1
|
Gomri C, Makhoul E, Koundia FN, Petit E, Raffy S, Bechelany M, Semsarilar M, Cretin M. Electrochemical advanced oxidation combined to electro-Fenton for effective treatment of perfluoroalkyl substances "PFAS" in water using a Magnéli phase-based anode. NANOSCALE ADVANCES 2024; 7:261-268. [PMID: 39600822 PMCID: PMC11586856 DOI: 10.1039/d4na00626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Per-and polyfluoroalkyl substances (PFAS), known as "forever chemicals", are posing a considerable threat to human health and the environment, that conventional treatment methods are unable to treat. In recent years, electrochemical advanced oxidation emerged as a promising technology for the degradation of recalcitrant pollutants such as PFAS. This work reports the degradation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), using a Magnéli phase-based anode type Ti4O7 by electro-oxidation and electro-oxidation combined with electro-Fenton. First the Ti4O7 anode was prepared from Rutile TiO2 powder and characterized, the results showed that the Ti n O2n-1 phase is the dominant phase. Afterward, the degradation of PFOA and PFOS was evaluated on the developed anode. After 5 hours of treatment, 52% and 82% of PFOA and PFOS were removed respectively. To improve this results electro-oxidation was combined with electro-Fenton, the degradation of both pollutants increased, 92% of PFOA was degraded and PFOS was totally removed after 5 hours of treatment. The energy consumption was also evaluated at t 1/2 which is defined as the time when half of the initial concentration of PFOA and PFOS was degraded. Combining the two degradation approaches showed promising results that need to be further optimized for potential application at large volumes.
Collapse
Affiliation(s)
- Chaimaa Gomri
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| | - Elissa Makhoul
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| | - Fatou Niang Koundia
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| | - Eddy Petit
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| | - Stéphane Raffy
- Saint-Gobain C.R.E.E. 550 Avenue Alphonse Jauffret 84300 Cavaillon France
| | - Mikhael Bechelany
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
- Gulf University for Science and Technology, GUST Kuwait
| | - Mona Semsarilar
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| | - Marc Cretin
- Institut Européen des Membranes-IEM (UMR 5635), Univ Montpellier, CNRS, ENSCM 34095 Montpellier France
| |
Collapse
|
2
|
Samuel MS, Kadarkarai G, Ryan DR, McBeath ST, Mayer BK, McNamara PJ. Enhanced perfluorooctanoic acid (PFOA) degradation by electrochemical activation of peroxydisulfate (PDS) during electrooxidation for water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173736. [PMID: 38839010 DOI: 10.1016/j.scitotenv.2024.173736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Improved treatment of per- and polyfluoroalkyl substances (PFAS) in water is critically important in light of the proposed United States Environmental Protection Agency (USEPA) drinking water regulations at ng L-1 levels. The addition of peroxymonosulfate (PMS) during electrooxidation (EO) can remove and destroy PFAS, but ng L-1 levels have not been tested, and PMS itself can be toxic. The objective of this research was to test peroxydisulfate (PDS, an alternative to PMS) activation by boron-doped diamond (BDD) electrodes for perfluorooctanoic acid (PFOA) degradation. The influence of PDS concentration, temperature, and environmental water matrix effects, and PFOA concentration on PDS-EO performance were systematically examined. Batch reactor experiments revealed that 99 % of PFOA was degraded and 69 % defluorination was achieved, confirming PFOA mineralization. Scavenging experiments implied that sulfate radicals (SO4-) and hydroxyl radicals (HO) played a more important role for PFOA degradation than 1O2 or electrons (e-). Further identification of PFOA degradation and transformation products by liquid chromatography-mass spectrometry (LC-MS) analysis established plausible PFOA degradation pathways. The analysis corroborates that direct electron transfers at the electrode initiate PFOA oxidation and SO4- improves overall treatment by cleaving the CC bond between the C7F15 and COOH moieties in PFOA, leading to possible products such as C7F15 and F-. The perfluoroalkyl radicals can be oxidized by SO4- and HO, resulting in the formation of shorter chain perfluorocarboxylic acids (e.g., perfluorobutanoic acid [PFBA]), with eventual mineralization to CO2 and F-. At an environmentally relevant low initial concentration of 100 ng L-1 PFOA, 99 % degradation was achieved. The degradation of PFOA was slightly affected by the water matrix as less removal was observed in an environmental river water sample (91 %) compared to tests conducted in Milli-Q water (99 %). Overall, EO with PDS provided a destructive approach for the elimination of PFOA.
Collapse
Affiliation(s)
- Melvin S Samuel
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Govindan Kadarkarai
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Donald R Ryan
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Sean T McBeath
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Patrick J McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States.
| |
Collapse
|
3
|
Ezeorba TPC, Okeke ES, Nwankwo CE, Emencheta SC, Enochoghene AE, Okeke VC, Ozougwu VEO. Emerging eco-friendly technologies for remediation of Per- and poly-fluoroalkyl substances (PFAS) in water and wastewater: A pathway to environmental sustainability. CHEMOSPHERE 2024; 364:143168. [PMID: 39181463 DOI: 10.1016/j.chemosphere.2024.143168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are rampant, toxic contaminants from anthropogenic sources, called forever chemicals for their recalcitrance. Although banned in several parts of the world for public health implications, including liver, kidney, and testicular diseases, PFAS are abundant in water sources due to easy dispersion. With chemical properties resulting from strong hydrophobic bonds, they defile many physicochemical removal methods. Though adsorption processes such as granular activated carbon (GAC) are widely used, they are marred by several limitations, including cost and secondary contamination. Thus, eco-friendly methods involving a synergy of the removal principles have been preferred for ease of use, cost-effectiveness, and near-zero effect on the environment. We present novel eco-friendly methods as the solution to PFAS remediation towards environmental sustainability. Current eco-friendly methods of PFAS removal from water sources, including electrocoagulation, membrane/filtration, adsorption, and phytoremediation methods, were highlighted, although with limitations. Novel eco-friendly methods such as microbial fuel cells, photoelectrical cells, and plasma treatment offer solutions to PFAS remediation and are quite efficient in terms of cost, result, and environmental sustainability. Overall, the successful integration of eco-friendly techniques in a seamless manner ensures the desired result. We also present a balanced position on the ecosystem impact of these ecofriendly methods, noting the successes towards environmental sustainability while exposing the gaps for further research.
Collapse
Affiliation(s)
- Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| | - Chidiebele Emmanuel Nwankwo
- Department of Microbiology, Faculty of Biological Sciences University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Stephen Chijioke Emencheta
- Deparment of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | | | - Veronica Chisom Okeke
- Deparment of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Vincent E O Ozougwu
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.
| |
Collapse
|
4
|
Rekik H, Arab H, Pichon L, El Khakani MA, Drogui P. Per-and polyfluoroalkyl (PFAS) eternal pollutants: Sources, environmental impacts and treatment processes. CHEMOSPHERE 2024; 358:142044. [PMID: 38648982 DOI: 10.1016/j.chemosphere.2024.142044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become a growing environmental concern due to their tangible impacts on human health. However, due to the large number of PFAS compounds and the analytical difficulty to identify all of them, there are still some knowledge gaps not only on their impact on human health, but also on how to manage them and achieve their effective degradation. PFAS compounds originate from man-made chemicals that are resistant to degradation because of the presence of the strong carbon-fluorine bonds in their chemical structure. This review consists of two parts. In the first part, the environmental effects of fluorinated compound contamination in water are covered with the objective to highlight how their presence in the environment adversely impacts the human health. In the second part, the focus is put on the different techniques available for the degradation and/or separation of PFAS compounds in different types of waters. Examples of removal/treatment of PFAS present in either surface or ground water are presented.
Collapse
Affiliation(s)
- Hela Rekik
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada
| | - Hamed Arab
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada
| | - Loick Pichon
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada.
| |
Collapse
|
5
|
Zhang M, Wang W, Gong T, Wu Y, Chen G. Cutting-edge technologies and relevant reaction mechanism difference in treatment of long- and short-chain per- and polyfluoroalkyl substances: A review. CHEMOSPHERE 2024; 354:141692. [PMID: 38490606 DOI: 10.1016/j.chemosphere.2024.141692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants. Compared with short-chain PFAS, long-chain PFAS are more hazardous. Currently, little attention has been paid to the differences in reaction mechanisms between long-chain and short-chain PFAS. This pressing concern has prompted studies about eliminating PFAS and revealing the mechanism difference. The reaction rate and reaction mechanism of each technology was focused on, including (1) adsorption, (2) ion exchange (IX), (3) membrane filtration, (4) advanced oxidation, (5) biotransformation, (6) novel functional material, and (7) other technologies (e.g. ecological remediation, hydrothermal treatment (HT), mechanochemical (MC) technology, micro/nanobubbles enhanced technology, and integrated technologies). The greatest reaction rate k of photocatalysis for long- and short-chain PFAS high up to 63.0 h-1 and 19.7 h-1, respectively. However, adsorption, membrane filtration, and novel functional material remediation were found less suitable or need higher operation demand for treating short-chain PFAS. Ecological remediation is more suitable for treating natural waterbody for its environmentally friendly and fair reaction rate. The other technologies all showed good application potential for both short- and long-chain PFAS, and it was more excellent for long-chain PFAS. The long-chain PFAS can be cleavaged into short-chain PFAS by C-chain broken, -CF2 elimination, nucleophilic substitution of F-, and HF elimination. Furthermore, the application of each type of technology was novelly designed; and suggestions for the future development of PFAS remediation technologies were proposed.
Collapse
Affiliation(s)
- Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yulin Wu
- Shanghai Geotechnical Investigations and Design Institute Engineering Consulting (Group) Co. Ltd., China
| | - Guangyao Chen
- School of Material Science and Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
6
|
Farissi S, Abubakar GA, Akhilghosh KA, Muthukumar A, Muthuchamy M. Sustainable application of electrocatalytic and photo-electrocatalytic oxidation systems for water and wastewater treatment: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1447. [PMID: 37945768 DOI: 10.1007/s10661-023-12083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Wastewater treatment and reuse have risen as a solution to the water crisis plaguing the world. Global warming-induced climate change, population explosion and fast depletion of groundwater resources are going to exacerbate the present global water problems for the forthcoming future. In this scenario, advanced electrochemical oxidation process (EAOP) utilising electrocatalytic (EC) and photoelectrocatalytic (PEC) technologies have caught hold of the interest of the scientific community. The interest stems from the global water management plans to scale down centralised water and wastewater treatment systems to decentralised and semicentralised treatment systems for better usage efficiency and less resource wastage. In an age of rising water pollution caused by contaminants of emerging concern (CECs), EC and PEC systems were found to be capable of optimal mineralisation of these pollutants rendering them environmentally benign. The present review treads into the conventional electrochemical treatment systems to identify their drawbacks and analyses the scope of the EC and PEC to mitigate them. Probable electrode materials, potential catalysts and optimal operational conditions for such applications were also examined. The review also discusses the possible retrospective application of EC and PEC as point-of-use and point-of-entry treatment systems during the transition from conventional centralised systems to decentralised and semi-centralised water and wastewater treatment systems.
Collapse
Affiliation(s)
- Salman Farissi
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India
| | - Gado Abubakar Abubakar
- Department of Physics, Kebbi State University of Science and Technology, Aleiro, Kebbi State, Nigeria
| | | | - Anbazhagi Muthukumar
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India
| | - Muthukumar Muthuchamy
- Department of Environmental Science, Central University of Kerala, Thejaswini Hills, Periye, Kasaragod-671320, Kerala, India.
| |
Collapse
|
7
|
Wang Y, Ji Y, Li K, Huang Q. Foam fractionation and electrochemical oxidation for the treatment of per- and polyfluoroalkyl substances (PFAS) in environmental water samples. CHEMOSPHERE 2023; 339:139615. [PMID: 37499808 DOI: 10.1016/j.chemosphere.2023.139615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Treatment of waters contaminated by per- and polyfluoroalkyl substances (PFAS) in large volumes remains a challenge to date. Treatment trains comprising separation and destruction technologies are promising to manage PFAS contamination. Foam fractionation (FF) and electrochemical oxidation (EO) are two cost-effective technologies for PFAS separation and destruction, respectively. This work systematically explored the performance of a treatment train of FF followed by EO (FF-EO) for treating PFAS in environmental water samples. For each treatment step, the dependence of the treatment performance on operational factors and other variables were analyzed statistically. The statistical analysis revealed PFAS enrichment and removal depend significantly on PFAS carbon chain length, solution conductivity, and PFAS concentration. Whether FF-EO treatment costs less energy than direct EO without FF mainly relies upon PFAS carbon chain length and TOC content in the sample. Both correlations were found to be linear. For all environmental water samples in this study, FF-EO is more energy-efficient than EO alone.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Yuqing Ji
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Ke Li
- College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|
8
|
Smith SJ, Keane C, Ahrens L, Wiberg K. Integrated Treatment of Per- and Polyfluoroalkyl Substances in Existing Wastewater Treatment Plants-Scoping the Potential of Foam Partitioning. ACS ES&T ENGINEERING 2023; 3:1276-1285. [PMID: 37705672 PMCID: PMC10496112 DOI: 10.1021/acsestengg.3c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023]
Abstract
Foam fractionation is becoming increasingly popular as a treatment technology for water contaminated with per- and polyfluoroalkyl substances (PFAS). At many existing wastewater treatment facilities, particularly in aerated treatment steps, foam formation is frequently observed. This study aimed to investigate if foam fractionation for the removal of PFAS could be integrated with such existing treatment processes. Influent, effluent, water under the foam, and foam were sampled from ten different wastewater treatment facilities where foam formation was observed. These samples were analyzed for the concentration of 29 PFAS, also after the total oxidizable precursor (TOP) assay. Enrichment factors were defined as the PFAS concentration in the foam divided by the PFAS concentration in the influent. Although foam partitioning did not lead to decreased ∑PFAS concentrations from influent to effluent in any of the plants, certain long-chain PFAS were removed with efficiencies up to 76%. Moreover, ∑PFAS enrichment factors in the foam ranged up to 105, and enrichment factors of individual PFAS ranged even up to 106. Moving bed biofilm reactors (MBBRs) were more effective at enriching PFAS in the foam than activated sludge processes. Altogether, these high enrichment factors demonstrate that foam partitioning in existing wastewater treatment plants is a promising option for integrated removal. Promoting foam formation and removing foam from the water surface with skimming devices may improve the removal efficiencies further. These findings have important implications for PFAS removal and sampling strategies at wastewater treatment plants.
Collapse
Affiliation(s)
- Sanne J. Smith
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Chantal Keane
- Queensland
Alliance for Environmental Health Sciences, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Karin Wiberg
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| |
Collapse
|
9
|
Smith SJ, Lauria M, Ahrens L, McCleaf P, Hollman P, Bjälkefur Seroka S, Hamers T, Arp HPH, Wiberg K. Electrochemical Oxidation for Treatment of PFAS in Contaminated Water and Fractionated Foam-A Pilot-Scale Study. ACS ES&T WATER 2023; 3:1201-1211. [PMID: 37090120 PMCID: PMC10111409 DOI: 10.1021/acsestwater.2c00660] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic contaminants that are present globally in water and are exceptionally difficult to remove during conventional water treatment processes. Here, we demonstrate a practical treatment train that combines foam fractionation to concentrate PFAS from groundwater and landfill leachate, followed by an electrochemical oxidation (EO) step to degrade the PFAS. The study combined an up-scaled experimental approach with thorough characterization strategies, including target analysis, PFAS sum parameters, and toxicity testing. Additionally, the EO kinetics were successfully reproduced by a newly developed coupled numerical model. The mean total PFAS degradation over the designed treatment train reached 50%, with long- and short-chain PFAS degrading up to 86 and 31%, respectively. The treatment resulted in a decrease in the toxic potency of the water, as assessed by transthyretin binding and bacterial bioluminescence bioassays. Moreover, the extractable organofluorine concentration of the water decreased by up to 44%. Together, these findings provide an improved understanding of a promising and practical approach for on-site remediation of PFAS-contaminated water.
Collapse
Affiliation(s)
- Sanne J. Smith
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Melanie Lauria
- Department
of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 10691 Stockholm, Sweden
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Philip McCleaf
- Uppsala
Water and Waste AB, P.O. Box 1444, SE-751 44 Uppsala, Sweden
| | | | | | - Timo Hamers
- Amsterdam
Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), P.O. Box
3930, Ullevål Stadion, NO-0806 Oslo, Norway
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Karin Wiberg
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| |
Collapse
|
10
|
AlJaberi FY, Ahmed SA, Makki HF, Naje AS, Zwain HM, Salman AD, Juzsakova T, Viktor S, Van B, Le PC, La DD, Chang SW, Um MJ, Ngo HH, Nguyen DD. Recent advances and applicable flexibility potential of electrochemical processes for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161361. [PMID: 36610626 DOI: 10.1016/j.scitotenv.2022.161361] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
This study examined >140 relevant publications from the last few years (2018-2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending on the in-situ conditions, as evidenced by surveyed articles and statistical analyses. This work also examines the variables affecting the elimination efficacy, such as the applied current, reaction time, pH, type of electrolyte, initial pollutant concentration, and energy consumption. In addition, owing to its efficacy in removing toxins, the hybrid activity showed a good percentage among the studies reviewed. The promise of each wastewater treatment technology depends on the type of contamination. In some cases, EO requires additives to oxidise the pollutants. EF and EFN eliminated lightweight organic pollutants. ED has been used to treat saline water. Compared to other methods, EC has been extensively employed to remove a wide variety of contaminants.
Collapse
Affiliation(s)
- Forat Yasir AlJaberi
- Chemical Engineering Department, College of Engineering, Al-Muthanna University, Al-Muthanna, Iraq.
| | - Shaymaa A Ahmed
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Hasan F Makki
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ahmed Samir Naje
- College of Engineering, Al-Qasim Green University, Al-Qasim Province, 51001 Babylon, Iraq
| | - Haider M Zwain
- College of Engineering, Al-Qasim Green University, Al-Qasim Province, 51001 Babylon, Iraq
| | - Ali Dawood Salman
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary; Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University, Iraq
| | - Tatjána Juzsakova
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary
| | - Sebestyen Viktor
- Sustainability Solutions Research Lab, University of Pannonia, Veszprém, Hungary
| | - B Van
- Institute of Research and Development, Duy Tan University, 550000 Danang, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, 550000 Danang, Viet Nam.
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Danang 550000, Viet Nam.
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi 100000, Viet Nam
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
| | - Myoung-Jin Um
- Department of Civil Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
11
|
Mirabediny M, Sun J, Yu TT, Åkermark B, Das B, Kumar N. Effective PFAS degradation by electrochemical oxidation methods-recent progress and requirement. CHEMOSPHERE 2023; 321:138109. [PMID: 36787844 DOI: 10.1016/j.chemosphere.2023.138109] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The presence of per- and poly-fluoroalkyl substances (PFASs) in water is of global concern due to their high stability and toxicity even at very low concentrations. There are several technologies for the remediation of PFASs, but most of them are inadequate either due to limited effectiveness, high cost, or production of a large amount of sludge. Electrochemical oxidation (EO) technology shows great potential for large-scale application in the degradation of PFASs due to its simple procedure, low loading of chemicals, and least amount of waste. Here, we have reviewed the recent progress in EO methods for PFAS degradation, focusing on the last 10 years, to explore an efficient, cost-effective, and environmentally benign remediation technology. The effects of important parameters (e.g., anode material, current density, solution pH, electrolyte, plate distance, and electrical connector type) are summarized and evaluated. Also, the energy consumption, the consequence of different PFASs functional groups, and water matrices are discussed to provide an insight that is pivotal for developing new EO materials and technologies. The proposed degradation pathways of shorter-chain PFAS by-products during EO of PFAS are also discussed.
Collapse
Affiliation(s)
- Maryam Mirabediny
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Jun Sun
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Tsz Tin Yu
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia.
| |
Collapse
|
12
|
Veciana M, Bräunig J, Farhat A, Pype ML, Freguia S, Carvalho G, Keller J, Ledezma P. Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128886. [PMID: 35436757 DOI: 10.1016/j.jhazmat.2022.128886] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Electrochemical oxidation (EO) is emerging as one of the most promising methods for the degradation of recalcitrant per- and poly-fluoroalkyl substances (PFASs) in water and wastewater, as these compounds cannot be effectively treated with conventional bio- or chemical approaches. This review examines the state of the art of EO for PFASs destruction, and comprehensively compares operating parameters and treatment performance indicators for both synthetic and real contaminated water and wastewater media. The evaluation shows the need to use environmentally-relevant media to properly quantify the effectiveness/efficiency of EO for PFASs treatment. Additionally, there is currently a lack of quantification of sorption losses, resulting in a likely over-estimation of process' efficiencies. Furthermore, the majority of experimental results to date indicate that short-chain PFASs are the most challenging and need to be prioritized as environmental regulations become more stringent. Finally, and with a perspective towards practical implementation, several operational strategies are proposed, including processes combining up-concentration followed by EO destruction.
Collapse
Affiliation(s)
- Mersabel Veciana
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane QLD 4102, Australia
| | - Ali Farhat
- GHD Pty Ltd, Brisbane QLD 4000, Australia
| | - Marie-Laure Pype
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Jürg Keller
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Pablo Ledezma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
13
|
Degradation of Azo Dyes with Different Functional Groups in Simulated Wastewater by Electrocoagulation. WATER 2022. [DOI: 10.3390/w14010123] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing attention has been paid to the widespread contamination of azo dyes in water bodies globally. These chemicals can present high toxicity, possibly causing severe irritation of the respiratory tract and even carcinogenic effects. The present study focuses on the periodically reverse electrocoagulation (PREC) treatment of two typical azo dyes with different functional groups, involving methyl orange (MO) and alizarin yellow (AY), using Fe-Fe electrodes. Based upon the comparative analysis of three main parameters, including current intensity, pH, and electrolyte, the optimal color removal rates for MO and AY could be achieved at a rate of up to 98.7% and 98.6%, respectively, when the current intensity is set to 0.6 A, the pH is set at 6.0, and the electrolyte is selected as NaCl. An accurate predicted method of response surface methodology (RSM) was established to optimize the PREC process involving the three parameters above. The reaction time was the main influence for both azo dyes, while the condition of PREC treatment for AY simulated wastewater was time-saving and energy conserving. According to the further UV–Vis spectrophotometry analysis throughout the procedure of the PREC process, the removal efficiency for AY was better than that of MO, potentially because hydroxyl groups might donate electrons to iron flocs or electrolyze out hydroxyl free radicals. The present study revealed that the functional groups might pose a vital influence on the removal efficiencies of the PREC treatment for those two azo dyes.
Collapse
|
14
|
Román Santiago A, Baldaguez Medina P, Su X. Electrochemical remediation of perfluoroalkyl substances from water. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Li M, Mo CH, Luo X, He KY, Yan JF, Wu Q, Yu PF, Han W, Feng NX, Yeung KL, Zhou SQ. Exploring key reaction sites and deep degradation mechanism of perfluorooctane sulfonate via peroxymonosulfate activation under electrocoagulation process. WATER RESEARCH 2021; 207:117849. [PMID: 34785408 DOI: 10.1016/j.watres.2021.117849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctane sulfonate (PFOS), normally present in groundwater and surface water, is an emerging environmental contaminants, but is extremely difficult to be degraded due to high energy of the C-F bond. Here, an electrocoagulation (EC) technique coupled with peroxymonosulfate (PMS) activation was used to deeply degrade PFOS. Results showed that approximately 100% PFOS was removed from the solution in the monopolar serial (MS) mode within 60 min and achieved a high kinetic rate of 0.074 min-1, which was significantly higher than those of reported studies (Table S3). Energy consumption (2.06 kWh/kg) in the MS mode was significantly lower than that of Al (52.30 kWh/kg) and Zn (213.50 kWh/kg) electrodes, which further confirmed the potential application prospects of EC technique. The quenching experiments, electron spin response (ESR) analysis, and DFT calculations can verify that ·OH was the main radical from the reaction of Fe2+-OH reaction site with PMS. In addition, results from fluorine balance and TOC removal also indicated the complete mineralization and degradation of PFOS in the EC process. Quantum chemical calculations can confirm the PFOS degradation mechanism and key active sites for direct electron transfer and radical attack. After five cycle operations of PFOS degradation, the EC process was still effective in degrading PFOS with a removal efficiency above 98%. Thus, this work provided a novel alternative for the high-effective treatment of PFOS from contaminated environmental water bodies.
Collapse
Affiliation(s)
- Meng Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, PR. China..
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| | - Xuan Luo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Ke-Ying He
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jian-Fang Yan
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Qiong Wu
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, PR. China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei Han
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, PR. China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - King Lun Yeung
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, PR. China.; Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, PR. China..
| | - Shao-Qi Zhou
- College of Resources and Environmental Engineering, Guizhou University, 2708 Huaxi Road, Guiyang 550025, PR China.
| |
Collapse
|