1
|
Iqbal S, Rafique MS, Iqbal N, Akhtar S, Anjum AA, Malarvili M. Synergistic effect of Silver-Nanodiamond composite as an efficient antibacterial agent against E. coli and S. aureus. Heliyon 2024; 10:e30500. [PMID: 38765069 PMCID: PMC11101830 DOI: 10.1016/j.heliyon.2024.e30500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Bacterial antimicrobial resistance (BAMR) seems to pose the greatest threat to public health, food safety, and agriculture in this century. The development of novel efficient antimicrobial agents to combat bacterial infections has become a global issue. Silver nanoparticles (Ag NPs) appeared as a feasible alternative to antibiotics. However, Ag NPs face cost, toxicity, and aggregation issues which limit their antibacterial activity. This work aims to stabilize Ag NPs with enhanced antimicrobial activity at comparatively lower Ag concentrations to prevent bacterial infections. For this purpose, the Ag core was covered with nanodiamonds (NDs). Ag-NDs composite have been synthesized by microplasma technique. TEM analysis confirmed the presence of both Ag and NDs in the Ag-NDs composite. A particle size (∼19 nm) was reported for Ag-NDs at the highest concentration as compared to Ag NPs (∼3 nm). The conduction band of the diamond acted as an extremely strong reducing agent for Ag NPs. The large surface area of NDs stabilized the Ag NPs. A redshift (∼400 nm-406 nm) in UV-visible spectra of the Ag-NDs composite indicated the formation of bigger-sized Ag NPs after incorporating NDs. XRD and LIBS analysis verified the increase in intensity of Ag-NPs by increasing ND concentration. The presence of functional groups including OH, CH, and Ag/Ag2O was confirmed by FTIR. Bacterial inhibition growth appeared to be a dose-dependent process. The minimum inhibition concentration value of Ag-NDs composite at the highest NDs concentration against E. coli (∼ 0.69 μg/ml) and S. aureus (∼44 μg/ml). This is the first study to report the smallest MIC for E. coli (<1 μg/ml). Ag-ND composites emerged to be more efficient than Ag NPs and preferred to be used against BAMR. The enhanced antibacterial activity of the Ag-NDs composite makes it a potential candidate for antibiotics, food products, and pesticides.
Collapse
Affiliation(s)
- Saman Iqbal
- Department of Physics, University of the Punjab, Lahore, Pakistan
| | | | - Nida Iqbal
- Biomedical Engineering Centre, University of Engineering and Technology, Lahore, Kala Shah Kaku (KSK) Campus, Pakistan
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Aftab Ahmad Anjum
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - M.B. Malarvili
- Department of Biomedical and Health Science Engineering, Faculty of Electrical Engineering, Universiti Teknology Malaysia, Skudai, Johor Darul Takzim, Malaysia
| |
Collapse
|
2
|
Hamouda RA, Aljohani ES. Assessment of Silver Nanoparticles Derived from Brown Algae Sargassum vulgare: Insight into Antioxidants, Anticancer, Antibacterial and Hepatoprotective Effect. Mar Drugs 2024; 22:154. [PMID: 38667771 PMCID: PMC11051400 DOI: 10.3390/md22040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Algae are used as safe materials to fabricate novel nanoparticles to treat some diseases. Marine brown alga Sargassum vulgare are used to fabricate silver nanoparticles (Sv/Ag-NPs). The characterization of Sv/Ag-NPs was determined by TEM, EDX, Zeta potential, XRD, and UV spectroscopy. The Sv/Ag-NPs were investigated as antioxidant, anticancer, and antibacterial activities against Gram-positive bacteria Bacillus mojavensis PP400982, Staphylococcus caprae PP401704, Staphylococcus capitis PP402689, and Staphylococcus epidermidis PP403851. The activity of the Sv/Ag-NPs was evaluated as hepatoprotective in vitro in comparison with silymarin. The UV-visible spectrum of Sv/Ag-NPs appeared at 442 nm; the size of Sv/Ag-NPs is in range between 6.90 to 16.97 nm, and spherical in shape. Different concentrations of Sv/Ag-NPs possessed antioxidant, anticancer activities against (HepG-2), colon carcinoma (HCT-116), cervical carcinoma (HeLa), and prostate carcinoma (PC-3) with IC50 50.46, 45.84, 78.42, and 100.39 µg/mL, respectively. The Sv/Ag-NPs induced the cell viability of Hep G2 cells and hepatocytes treated with carbon tetrachloride. The Sv/Ag-NPs exhibited antibacterial activities against Staphylococcus caprae PP401704, Staphylococcus capitis PP402689, and Staphylococcus epidermidis PP403851. This study strongly suggests the silver nanoparticles derived from Sargassum vulgare showed potential hepato-protective effect against carbon tetrachloride-induced liver cells, and could be used as anticancer and antibacterial activities.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia;
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Ebtehail S. Aljohani
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia;
| |
Collapse
|
3
|
Dong R, Seliem MK, Mobarak M, Xue H, Wang X, Li Q, Li Z. Dual-functional marine algal carbon-based materials with highly efficient dye removal and disinfection control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60399-60417. [PMID: 37022550 DOI: 10.1007/s11356-023-26800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The design and simple, green preparation of dual-functional materials for the decontamination of both hazardous dyes and pathogenic microorganisms from wastewater remain challenging currently. Herein, a promising marine algal carbon-based material (named C-SA/SP) with both highly efficient dye adsorptive and antibacterial properties was fabricated based on the incorporation of sodium alginate and a low dose of silver phosphate via a facile and eco-friendly approach. The structure, removal of malachite green (MG) and congo red (CR), and their antibacterial performance were studied, and the adsorption mechanism was further interpreted by the statistical physics models, besides the classic models. The results show that the maximum simulated adsorption capacity for MG reached 2798.27 mg/g, and its minimal inhibit concentration for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was 0.4 mg/mL and 0.2 mg/mL, respectively. The mechanistic study suggests that silver phosphate exerted the effects of catalytic carbon formation and pore formation, while reducing the electronegativity of the material as well, thus improving its dye adsorptive performance. Moreover, the MG adsorption onto C-SA/SP showed vertical orientation and a multi-molecular way, and its adsorption sites were involved in the adsorption process with the increase of temperature. Overall, the study indicates that the as-made dual-functional materials have good applied prospects for water remediation.
Collapse
Affiliation(s)
- Ruitao Dong
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Moaaz K Seliem
- Faculty of Earth Science, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Hanjing Xue
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xuemei Wang
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Qun Li
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Zichao Li
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Wei M, Xiang Q, Wang P, Chen L, Ren M. Ambivalent effects of dissolved organic matter on silver nanoparticles/silver ions transformation: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130533. [PMID: 37055958 DOI: 10.1016/j.jhazmat.2022.130533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 06/19/2023]
Abstract
The numerous applications of silver nanoparticles (AgNPs) lead to their spread in aquatic systems and the release of silver ions (Ag+), which brings potential risks to environment and human health. Owing to the different toxicity, the mutual transformations between AgNPs and Ag+ has been a hot topic of research. Dissolved organic matter (DOM) is ubiquitous on the earth and almost participates in all the reactions in the nature. The previous studies have reported the roles of DOM played in the transformation between AgNPs and Ag+. However, different experiment conditions commonly caused contradictory results, leading to the difficulty to predict the fate of AgNPs in specific reactions. Here we summarized mechanisms of DOM-mediated AgNPs oxidation and Ag+ reduction, and analyzed the effects of environmental parameters. Moreover, the knowledge gaps, challenges, and new opportunities for research in this field are discussed. This review will promote the understanding of the fate and risk assessments of AgNPs in natural water systems.
Collapse
Affiliation(s)
- Minxiang Wei
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Qianqian Xiang
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, PR China
| | - Peng Wang
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China
| | - Liqiang Chen
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China.
| | - Meijie Ren
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
5
|
Zhang X, Wu Z, Wu Y, Giwa AS, Huang S, Niu L. Visible-light-driven simultaneous decontamination of multi-antibiotics by facile synthesized BiOCl loaded food wastes biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120683. [PMID: 36400142 DOI: 10.1016/j.envpol.2022.120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Environmental dissemination caused by widespread use of antibiotics has been regarded as a possible hazard to aquatic ecosystem and human health. The increasing misgivings make it imperative to develop a novel catalyst with remarkable visible-light-driven activity to remove antibiotics, especially for their simultaneous decontamination. Herein, C/BiOCl composites were successfully prepared by decorating BiOCl nanosheets on food wastes biochar (C) by a simple hydrolysis strategy. Not only the binary system of tetracycline antibiotics, but also the ternary mixture could be simultaneously photodegraded over 25% C/BiOCl within 15 min irradiation. The improved photocatalytic activities could be ascribed to the introduction of biochar, endowing increased surface area, enhanced separation of photo-generated charge carriers, and better light absorption. The as-prepared 25% C/BiOCl also demonstrated satisfactory stability and positive removal effect in actual water samples. The present work provides new insights into the development of biochar-based photocatalysts for simultaneous degradation of multiple antibiotics.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Zhipeng Wu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Yixiao Wu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Abdulmoseen Segun Giwa
- School of Human Settlements and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Lishan Niu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China
| |
Collapse
|
6
|
Dong Z, Zhou J, Huang T, Yan Z, Liu X, Jia X, Zhou W, Li W, Finfrock YZ, Wang X, Liu P. Effects of oxygen on the adsorption/oxidation of aqueous Sb(III) by Fe-loaded biochar: An X-ray absorption spectroscopy study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157414. [PMID: 35850325 DOI: 10.1016/j.scitotenv.2022.157414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Fe-loaded biochar (FeBC) has been considered for Sb(III) adsorption, but the effects of oxygen (O2) on the adsorption need further investigation. Liquid-/solid-phase analyses were conducted to investigate the role of O2 in the Sb(III) adsorption by FeBC. The adsorption was best described by the pseudo-second-order (PSO) model for kinetic results and by the Langmuir model for thermodynamic results. More than 96.8 % of Sb(III) was adsorbed by FeBC, and available O2 increased the liquid-phase Sb(III) oxidation efficiency by 2.1-7.5 times. The peak changes at ~1640 and 3450 cm-1 in FTIR spectra indicated the occurrence of inner-sphere complexation between Sb(III)/Sb(V) and hydroxyl (-OH)/carboxyl (-COOH) groups in FeBC under aerobic and anaerobic conditions. Fe/Sb X-ray absorption spectroscopy (XAS) analysis results showed aqueous Sb(III) complexed to the edge-sharing Fe(III)-O-Fe(III) in FeBC. Regardless of whether O2 was available or not, solid-phase edge-sharing Fe(III)-O-Sb(V) complexes (~3.05 Å), which had lower toxicity and migration ability than aqueous Sb(III), formed through a ligand-to-metal charge-transfer (LMCT) process. More than 91 % of adsorbed Sb(III) was oxidized to edge-sharing Fe(III)-O-Sb(V) complexes in 3 h. Additionally, the Sb(V) from liquid-phase oxidation could also directly complex to the Fe(III)-O-Fe(III) and form edge-sharing Fe(III)-O-Sb(V) complexes. These results provide evidence to inform further FeBC application for the Sb-contaminated water treatment.
Collapse
Affiliation(s)
- Zichao Dong
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei 430074, PR China
| | - Jianwei Zhou
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei 430074, PR China
| | - Tianxin Huang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei 430074, PR China
| | - Zhijie Yan
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei 430074, PR China
| | - Xin Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei 430074, PR China
| | - Xiaocen Jia
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei 430074, PR China
| | - Weiqing Zhou
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei 430074, PR China
| | - Wanyu Li
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei 430074, PR China
| | - Y Zou Finfrock
- CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; Science Division, Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Xingjie Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei 430074, PR China
| | - Peng Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Rd., Wuhan, Hubei 430074, PR China.
| |
Collapse
|
7
|
Fabrication of flower-like Ag/lignin composites and application in antibacterial fabrics. Int J Biol Macromol 2022; 222:783-793. [PMID: 36174864 DOI: 10.1016/j.ijbiomac.2022.09.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
The bacterial infection and its transmission pose a great threat to life and health, which leads to the urgent development of efficient and broad-spectrum antibacterial agents. Herein, Ag/lignin layered nanoflower (Ag/EHL-CM-0.05) was synthesized by using biomass lignin as reducing and capping agents and silver nitrate as precursor. The study showed that the size distribution of Ag NPs was uniform distribution and about 20-40 nm. The crystal surface of Ag NPs was Ag (111) surface. The minimum inhibitory concentration of Ag/EHL-CM-0.05 against E. coli and S. aureus was all 7.8 μg/mL, which was the lowest of other Ag/lignin antibacterial materials and reached a level nearly as polycationic antibacterial agents. The antibacterial mechanism suggested that Ag/EHL-CM-0.05 could release OH and Ag+, which could cause bacterial death. Finally, Ag/EHL-CM-0.05 was sprayed onto the viscose fabrics by liquid-phase spray deposition method. It was found that the inhibition zone diameter of modified viscose fabrics against E. coli and S. aureus only dropped about 0.16 cm on average after friction treatment and 0.32 cm on average after washing treatment. This work provides a new idea for the design and synthesize of efficient, broad-spectrum, and bio-compatible antibacterial agents, which has important social, economic, and environmental significance.
Collapse
|
8
|
Zhang X, Wu Y, Giwa AS, Xiong J, Huang S, Niu L. Improving photocatalytic activity under visible light over a novel food wastes biochar-based BiOBr nanocomposite. CHEMOSPHERE 2022; 297:134152. [PMID: 35245591 DOI: 10.1016/j.chemosphere.2022.134152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Biochar (C) applied in synthesizing photocatalysts to eliminate water pollution has been intensively investigated. Herein we report the first use of biochar pyrolyzed from food wastes at 400 °C (400C) and 700 °C to construct C/BiOBr composites via a facile hydrolysis approach. Photocatalytic performances could be significantly improved by choosing the appropriate carbonization temperature and adjusting the content of C in C/BiOBr composites. The prepared 1%400C/BiOBr exhibited the best photodegradation capacity towards methylene orange (20 mg/L) and tetracycline (50 mg/L). A series of characterization results illustrated that smooth structure and surface properties (oxygen functional groups and persistent free radicals) of 400C played an important role in enhancing the photocatalytic activities. Mechanism exploration suggested that h+ and ˙O2- were the main active species thus contributing to photodegradation. This study provided a new insight into utilization of biochar derived from food wastes in photocatalysis and environmental remediation.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yixiao Wu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China
| | | | - Juxia Xiong
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Lishan Niu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, PR China
| |
Collapse
|
9
|
Huang D, Dang F, Huang Y, Chen N, Zhou D. Uptake, translocation, and transformation of silver nanoparticles in plants. ENVIRONMENTAL SCIENCE: NANO 2022; 9:12-39. [PMID: 0 DOI: 10.1039/d1en00870f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article reviews the plant uptake of silver nanoparticles (AgNPs) that occurred in soil systems and the in planta fate of Ag.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| |
Collapse
|