1
|
Fan S, Tang Y, Yang H, Hu Y, Zeng Y, Wang Y, Zhao Y, Chen X, Wu Y, Wang G. Effects of Fertilization and Planting Modes on Soil Organic Carbon and Microbial Community Formation of Tree Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:2665. [PMID: 39339637 PMCID: PMC11434958 DOI: 10.3390/plants13182665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Biochar and organic fertilizer can significantly increase soil organic carbon (SOC) and promote agricultural production, but it is still unclear how they affect forest SOC after. Here, low-quality plantation soil was subjected to four distinct fertilization treatments: (CK, without fertilization; BC, tea seed shell biochar alone; OF, tea meal organic fertilizer alone; BCF, tea seed shell biochar plus tea meal organic fertilizer). Cunninghamia lanceolata (Lamb.) Hook and Cyclobalanopsis glauca (Thunb.) Oersted seedlings were then planted in pots at the ratios of 2:0, 1:1, and 0:2 (SS, SQ, QQ) and grown for one year. The results showed that the BCF treatment had the best effect on promoting seedling growth and increasing SOC content. BCF changed soil pH and available nutrient content, resulting in the downregulation of certain oligotrophic groups (Acidobacteria and Basidiomycetes) and the upregulation of eutrophic groups (Ascomycota and Proteobacteria). Key bacterial groups, which were identified by Line Discriminant Analysis Effect Size analysis, were closely associated with microbial biomass carbon (MBC) and SOC. Pearson correlation analysis showed that bacterial community composition exhibited a positive correlation with SOC, MBC, available phosphorus, seedling biomass, and plant height, whereas fungal community composition was predominantly positively correlated with seedling underground biomass. It suggested that environmental differences arising from fertilization and planting patterns selectively promote microbial communities that contribute to organic carbon formation. In summary, the combination of biochar and organic fertilizers would enhance the improvement and adaptation of soil microbial communities, playing a crucial role in increasing forest soil organic carbon and promoting tree growth.
Collapse
Affiliation(s)
- Sutong Fan
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yao Tang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongzhi Yang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuda Hu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yelin Zeng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yonghong Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yunlin Zhao
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL 60484, USA
| | - Yaohui Wu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guangjun Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Rodríguez-Rasero C, Alexandre-Franco MF, Fernández-González C, Montes-Jiménez V, Cuerda-Correa EM. Valorizing Tea Waste: Green Synthesis of Iron Nanoparticles for Efficient Dye Removal from Water. Antioxidants (Basel) 2024; 13:1059. [PMID: 39334718 PMCID: PMC11429485 DOI: 10.3390/antiox13091059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
This study explores the valorization of tea leaf waste by extracting polyphenols through reflux extraction, subsequently using them to synthesize zero-valent iron nanoparticles (nZVI). The in situ generated nanoparticles, when combined with fixed amounts of hydrogen peroxide, facilitated the removal of various dyes (methylene blue, methyl orange, and orange G) via a hetero-catalytic Fenton process. The iron nanoparticles were thoroughly characterized by gas adsorption of N2 at 77 K, scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), FT-IR spectroscopy, X-ray diffraction (XRD), and thermal analysis, including thermogravimetric analysis (TG) and temperature-programmed reduction (TPR). A statistical design of experiments and response surface methodology were employed to analyze the influence of polyphenol, Fe(III), and H2O2 concentrations on dye removal efficiency. The results demonstrated that optimizing the operational conditions could achieve 100% dye removal efficiency. This study highlights the potential of nZVI synthesized through eco-friendly methods as a promising solution for water decontamination involving diverse model dyes, thus contributing to sustainable waste management and environmental protection.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo M. Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain; (C.R.-R.); (M.F.A.-F.); (C.F.-G.); (V.M.-J.)
| |
Collapse
|
3
|
Zhang X, Li X, Chen F, Cao X, Wang C, Jiao L, Yue L, Wang Z. Selenium Nanomaterials Enhance the Nutrients and Functional Components of Fuding Dabai Tea. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:681. [PMID: 38668175 PMCID: PMC11053761 DOI: 10.3390/nano14080681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Theanine, polyphenols, and caffeine not only affect the flavor of tea, but also play an important role in human health benefits. However, the specific regulatory mechanism of Se NMs on fat-reducing components is still unclear. In this study, the synthesis of fat-reducing components in Fuding Dabai (FDDB) tea was investigated. The results indicated that the 100-bud weight, theanine, EGCG, total catechin, and caffeine contents of tea buds were optimally promoted by 10 mg·L-1 Se NMs in the range of 24.3%, 36.2%, 53.9%, 67.1%, and 30.9%, respectively. Mechanically, Se NMs promoted photosynthesis in tea plants, increased the soluble sugar content in tea leaves (30.3%), and provided energy for the metabolic processes, including the TCA cycle, pyruvate metabolism, amino acid metabolism, and the glutamine/glutamic acid cycle, ultimately increasing the content of amino acids and antioxidant substances (catechins) in tea buds; the relative expressions of key genes for catechin synthesis, CsPAL, CsC4H, CsCHI, CsDFR, CsANS, CsANR, CsLAR, and UGGT, were significantly upregulated by 45.1-619.1%. The expressions of theanine synthesis genes CsTs, CsGs, and CsGOGAT were upregulated by 138.8-693.7%. Moreover, Se NMs promoted more sucrose transfer to the roots, with the upregulations of CsSUT1, CsSUT2, CsSUT3, and CsSWEET1a by 125.8-560.5%. Correspondingly, Se NMs enriched the beneficial rhizosphere microbiota (Roseiarcus, Acidothermus, Acidibacter, Conexicter, and Pedosphaeraceae), enhancing the absorption and utilization of ammonium nitrogen by tea plants, contributing to the accumulation of theanine. This study provides compelling evidence supporting the application of Se NMs in promoting the lipid-reducing components of tea by enhancing its nitrogen metabolism.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Liya Jiao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
4
|
Yang B, Jiang J, Zhang H, Han Z, Lei X, Chen X, Xiao Y, Njeri Ndombi S, Zhu X, Fang W. Tea quality estimation based on multi-source information from leaf and soil using machine learning algorithm. Food Chem X 2023; 20:100975. [PMID: 38144839 PMCID: PMC10739752 DOI: 10.1016/j.fochx.2023.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/29/2023] [Indexed: 12/26/2023] Open
Abstract
Mineral nutrients play a significant role in influencing the quality of tea. In order to detect the quantitative relationships between tea quality and mineral elements from the soil and tea plant, samples of soil and tea leaves from 'Baiyeyihao' and 'Huangjinya' cultivars were collected from 160 tea plantations, and these were used to determine 16 types of soil mineral elements, 16 leaf nutrient elements, and 10 key tea quality compositions. Three predictive models including linear regression, multiple linear regression (MLR) and random forest (RF) were applied to predict the main constituents of tea quality. The usage of mineral elements in the soil and tea leaves improved the estimation accuracy of tea quality compositions, the RF performed best for EGCG (R2 = 0.67-0.77), amino acid (R2 = 0.61-0.88), tea polyphenols (R2 = 0.68-0.77) and caffeine (R2 = 0.59-0.68), while the MLR performed well for predicting the soluble sugars (R2 = 0.54-0.84). The multi-source information demonstrated a superior accuracy in predicting the biochemical components of tea when compared to individual mineral elements.
Collapse
Affiliation(s)
- Bin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaolan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaogang Lei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuejin Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Salome Njeri Ndombi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Rural Revitalization, Jiangsu Open University, China
| |
Collapse
|
5
|
Chen Y, Fu W, Xiao H, Zhai Y, Luo Y, Wang Y, Liu Z, Li Q, Huang J. A Review on Rhizosphere Microbiota of Tea Plant ( Camellia sinensis L): Recent Insights and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19165-19188. [PMID: 38019642 DOI: 10.1021/acs.jafc.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Rhizosphere microbial colonization of the tea plant provides many beneficial functions for the host, But the factors that influence the composition of these rhizosphere microbes and their functions are still unknown. In order to explore the interaction between tea plants and rhizosphere microorganisms, we summarized the current studies. First, the review integrated the known rhizosphere microbial communities of tea tree, including bacteria, fungi, and arbuscular mycorrhizal fungi. Then, various factors affecting tea rhizosphere microorganisms were studied, including: endogenous factors, environmental factors, and agronomic practices. Finally, the functions of rhizosphere microorganisms were analyzed, including (a) promoting the growth and quality of tea trees, (b) alleviating biotic and abiotic stresses, and (c) improving soil fertility. Finally, we highlight the gaps in knowledge of tea rhizosphere microorganisms and the future direction of development. In summary, understanding rhizosphere microbial interactions with tea plants is key to promoting the growth, development, and sustainable productivity of tea plants.
Collapse
Affiliation(s)
- Yixin Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenjie Fu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Han Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yuke Zhai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 3100058, P.R. China
| | - Yingzi Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
- Institute of Soil and Water Resources and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 3100058, P.R. China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| |
Collapse
|
6
|
Su Y, Wang J, Gao W, Wang R, Yang W, Zhang H, Huang L, Guo L. Dynamic metabolites: A bridge between plants and microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165612. [PMID: 37478935 DOI: 10.1016/j.scitotenv.2023.165612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Plant metabolites have a great influence on soil microbiomes. Although few studies provided insights into plant-microbe interactions, we still know very little about how plants recruit their microbiome. Here, we discuss the dynamic progress that typical metabolites shape microbes by a variety of factors, such as physiographic factors, cultivar factors, phylogeny factors, and environmental stress. Several kinds of metabolites have been reviewed, including plant primary metabolites (PPMs), phytohormones, and plant secondary metabolites (PSMs). The microbes assembled by plant metabolites in return exert beneficial effects on plants, which have been widely applied in agriculture. What's more, we point out existing problems and future research directions, such as unclear mechanisms, few species, simple parts, and ignorance of absolute abundance. This review may inspire readers to study plant-metabolite-microbe interactions in the future.
Collapse
Affiliation(s)
- Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
7
|
Colombo GM, Marreiro Gomes RM, Muñoz Buitrago SA, Buitrago Ramírez JR, de Sousa Araujo AC, Silva Oliveira FP, Pedrosa VF, Romano LA, Tesser M, Wasielesky W, Monserrat JM. Effects of Lyophilized Açaí ( Euterpe oleracea) Supplementation on Oxidative Damage and Intestinal Histology in Juvenile Shrimp Penaeus vannamei Reared in Biofloc Systems. Animals (Basel) 2023; 13:3282. [PMID: 37894006 PMCID: PMC10603646 DOI: 10.3390/ani13203282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The objective of this was to evaluate the ability of bioflocs to assimilate and transfer antioxidant compounds present in açaí Euterpe oleracea to juvenile Penaeus vannamei shrimp grown in a biofloc system. Juvenile shrimp were distributed into four treatment groups (control, 5, 20, and 80 mg açaí L-1), containing 31 shrimps/tank (90 L), and cultivated for 30 days. Every 24 h throughout the experimental period, the respective açaí concentrations were added directly to the cultivation water. The bioflocs and hepatopancreas lost their antioxidant capacity with increasing concentrations of açaí; however, lipid damage was mitigated after treatment with 20 mg of açaí L-1 (p < 0.05). The application of 20 mg açaí L-1 increased the mean height and area of the middle intestinal microvilli (p < 0.05). Mortality and protein and lipid damage in shrimp muscle increased with daily administration of 80 mg açaí L-1 (p < 0.05). It is concluded that the bioflocs were able to assimilate the antioxidants present in açaí and transfer them to the shrimp, and the administration of 20 mg açaí L-1 presented the best performance, demonstrating the possibility of its application in the cultivation of P. vannamei in a biofloc system.
Collapse
Affiliation(s)
- Grecica Mariana Colombo
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
| | - Robson Matheus Marreiro Gomes
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
| | - Sonia Astrid Muñoz Buitrago
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
| | - Juan Rafael Buitrago Ramírez
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
| | - Alan Carvalho de Sousa Araujo
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
| | - Fernando Pablo Silva Oliveira
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Laboratório de Imunologia e Patología de Organismos Aquáticos, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande 96200-970, RS, Brazil
| | - Virgínia Fonseca Pedrosa
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Laboratório de Imunologia e Patología de Organismos Aquáticos, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande 96200-970, RS, Brazil
| | - Luís Alberto Romano
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Laboratório de Imunologia e Patología de Organismos Aquáticos, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande 96200-970, RS, Brazil
| | - Marcelo Tesser
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Laboratório de Nutrição de Organismos Aquáticos (LANOA), Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande 96200-970, RS, Brazil
| | - Wilson Wasielesky
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Laboratório de Carcinocultura, Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rio Grande 96200-970, RS, Brazil
| | - José María Monserrat
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande—FURG, Av. Itália km 8 s/n, Cx. P. 474, Rio Grande CEP 96200-970, RS, Brazil
| |
Collapse
|
8
|
Yu H, Han X, Zhang X, Meng X, Yue Z, Liu X, Zheng N, Li Y, Yu Y, Yao H. Fertilizer-induced N 2O and NO emissions in tea gardens and the main controlling factors: A recent three-decade data synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162054. [PMID: 36758703 DOI: 10.1016/j.scitotenv.2023.162054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Tea gardens have been widely documented to be hotspots for nitrogen (N) oxide emissions (i.e., nitrous oxide (N2O) and nitric oxide (NO)). However, a quantitative understanding of N oxide emissions related to different fertilizer regimes and the main controlling factors is lacking. Here, we performed a meta-analysis of 56 peer-reviewed publications on N oxide emissions from global tea gardens over the past three decades. Overall, fertilization increased N2O and NO emissions (p < 0.001) by 584 % and 790 %, respectively. The stimulating effect of fertilizer on N2O and NO emissions was mainly related to high N application rates. Furthermore, organic fertilizer treatment, combined fertilizer treatment, biochar amendment, and inhibitor amendment reduced N2O emissions (p < 0.05) by 63 %, 64 %, 69 %, and 94 %, respectively, relative to chemical fertilizer treatment. For NO emissions, only biochar amendment decreased fertilizer-driven stimulation (by 80 %, p < 0.05). Notably, the dominant factors that influenced fertilizer-induced N2O and NO emissions in tea gardens were fertilization regimes, climatic conditions, and soil properties. On a global scale, fertilization increased mean N2O and NO emissions (p < 0.05) from global tea gardens by 44.5 Gg N yr-1 and 34.3 Gg N yr-1, respectively, whereas compared with no amendment application, inhibitors reduced N2O emissions (p < 0.05) by 32.2 Gg N yr-1 and biochar reduced NO emissions (p < 0.05) by 23.6 Gg N yr-1. Our results suggest that to obtain maximum ecological and economic benefits, appropriate N fertilizer and biochar and inhibitor amendments should be applied for site-specific mitigation purposes, and long-term, multiarea, in situ experiments and microbial mechanism studies should be conducted.
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xing Han
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xuechen Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiangtian Meng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhengfu Yue
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Xinhui Liu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yongxiang Yu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
9
|
Xu Z, Zhang Z, Peng S, Yuan Y, Wang X. Influences of lithium on soil properties and enzyme activities. CHEMOSPHERE 2023; 313:137458. [PMID: 36470353 DOI: 10.1016/j.chemosphere.2022.137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Lithium is an emerging environmental contaminant under the current sustainable energy strategy, but little is known about its contamination characteristic in soil. In this study, soil properties and enzyme activities in soils treated with 10-1280 mg kg-1 lithium were measured. The results showed that the content of ammonium nitrogen, total nitrogen, and exchangeable potassium significantly increased by 64.39%-217.73%, 23.06%-131.86%, and 4.76%-16.10%, while electric conductivity and available phosphorus content in lithium treated soils was respectively as 1.10-fold-13.44-fold and 1.27-fold-6.66-fold comparing to CK value. Soil pH and cation exchange capacity slightly declined and increased, respectively, and there was no significant variation in total organic carbon. However, nitrate nitrogen and sulfate content significantly decreased under higher lithium stress. On the other hand, lower lithium treatment level of 10, 20, 40, or 80 mg kg-1 selectively promoted the activities of sucrase, urease, aryl sulfatase, and peroxidase, while the protease, neutral phosphatase, phytase, and lipase were significantly inhibited under all lithium levels, indicating a weaken geochemical cycling of carbon, nitrogen, phosphorus, and sulfur. Then, lithium's 10% and 50% ecological dose (ED10 and ED50) was respectively fitted as 21.18 and 1408.67 mg kg-1 basing on Geometric Mean Index. The influences of lithium on soil were adverse. This study provided important insights into understanding the characteristics of lithium contamination, informing risk assessment and guiding remediation.
Collapse
Affiliation(s)
- Zhinan Xu
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Ziqi Zhang
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Si Peng
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Yuan Yuan
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Xiangrong Wang
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Yang X, Ni K, Shi Y, Yi X, Ji L, Wei S, Jiang Y, Zhang Y, Cai Y, Ma Q, Tang S, Ma L, Ruan J. Metagenomics reveals N-induced changes in carbon-degrading genes and microbial communities of tea (Camellia sinensis L.) plantation soil under long-term fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159231. [PMID: 36216053 DOI: 10.1016/j.scitotenv.2022.159231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Soil organic carbon (SOC) is an important C pool of the global ecosystem and is affected by various agricultural practices including fertilization. Excessive nitrogen (N) application is an important field management measure in tea plantation systems. However, the mechanism underlying the impact of N fertilization on SOC, especially the microscopic mechanism remain unclear. The present study explored the effects of N fertilization on C-cycling genes, SOC-degrading enzymes and microbes expressing these enzymes by using a metagenomic approach in a tea plantation under long-term fertilization with different N rates. Results showed that N application significantly changed the abundance of C-cycling genes, SOC-degrading enzymes, especially those associated with labile and recalcitrant C degradation. In addition, the beta-glucosidase and chitinase-expressing microbial communities showed a significant difference under different N rates. At the phylum level, microbial taxa involved in C degradation were highly similar and abundant, while at the genus level, only specific taxa performed labile and recalcitrant C degradation; these SOC-degrading microbes were significantly enriched under N application. Redundancy analysis (RDA) revealed that the soil and pruned litter properties greatly influenced the SOC-degrading communities; pH and DOC of the soil and biomass and total polyphenol (TP) of the pruned litter exerted significant effects. Additionally, the random forest (RF) algorithm revealed that soil pH and dominant taxa efficiently predicted the beta-glucosidase abundance, while soil pH and DOC, pruned litter TP, and the highly abundant microbial taxa efficiently predicted chitinase abundance. Our study indicated that long-term N fertilization exerted a significant positive effect on SOC-degrading enzymes and microbes expressing these enzymes, resulting in potential impact on soil C storage in a perennial tea plantation ecosystem.
Collapse
Affiliation(s)
- Xiangde Yang
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Tea Biology and Resource Utilization of Tea, The Ministry of Agriculture, Hangzhou 310008, China
| | - Kang Ni
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Tea Biology and Resource Utilization of Tea, The Ministry of Agriculture, Hangzhou 310008, China
| | - Yuanzhi Shi
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Tea Biology and Resource Utilization of Tea, The Ministry of Agriculture, Hangzhou 310008, China
| | - Xiaoyun Yi
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Tea Biology and Resource Utilization of Tea, The Ministry of Agriculture, Hangzhou 310008, China
| | - Lingfei Ji
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Sirou Wei
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Tea Biology and Resource Utilization of Tea, The Ministry of Agriculture, Hangzhou 310008, China
| | - Yanyan Jiang
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Tea Biology and Resource Utilization of Tea, The Ministry of Agriculture, Hangzhou 310008, China
| | - Yongli Zhang
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Tea Biology and Resource Utilization of Tea, The Ministry of Agriculture, Hangzhou 310008, China
| | - Yanjiang Cai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxu Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Sheng Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Lifeng Ma
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Tea Biology and Resource Utilization of Tea, The Ministry of Agriculture, Hangzhou 310008, China.
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agriculture Sciences, Key Laboratory of Tea Biology and Resource Utilization of Tea, The Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
11
|
Yang X, Tang S, Ni K, Shi Y, Yi X, Ma Q, Cai Y, Ma L, Ruan J. Long-term nitrogen addition increases denitrification potential and functional gene abundance and changes denitrifying communities in acidic tea plantation soil. ENVIRONMENTAL RESEARCH 2023; 216:114679. [PMID: 36326541 DOI: 10.1016/j.envres.2022.114679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The response of soil denitrification to nitrogen (N) addition in the acidic and perennial agriculture systems and its underlying mechanisms remain poorly understood. Therefore, a long-term (12 years) field trial was conducted to explore the effects of different N application rates on the soil denitrification potential (DP), functional genes, and denitrifying microbial communities of a tea plantation. The study found that N application to the soil significantly increased the DP and the absolute abundance of denitrifying genes, such as narG, nirK, norB, and nosZ. The diversity of denitrifying communities (genus level) significantly decreased with increasing N rates. Moreover, the denitrifying communities composition significantly differed among the soils with different rates of N fertilization. Further variance partitioning analysis (VPA) revealed that the soil (39.04%) and pruned litter (32.53%) properties largely contributed to the variation in the denitrifying communities. Dissolved organic carbon (DOC) and soil pH, pruned litter's total crude fiber (TCF) content and total polyphenols to total N ratio (TP/TN), and narG and nirK abundance significantly (VIP >1.0) influenced the DP. Finally, partial least squares path modeling (PLS-PM) revealed that N addition indirectly affected the DP by changing specific soil and pruned litter properties and functional gene abundance. Thus, the findings suggest that tea plantation is a major source of N2O emissions that significantly enhance under N application and provide theoretical support for N fertilizer management in an acidic tea plantation system.
Collapse
Affiliation(s)
- Xiangde Yang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Sheng Tang
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kang Ni
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuanzhi Shi
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiaoyun Yi
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qingxu Ma
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Lifeng Ma
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jianyun Ruan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
12
|
Gao H, Wang Y, Huang W, Xu F. A Novel High Temperature Resistant and Multifunctional Nitrification Inhibitor: Synthesis, Characterization, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13832-13838. [PMID: 36260756 DOI: 10.1021/acs.jafc.2c04477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The industrialized nitrification inhibitors are not suitable for compound fertilizer fabrication through high tower melt granulation process due to their poor resistance to high temperature. In this paper, a novel high temperature resistant and multifunctional nitrification inhibitor (HTRMFNI) was synthesized. The HTRMFNI is a polymer product with the complex of silicic acid and 3,4-dimethylpyrazole (DMPZ) wrapped inside the polymer and the effective content of DMPZ is 0.484 wt %. The HTRMFNI presents good nitrification inhibitory performance and rapid phosphate-solubilizing ability. The decomposition temperature of HTRMFNI is ∼212 °C, satisfying the temperature requirements for the high tower melt granulation process. The fabricated compound fertilizer presents good nitrogen immobilization performance but loses the phosphate-solubilizing ability, possibly due to the damages of carboxyl functional group on the wrapping polymer by the high melting temperature. Moreover, the addition of HTRMFNI did not affect the physicochemical properties and the overall performance of the compound fertilizer.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Key Laboratory of Paper Science and Technology of Ministry of Education, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yating Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Key Laboratory of Paper Science and Technology of Ministry of Education, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wei Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Key Laboratory of Paper Science and Technology of Ministry of Education, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Feng Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
13
|
Tan X, Xie H, Yu J, Wang Y, Xu J, Xu P, Ma B. Host genetic determinants drive compartment-specific assembly of tea plant microbiomes. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2174-2186. [PMID: 35876474 PMCID: PMC9616527 DOI: 10.1111/pbi.13897] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Diverse host factors drive microbial variation in plant-associated environments, whereas their genetic mechanisms remain largely unexplored. To address this, we coupled the analyses of plant genetics and microbiomes in this study. Using 100 tea plant (Camellia sinensis) cultivars, the microbiomes of rhizosphere, root endosphere and phyllosphere showed clear compartment-specific assembly, whereas the subpopulation differentiation of tea cultivars exhibited small effects on microbial variation in each compartment. Through microbiome genome-wide association studies, we examined the interactions between tea genetic loci and microbial variation. Notably, genes related to the cell wall and carbon catabolism were heavily linked to root endosphere microbial composition, whereas genes related to the metabolism of metal ions and small organic molecules were overrepresented in association with rhizosphere microbial composition. Moreover, a set of tea genetic variants, including the cytoskeleton-related formin homology interacting protein 1 gene, were strongly associated with the β-diversity of phyllosphere microbiomes, implying their interactions with the overall structure of microbial communities. Our results create a catalogue of tea genetic determinants interacting with microbiomes and reveal the compartment-specific microbiome assembly driven by host genetics.
Collapse
Affiliation(s)
- Xiangfeng Tan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Agricultural, Resources and EnvironmentZhejiang UniversityHangzhouChina
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
| | - Hengtong Xie
- Institution of Tea ScienceZhejiang UniversityHangzhouChina
| | - Jingwen Yu
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
| | - Yuefei Wang
- Institution of Tea ScienceZhejiang UniversityHangzhouChina
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Agricultural, Resources and EnvironmentZhejiang UniversityHangzhouChina
| | - Ping Xu
- Institution of Tea ScienceZhejiang UniversityHangzhouChina
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Agricultural, Resources and EnvironmentZhejiang UniversityHangzhouChina
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
14
|
Xie H, Chen Z, Feng X, Wang M, Luo Y, Wang Y, Xu P. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155801. [PMID: 35561922 DOI: 10.1016/j.scitotenv.2022.155801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Root exudate metabolites are a key medium for the interaction between plants and soil microbiota. L-theanine is a unique non-protein amino acid critical for the flavor and potential health benefits of tea products; however, its biological function in tea plants is not well understood. As L-theanine is mainly synthesized in the roots of tea plants, we hypothesized that L-theanine could affect the function of the rhizosphere microbiota by modulating microbial assembly. In the present study, L-theanine was detected in the exudates of tea plant roots using liquid chromatography-mass spectrometry. Additionally, 16S rRNA gene sequencing revealed that L-theanine significantly altered the structure of the rhizosphere microbiota and selectively shaped rhizosphere microbial assembly. Moreover, metagenomic data showed that L-theanine affected the abundance of genes encoding element cycling in soil. Interestingly, the denitrification and complete nitrification pathways were significantly inhibited by L-theanine by decreasing the narH, napA, and napB genes abundance. These findings provide new insights into the biological function of L-theanine, as well as the implications of interactions between tea plant root exudates and the rhizosphere microbiome.
Collapse
Affiliation(s)
- Hengtong Xie
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Zimeng Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Mengcen Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Yu Luo
- Institute of Soil & Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
| |
Collapse
|
15
|
Fan D, Zhao Z, Wang Y, Ma J, Wang X. Crop-type-driven changes in polyphenols regulate soil nutrient availability and soil microbiota. Front Microbiol 2022; 13:964039. [PMID: 36090073 PMCID: PMC9449698 DOI: 10.3389/fmicb.2022.964039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Crop rotation is a typical agronomic practice to mitigate soil deterioration caused by continuous cropping. However, the mechanisms of soil biotic and abiotic factors in response to different cropping patterns in acidic and polyphenol-rich tea nurseries remain unclear. In this study, the composition and function of microbial communities were comparatively investigated in soils of tea seedlings continuously planted for 2 years (AC: autumn-cutting; SC: summer-cutting) and in soils rotation with strawberries alternately for 3 years (AR: autumn-cutting). The results showed that AR significantly improved the survival of tea seedlings but greatly reduced the contents of soil polyphenols. The lower soil polyphenol levels in AR were associated with the decline of nutrients (SOC, TN, Olsen-P) availability, which stimulates the proliferation of nutrient cycling-related bacteria and mixed-trophic fungi, endophytic fungi and ectomycorrhizal fungi, thus further satisfying the nutrient requirements of tea seedlings. Moreover, lower levels of polyphenols facilitated the growth of plant beneficial microorganisms (Bacillus, Mortierella, etc.) and suppressed pathogenic fungi (Pseudopestalotiopsis, etc.), creating a more balanced microbial community that is beneficial to plant health. Our study broadens the understanding of the ecological role of plant secondary metabolites and provides new insights into the sustainability of tea breeding.
Collapse
Affiliation(s)
- Dongmei Fan
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhumeng Zhao
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Yu Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Junhui Ma
- Administration of Agriculture and Rural Affairs of Lishui, Lishui, China
| | - Xiaochang Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Xiaochang Wang,
| |
Collapse
|
16
|
Liu M, Wang J, Xu M, Tang S, Zhou J, Pan W, Ma Q, Wu L. Nano zero-valent iron-induced changes in soil iron species and soil bacterial communities contribute to the fate of Cd. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127343. [PMID: 34600388 DOI: 10.1016/j.jhazmat.2021.127343] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Nano zero-valent iron (nZVI) is used for soil remediation; however, the impact of nZVI on soil solid iron phases and its interactions with soil microorganisms in relation to the fate of Cd in soil remains unclear. In the current study, we investigated the mechanisms underlying the change in mobility of Cd in exogenous Cd-contaminated soil with nZVI and γ radiation treatments. The results showed that nZVI treatment decreased Cd availability but also increased the soil pH and dissolved Mn and poorly crystalline Fe contents. However, the increased poorly crystalline Fe(II) levels contributed to a reduction in Cd availability in soils treated with nZVI by immobilizing Cd associated with Fe oxides, rather than by increasing pH or Mn oxide levels. Moreover, Cd stabilization efficiency was higher in γ-irradiated soils than in non-irradiated soils regardless of the Cd level, with noticeable differences in bacterial community composition between the non-irradiated and irradiated soils. The genera Bacillus, Pullulanibacillus, and Alicyclobacillus are important in the redox of poorly crystalline Fe(II)-containing minerals in non-irradiated soil. This research provides a new method for further improving the Cd stabilization efficiency of nZVI in combination with microbial iron oxidization inhibitors.
Collapse
Affiliation(s)
- Mengjiao Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingjie Zhou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wankun Pan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxu Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK.
| | - Lianghuan Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Liu M, Xu M, Zhang X, Zhou J, Ma Q, Wu L. Poorly crystalline Fe(Ⅱ) mineral phases induced by nano zero-valent iron are responsible for Cd stabilization with different soil moisture conditions and soil types. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112616. [PMID: 34371454 DOI: 10.1016/j.ecoenv.2021.112616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Nano zero-valent iron (nZVI) is a promising remediation material for Cd-contaminated soil, but questions remain regarding the effects of nZVI-induced Fe oxides on Cd availability with different soil types and moisture conditions. To identify the changes in Cd availability and Fe mineral phases resulting from the application of nZVI, three types of Cd-spiked soils with 0.1% nZVI amendment were incubated under different moisture conditions with water-holding capacities (WHCs) of 30%, 60%, and 180%. The availability of Cd was significantly decreased in yellow and black soils amended with nZVI, with fewer changes being observed in cinnamon soil. The limited effect of nZVI on Cd stabilization was due to the extremely low content of poorly crystalline Fe phases in cinnamon soil. The Cd stabilization efficiency of nZVI was higher in the flooding soils (180% WHC) than in the non-flooding yellow and black soils (30% and 60% WHC, respectively). Moreover, the addition of nZVI promoted the formation of less-available forms of Cd (Fe-oxide-bound Cd in yellow soil and Fe-oxide-bound and organic-material-bound Cd in black soil) under the flooding condition. The decrease in extractable Cd was strongly related to the increase in poorly crystalline Fe(Ⅱ) mineral phases among the three soils and various soil moisture contents. Although 0.1% nZVI amendment induced the dissolution of Mn oxides, it did not hinder the Cd stabilization in the three soils. Overall, this study indicates that increased amounts of poorly crystalline Fe(Ⅱ) compounds due to nZVI amendment play a critical role in the stabilization of Cd in soils.
Collapse
Affiliation(s)
- Mengjiao Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingjie Zhou
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxu Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lianghuan Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|