention as a biomatrix for exposure assessment given the relative ease of collection, transport, and storage. The objective of this study was to develop and validate an analytical method to measure PFAS in DBS. A workflow is presented for extracting PFAS from DBS, chemical analysis by liquid chromatography-high resolution mass spectrometry, normalization for blood mass, and blank correction to account for potential contamination. Over 80 % recovery was achieved for the 22 PFAS measured with an average coefficient of variation of 14 %. Comparison of PFAS concentrations detected in DBS and paired whole blood samples from six healthy adults was correlated (R2 > 0.9). Findings demonstrate trace levels of a broad range of PFAS in DBS can be reproducibly measured and are comparable to liquid whole blood samples. DBS can offer novel insights to environmental exposures, including during critical windows of susceptibility (i.e., in utero, early life), which have been largely uncharacterized.
Collapse
Affiliation(s)
- Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Sara L Nason
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Alexander Zhong
- Department of Quantitative Theory and Methods, Emory University, Atlanta, GA 30322, USA
| | - John Fortner
- Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Ojha S, Thompson PT, Powell CD, Moseley HNB, Pennell KG. Identifying and sharing per-and polyfluoroalkyl substances hot-spot areas and exposures in drinking water. Sci Data 2023; 10:388. [PMID: 37328532 PMCID: PMC10275912 DOI: 10.1038/s41597-023-02277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) in drinking water is widely recognized as a public health concern. Decision-makers who are responsible for managing PFAS drinking water risks lack the tools to acquire the information they need. In response to this need, we provide a detailed description of a Kentucky dataset that allows decision-makers to visualize potential hot-spot areas and evaluate drinking water systems that may be susceptible to PFAS contamination. The dataset includes information extracted from publicly available sources to create five different maps in ArcGIS Online and highlights potential sources of PFAS contamination in the environment in relation to drinking water systems. As datasets of PFAS drinking water sampling continue to grow as part of evolving regulatory requirements, we used this Kentucky dataset as an example to promote the reuse of this dataset and others like it. We incorporated the FAIR (Findable, Accessible, Interoperable, and Reusable) principles by creating a Figshare item that includes all data and associated metadata with these five ArcGIS maps.
Collapse
Affiliation(s)
- Sweta Ojha
- University of Kentucky, College of Engineering, Department of Civil Engineering, Lexington, Kentucky, USA
- University of Kentucky Superfund Research Center (UKSRC), Lexington, Kentucky, USA
| | - P Travis Thompson
- University of Kentucky Superfund Research Center (UKSRC), Lexington, Kentucky, USA
| | - Christian D Powell
- University of Kentucky Superfund Research Center (UKSRC), Lexington, Kentucky, USA
- University of Kentucky, Department of Computer Science (Data Science Program), Lexington, Kentucky, USA
| | - Hunter N B Moseley
- University of Kentucky Superfund Research Center (UKSRC), Lexington, Kentucky, USA
- University of Kentucky, Department of Molecular and Cellular Biochemistry, Lexington, Kentucky, USA
| | - Kelly G Pennell
- University of Kentucky, College of Engineering, Department of Civil Engineering, Lexington, Kentucky, USA.
- University of Kentucky Superfund Research Center (UKSRC), Lexington, Kentucky, USA.
| |
Collapse
|
13
|
Xie X, Lu Y, Wang P, Lei H, Liang Z. Per- and polyfluoroalkyl substances in marine organisms along the coast of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162492. [PMID: 36863594 DOI: 10.1016/j.scitotenv.2023.162492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large and complex class of synthetic chemicals widely used in industrial and domestic products. This study compiled and analyzed the distribution and composition of PFASs in marine organisms sampled along the coast of China from 2002 to 2020. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were dominant in bivalves, cephalopods, crustaceans, bony fish and mammals. PFOA in bivalves, crustaceans, bony fish and mammals gradually decreased from north to south along the coast of China, and the PFOA contents of bivalves and gastropods in the Bohai Sea (BS) and the Yellow Sea (YS) were higher than those of PFOS. The increased production and use of PFOA have been detected by biomonitoring temporal treads in mammals. For the organisms in the East China Sea (ECS) and the South China Sea (SCS), which were less polluted by PFOA compared to BS and YS, PFOS was universally higher than PFOA. The PFOS of mammals with high trophic levels was significantly higher than that of other taxa. This study is conducive to better understanding the monitoring information of PFASs of marine organisms in China and is of great significance for PFAS pollution control and management.
Collapse
Affiliation(s)
- Xingwei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Pei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Haojie Lei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zian Liang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems and Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| |
Collapse
|
14
|
Marquínez-Marquínez AN, Loor-Molina NS, Quiroz-Fernández LS, Maddela NR, Luque R, Rodríguez-Díaz JM. Recent advances in the remediation of perfluoroalkylated and polyfluoroalkylated contaminated sites. ENVIRONMENTAL RESEARCH 2023; 219:115152. [PMID: 36572331 DOI: 10.1016/j.envres.2022.115152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are compounds used since 1940 in various formulations in the industrial and consumer sectors due to their high chemical and thermal stability. In recent years, PFASs have caused global concern due to their presence in different water and soil matrices, which threatens the environment and human health. These compounds have been reported to be linked to the development of serious human diseases, including but not limited to cancer. For this reason, PFASs have been considered as persistent organic compounds (COPs) and contaminants of emerging concern (CECs). Therefore, this work aims to present the advances in remediation of PFASs-contaminated soil and water by addressing the current literature. The performance and characteristics of each technique were addressed deeply in this work. The reviewed literature found that PFASs elimination studies in soil and water were carried out at a laboratory and pilot-scale in some cases. It was found that ball milling, chemical oxidation and thermal desorption are the most efficient techniques for the removal of PFASs in soils, however, phyto-microbial remediation is under study, which claims to be a promising technique. For the remediation of PFASs-contaminated water, the processes of electrocoagulation, membrane filtration, ozofractionation, catalysis, oxidation reactions - reduction, thermolysis and destructive treatments with plasma have presented the best results. It is noteworthy that hybrid treatments have also proved to be efficient techniques in the removal of these contaminants from soil and water matrices. Therefore, the improvisation and implication of existing techniques on a field-scale are greatly warranted to corroborate the yields obtained on a pilot- and laboratory-scale.
Collapse
Affiliation(s)
- Angelo Noe Marquínez-Marquínez
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador.
| | - Nikolt Stephanie Loor-Molina
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador.
| | | | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador.
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador.
| |
Collapse
|
15
|
Liu X, Huang X, Wei X, Zhi Y, Qian S, Li W, Yue D, Wang X. Occurrence and removal of per- and polyfluoroalkyl substances (PFAS) in leachates from incineration plants: A full-scale study. CHEMOSPHERE 2023; 313:137456. [PMID: 36470352 DOI: 10.1016/j.chemosphere.2022.137456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Municipal solid wastes (MSWs) contain diverse per- and polyfluoroalkyl substances (PFAS), and these substances may leach into leachates, resulting in potential threats to the environment and human health. In this study, leachates from incineration plants with on-site treatment systems were measured for 17 PFAS species, including 13 perfluorocarboxylic acids (PFCAs) and 4 perfluorosulfonic acids (PFSAs). PFAS were detected in all of the raw leachates and finished effluents in concentrations ranging from 7228 to 16,565 ng L-1 and 43 to 184 ng L-1, respectively, with a greater contribution from the short-chain PFAS and PFCAs. The results showed that the existing combined processes (biological treatment and membrane filtration) were effective in decreasing PFAS in the aqueous phase with removal efficiencies over 95%. In addition, correlation analysis suggested that physical entrapment, not biodegradation, was the main means of PFAS reduction in the treatment system. These results filled a gap in the understanding of PFAS occurrence and removal in leachates from incineration plants during the full-scale treatment processes, and demonstrated those leachates were previously under-explored sources of PFAS.
Collapse
Affiliation(s)
- Xuemei Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xingyao Huang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaoxiao Wei
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yue Zhi
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shenhua Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China; Department of Ecological Engineering, Chongqing University, Chongqing, 400044, China
| | - Wei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China; Department of Ecological Engineering, Chongqing University, Chongqing, 400044, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China; Department of Environmental Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
16
|
Ojha S, Li Y, Rezaei N, Robinson A, Hoover A, Pennell KG. A geospatial and binomial logistic regression model to prioritize sampling for per- and polyfluorinated alkyl substances in public water systems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:163-174. [PMID: 35373458 PMCID: PMC9888445 DOI: 10.1002/ieam.4614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
As health-based drinking water standards for per- and polyfluorinated alkyl substances (PFAS) continue to evolve, public health and environmental protection decision-makers must assess exposure risks associated with all public drinking water systems in the United States (US). Unfortunately, current knowledge regarding the presence of PFAS in environmental systems is limited. In this study, a screening approach was established to: (1) identify and direct attention toward potential PFAS hot spots in drinking water sources, (2) prioritize sampling locations, and (3) provide insights regarding the potential PFAS sources that contaminate groundwater and surface water. Our approach incorporates geospatial data from public sources, including the US Environmental Protection Agency's Toxic Release Inventory, to identify locations where PFAS may be present in drinking water sources. An indicator factor (also known as "risk factor") was developed as a function of distance between potential past and/or present PFAS users (e.g., military bases, industrial sites, and airports) and the public water system, which generates a heat map that visualizes potential exposure risks. A binomial logistic regression model indicates whether PFAS are likely to be detected in public water systems. The results obtained using the developed screening approach aligned well (with a 76% overall model accuracy) with PFAS sampling and chemical analysis data from 81 public drinking water systems in the state of Kentucky. This study proposes this screening model as an effective decision aid to assist key decision-makers in identifying and prioritizing sampling locations for potential PFAS exposure risks in the public drinking water sources in their service areas. Integr Environ Assess Manag 2023;19:163-174. © 2022 SETAC.
Collapse
Affiliation(s)
- Sweta Ojha
- University of Kentucky, College of Engineering, Department of Civil Engineering
| | - Ying Li
- University of Kentucky, College of Engineering, Department of Civil Engineering
| | - Nader Rezaei
- University of Kentucky, College of Engineering, Department of Civil Engineering
| | - Ariel Robinson
- University of Kentucky, College of Engineering, Department of Civil Engineering
| | - Anna Hoover
- University of Kentucky, College of Engineering, Department of Civil Engineering
| | - Kelly G. Pennell
- University of Kentucky, College of Engineering, Department of Civil Engineering
| |
Collapse
|
17
|
Huang X, Wei X, Liu H, Li W, Shi D, Qian S, Sun W, Yue D, Wang X. Occurrence of per- and polyfluoroalkyl substances (PFAS) in municipal solid waste landfill leachates from western China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69588-69598. [PMID: 35578077 DOI: 10.1007/s11356-022-20754-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Landfill leachate has been documented as a significant source of trace organic pollutants, comprising an expansive family of per- and polyfluoroalkyl substances (PFAS). This study presents the findings on the distribution of 13 perfluoroalkyl carboxylates (PFCAs) and 4 perfluoroalkyl sulfonates (PFSAs) in leachates from 6 municipal solid waste (MSW) landfills in western China. The total concentrations of 17 PFAS in sampled leachates ranged from 1805 to 43,310 ng/L, and 15 compounds were detected in all samples. The short-chain compounds perfluorobutane sulfonate (PFBS, mean mass fraction 23.1%) and perfluorobutyric acid (PFBA, mean mass fraction 20.6%) were dominant. There were higher PFAS concentrations in leachates from operating landfills (mean: 12,194 ng/L) compared to closed landfills (mean: 2747 ng/L), but there was no significant difference between young (< 10 years) and old landfills (> 10 years). Moderate to weak correlations were observed between PFAS concentrations and leachate properties, e.g., TN, NH4+-N, TOC, and pH. This is the first report on the distribution of PFAS in landfill leachates from western China. The results have identified landfill leachate as an underestimated source of PFAS in the environment and have contributed to a more comprehensive evaluation on PFAS presence across China.
Collapse
Affiliation(s)
- Xingyao Huang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaoxiao Wei
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Huazu Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Wei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China
| | - Dezhi Shi
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
- Department of Environmental Engineering, Chongqing University, Chongqing, 400045, China
| | - Shenhua Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China
| | - Wenjie Sun
- Department of Atmospheric and Hydrologic Science, St. Cloud State University, St. Cloud, MN, 56301, USA
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China.
- Department of Environmental Engineering, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
18
|
Awad J, Brunetti G, Juhasz A, Williams M, Navarro D, Drigo B, Bougoure J, Vanderzalm J, Beecham S. Application of native plants in constructed floating wetlands as a passive remediation approach for PFAS-impacted surface water. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128326. [PMID: 35101757 DOI: 10.1016/j.jhazmat.2022.128326] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Strategies for remediation of per- and polyfluoroalkyl substances (PFAS) generally prioritise highly contaminated source areas. However, the mobility of PFAS in the environment often results in extensive low-level contamination of surface waters across broad areas. Constructed Floating Wetlands (CFWs) promote the growth of plants in buoyant structures where pollutants are assimilated into plant biomass. This study examined the hydroponic growth of Juncus krausii, Baumea articulata and Phragmites australis over a 28-day period for remediation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) contaminated (0.2 µg/L to 30 µg/L) urban stormwater. With increasing PFOA and PFOS concentrations, accumulation in plant species increased although root and shoot distribution varied depending on PFAS functional group. Less PFOA than PFOS accumulated in plant roots (0.006-0.16 versus 0.008-0.68 µg/g), while more PFOA accumulated in the plant shoots (0.02-0.55 versus 0.01-0.16 µg/g) indicating translocation to upper plant portions. Phragmites australis accumulated the highest overall plant tissue concentrations of PFOA and PFOS. The NanoSIMS data demonstrated that PFAS associated with roots and shoots was absorbed and not just surface bound. These results illustrate that CFWs have the potential to be used to reduce PFAS contaminants in surface waters.
Collapse
Affiliation(s)
- John Awad
- University of South Australia, Science, Technology, Engineering and Mathematics (STEM), Mawson Lakes, SA 5095, Australia; CSIRO Land and Water, Waite Campus, Urrbrae, SA 5064, Australia
| | - Gianluca Brunetti
- University of South Australia, Science, Technology, Engineering and Mathematics (STEM), Mawson Lakes, SA 5095, Australia
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Mike Williams
- CSIRO Land and Water, Waite Campus, Urrbrae, SA 5064, Australia
| | - Divina Navarro
- CSIRO Land and Water, Waite Campus, Urrbrae, SA 5064, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | | | - Simon Beecham
- University of South Australia, Science, Technology, Engineering and Mathematics (STEM), Mawson Lakes, SA 5095, Australia
| |
Collapse
|
19
|
Birch QT, Birch ME, Nadagouda MN, Dionysiou DD. Nano-enhanced treatment of per-fluorinated and poly-fluorinated alkyl substances (PFAS). Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Hemida M, Ghiasvand A, Gupta V, Coates LJ, Gooley AA, Wirth HJ, Haddad PR, Paull B. Small-Footprint, Field-Deployable LC/MS System for On-Site Analysis of Per- and Polyfluoroalkyl Substances in Soil. Anal Chem 2021; 93:12032-12040. [PMID: 34436859 DOI: 10.1021/acs.analchem.1c02193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging environmental pollutants of global concern. For rapid field site evaluation, there are very few sensitive, field-deployable analytical techniques. In this work, a portable lightweight capillary liquid chromatography (capLC) system was coupled with a small footprint portable mass spectrometer and configured for field-based applications. Further, an at-site ultrasound-assisted extraction (pUAE) methodology was developed and applied with a portable capLC/mass spectrometry (MS) system for on-site analysis of PFASs in real soil samples. The influential variables on the integration of capLC with MS and on the resolution and signal intensity of the capLC/MS setup were investigated. The important parameters affecting the efficiency of the pUAE method were also studied and optimized using the response surface methodology based on a central composite design. The mean recovery for 11 PFASs ranged between 70 and 110%, with relative standard deviations ranging from 3 to 12%. In-field method sensitivity for 12 PFASs ranged from 0.6 to 0.1 ng/g, with wide dynamic ranges (1-600 ng/g) and excellent linearities (R2 > 0.991). The in-field portable system was benchmarked against a commercial lab-based LC-tandem MS (MS/MS) system for the analysis of PFASs in real soil samples, with the results showing good agreement. When deployed to a field site, 12 PFASs were detected and identified in real soil samples at concentrations ranging from 8.1 ng/g (for perfluorooctanesulfonic acid) to 2935.0 ng/g (perfluorohexanesulfonic acid).
Collapse
Affiliation(s)
- Mohamed Hemida
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Vipul Gupta
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Lewellwyn J Coates
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Trajan Scientific and Medical, 7 Argent Place, Ringwood, Victoria 3134, Australia
| | - Andrew A Gooley
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Trajan Scientific and Medical, 7 Argent Place, Ringwood, Victoria 3134, Australia
| | - Hans-Jürgen Wirth
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Trajan Scientific and Medical, 7 Argent Place, Ringwood, Victoria 3134, Australia
| | - Paul R Haddad
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Brett Paull
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
21
|
Nason SL, Stanley CJ, PeterPaul CE, Blumenthal MF, Zuverza-Mena N, Silliboy RJ. A community based PFAS phytoremediation project at the former Loring Airforce Base. iScience 2021; 24:102777. [PMID: 34337359 PMCID: PMC8324804 DOI: 10.1016/j.isci.2021.102777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Sara L Nason
- Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | | | | | | | | | - Richard J Silliboy
- Upland Grassroots, Limestone, ME 04750, USA.,Aroostook Band of Micmac Nation, Presque Isle, ME 04769, USA
| |
Collapse
|
22
|
Perfluoroalkyl substance excretion: Effects of organic anion-inhibiting and resin-binding drugs in a community setting. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103650. [PMID: 33819618 DOI: 10.1016/j.etap.2021.103650] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Longer serum half-lives of perfluoroalkyl substances (PFAS) in humans compared to other species has been attributed to differences in the activity of organic anion transporters (OAT). METHODS Among 56,175 adult participants in the community-based C8 Health Project, 23 subjects were taking the uricosuric OAT-inhibitor probenecid, and 36 subjects were taking the bile acid sequestrant cholestyramine. In regression models of log transformed serum PFAS, medication effects were estimated in terms of mean ratios, adjusting for age, gender, BMI, estimated glomerular filtration rate (eGFR) and water-district of residence. RESULTS Probenecid was associated with modest, but not statistically significant increases in serum PFAS concentrations. In contrast, cholestyramine significantly lowered serum PFAS concentrations, notably for perfluorooctane sulfonic acid (PFOS). CONCLUSIONS The effectiveness of cholestyramine in a community setting supports the importance of gastrointestinal physiology for PFAS excretion kinetics, especially for PFOS. We did not find clear evidence that probenecid, an inhibitor of OAT, affects PFAS clearance.
Collapse
|