1
|
Wang Y, Cheng B, Jia Y, Qi Y, Li H, Zhang Q, Wang H. Fate of antibiotic resistance genes during sludge anaerobic fermentation: Roles of different sludge pretreatment. ENVIRONMENTAL RESEARCH 2024; 263:120139. [PMID: 39393457 DOI: 10.1016/j.envres.2024.120139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Excess sludge, the primary by-product of wastewater treatment plants, is the source and sink of antibiotic resistance genes (ARGs). Sludge pretreatments are an indispensable pathway to improve the resource recovery and harmfulness for anaerobic digestion sludge. However, fewer studies have compared the effects of different pretreatment technologies on the distribution of ARGs during anaerobic sludge digestion. Here, this study established seven anaerobic digesters, and four typical ARGs and one integrase gene of class 1 integron (intI1) regarded as the representative mobile genetic elements (MGEs) were examined during the whole anaerobic digestion process. It was found anaerobic digestion could effectively remove ARGs with about 70.86% removal rate of total ARGs. Among these pretreatments, the reduce efficiency of ARGs was the highest in 50 °C pretreatment, followed by oxidant, and the last was acid-alkaline. The microbial community analysis demonstrated the microbial community structure, including ARGs hosts and antibiotic resistant bacteria, was significantly changed and influenced by high temperature pretreatment. In addition, high temperature and K2S2O8 observably decrease the level of ROS production. Macro transcriptome analysis indicated that sludge pretreatment, except for 50 °C pretreatment, up-regulated the genes relevant to lyases and transferase, but down-regulated the genes responsible for peroxidase, antioxidant enzymes and T4SS gene. This study emphasized and compared the different sludge pretreatments on the fate of ARGs in anaerobic sludge, and highlighted concerns regarding the environmental and health risks to our society.
Collapse
Affiliation(s)
- Yali Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Boya Cheng
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Yuanyuan Jia
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Yuxuan Qi
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Hang Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Qiushuo Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China.
| |
Collapse
|
2
|
Song H, Chen WJ, Chen SF, Liu M, Si G, Zhu X, Bhatt K, Mishra S, Ghorab MA, Chen S. Unveiling the hydrolase Oph2876 mediated chlorpyrifos degradation mechanism in Pseudomonas nitroreducens and its potential for environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 483:136570. [PMID: 39603136 DOI: 10.1016/j.jhazmat.2024.136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Chlorpyrifos contamination is a currently on-going issue with significant environmental impacts. As such, rapid and effective techniques that remove chlorpyrifos from the environment are urgently required. Here, a strain of Pseudomonas nitroreducens W-7 exhibited exceptional degradation ability towards both chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol (TCP). W-7 can effectively reduce the toxicity of chlorpyrifos and TCP towards a variety of sensitive organisms through its superior degradation capacity. W-7 demonstrated efficient soil bioremediation by removing over 50 % of chlorpyrifos (25 mg/kg) from both sterile and non-sterile soils within 5 days, with significantly reduced half-lives. Additionally, 16S rDNA high-throughput sequencing of the soil revealed that the introduction of W-7 had no significant impact on the soil microbial community. A pivotal hydrolase Oph2876 containing conserved motif (HxHxDH) and a bimetallic catalytic center was identified from W-7. Oph2876 was a heat- and alkali-resistant enzyme with low sequence similarity (< 44 %) with other reported organophosphorus hydrolases, with a better substrate affinity for hydrolysis of chlorpyrifos to TCP. The molecular docking and site-directed mutagenesis studies indicated that the amino acid residues Asp235, His214, and His282, which were associated with the conserved sequence "HxHxDH", were crucial for the activity of Oph2876. These findings contribute to a better understanding of the biodegradation mechanism of chlorpyrifos and present useful agents for the development of effective chlorpyrifos bioremediation strategies.
Collapse
Affiliation(s)
- Haoran Song
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Liu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guiling Si
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xixian Zhu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Kalpana Bhatt
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI 48824, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616-8741, USA
| | - Shaohua Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Yang B, Li J, Wang J. Optimization of catalytic wet air oxidation process in microchannel reactor for TBBS wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2024; 45:5104-5112. [PMID: 37955604 DOI: 10.1080/09593330.2023.2283802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023]
Abstract
Catalytic wet air oxidation (CWAO) process is employed for the treatment of N-tert-butyl-2-benzothiazolesulfenamide (TBBS) wastewater in a microchannel reactor that enables continuous operation of the reaction and allows for thorough mixing of oxygen and pollutants. To achieve the optimal process performance, four key parameters of pressure, temperature, time, and the mass ratio of input oxygen to wastewater COD are optimized using both response surface methodology (RSM) and backpropagation artificial neural network (BP-ANN). According to the correlation coefficients of model results and experimental data, BP-ANN performs better than RSM in simulation and prediction. The analysis of variance in RSM shows that all parameters are significant for the obtained quadratic model, but their interactions with each other are not significant. Connection weights algorithm is used to determine the relative importance of these parameters for the process efficiency, and it is demonstrated that temperature is the most influential parameter with a relative importance of 35.61%, followed by pressure (29.74%), time (19.53%) and ROC (15.12%).
Collapse
Affiliation(s)
- Bo Yang
- Capital Construction Office, Changzhou University, Changzhou, People's Republic of China
| | - Jiankang Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| | - Jipeng Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, People's Republic of China
| |
Collapse
|
4
|
Ahmed I, Zhuang Z, Umar Farooq M, Li H, Wang S, Zhong Y, Zhang L, Zhang B. Efficient reduction of antibiotic resistance genes and mobile genetic elements in organic waste composting via fenton-like treatment. BIORESOURCE TECHNOLOGY 2024; 410:131306. [PMID: 39155020 DOI: 10.1016/j.biortech.2024.131306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Livestock manure harbors antibiotic resistance genes (ARGs), and aerobic composting (AC) is widely adopted for waste management. However, mitigating ARG resurgence in later stages remains challenging. This work aims to curb ARGs rebounding through a Fenton-like reaction during food waste and swine manure co-composting. Results revealed that 0.025 % zerovalent iron (ZVI) + 0.5 % hydrogen peroxide (H2O2) facilitated maximum ARG, mobile genetic elements (MGEs), and 16 s rRNA removal with reductions of 2.68, 2.69, and 1.4 logs. Spectroscopic analysis confirmed Fenton-like reaction and cell apoptosis analysis indicated that 0.025 % ZVI and 0.5 % H2O2 treatment had the maximum early apoptosis, least observed, and normal cells on day 30. Redundancy analysis highlighted the influence of bacterial communities and physicochemical properties on ARGs, with MGEs playing a crucial role in Fenton treatments. Our findings suggest incorporating ZVI and H2O2 in composting can significantly reduce ARGs and enhance waste management practices.
Collapse
Affiliation(s)
- Imtiaz Ahmed
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixian Zhuang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Umar Farooq
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Shiquan Wang
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Yanxia Zhong
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
5
|
Xu Y, Ma B, Zhang Y, Fan Y. Optimal Preparation and Performance Study of Eco-Friendly Composite Chemical Dust Suppressants: A Case Study in a Construction Site in Chengdu. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2346. [PMID: 38793412 PMCID: PMC11122889 DOI: 10.3390/ma17102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
To mitigate dust pollution generated during various stages of construction activities and reduce the environmental and health hazards posed by airborne dust, this study utilized hydroxyethyl cellulose, glycerol, and isomeric tridecyl alcohol polyoxyethylene ether as raw materials to formulate a composite chemical dust suppressant. The properties of the dust suppressant were characterized through analysis. Employing single-factor experiments, the optimal proportions of the binder, water-retaining agent, and surfactant for the composite dust suppressant were determined. Subsequently, a response surface model was established, and, after analysis and optimization, the optimal mass ratios of each component in the composite dust suppressant were obtained. Under optimal ratios, the physicochemical properties and wind erosion resistance of the composite dust suppressant were analyzed. Finally, the practical application of the suppressant was validated through on-site trials at a construction site. This study revealed that the optimal formulation for the dust suppressant was as follows: 0.2% hydroxyethyl cellulose, 2.097% glycerol, 0.693% isomeric tridecyl alcohol polyoxyethylene ether, and the remainder was pure water. The suppressant is non-toxic, non-corrosive, environmentally friendly, and exhibits excellent moisture retention and bonding properties compared to water. The research findings provide valuable insights for addressing dust pollution issues on construction sites.
Collapse
Affiliation(s)
| | | | - Yingda Zhang
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
| | | |
Collapse
|
6
|
Luo L, Wang Z, Huang X, Gu JD, Yu C, Deng O. The fate of antibiotic resistance genes in wastewater containing microalgae treated by chlorination, ultra-violet, and Fenton reaction. WATER RESEARCH 2024; 254:121392. [PMID: 38430757 DOI: 10.1016/j.watres.2024.121392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Antibiotic resistance genes (ARGs) and bacteria (ARBs) in the effluent of wastewater treatment plants (WWTPs) are of utmost importance for the dissemination of ARGs in natural aquatic environments. Therefore, there is an urgent need for effective technologies to eliminate WWTP ARGs/ARBs and mitigate the associated risks posed by the discharged ARG in aquatic environments. To test the effective technology for eliminating ARGs/ARBs, we compared the removal of ARGs and ARBs by three different tertiary treatments, namely ultra-violet (UV) disinfection, chlorination disinfection, and Fenton oxidation. Then, the treated wastewater was co-cultured with Chlorella vulgaris (representative of aquatic biota) to investigate the fate of discharged ARGs into the aquatic environment. The results demonstrated that chlorination (at a chlorine concentration of 15 mg/L) and Fenton (at pH 2.73, with 0.005 mol/L Fe2+ and 0.0025 mol/L H2O2) treatment showed higher efficacy in ARG removal (1.8 - 4.17 logs) than UV treatment (15 min) (1.29 - 3.87 logs). Moreover, chlorine at 15 mg/L and Fenton treatment effectively suppressed ARB regeneration while UV treatment for 15 min could not. Regardless of treatments tested in this study, the input of treated wastewater to the Chlorella system increased the number of ARGs and mobile genetic elements (MGEs), indicating the potential risk of ARG dissemination associated with WWTP discharge. Among the wastewater-Chlorella co-culture systems, chlorination resulted in less of an increase in the number of ARGs and MGEs compared to Fenton and UV treatment. When comparing the wastewater systems to the co-culture systems, it was observed that Chlorella vulgaris reduced the number of ARGs and MGEs in chlorination and UV-treated wastewater; however, Chlorella vulgaris promoted ARG survival in Fenton-treated water, suggesting that aquatic microalgae might act as a barrier to ARG dissemination. Overall, chlorination treatment not only effectively removes ARGs and inhibits ARB regeneration but also shows a lower risk of ARG dissemination. Therefore, chlorination is recommended for practical application in controlling the spread of discharged ARGs from WWTP effluent in natural aquatic environments.
Collapse
Affiliation(s)
- Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Zimu Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xin Huang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, Shantou 515063, PR China
| | - Chenxiao Yu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China; College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
7
|
Li J, Liu S, Yang C, Keyhani NO, Pu H, Lin L, Li X, Jia P, Wu D, Pan J, Stevenson PC, Fernández-Grandon GM, Zhang L, Chen Y, Guan X, Qiu J. Characterization of an α-Amylase from the Honeybee Chalk Brood Pathogen Ascosphaera apis. J Fungi (Basel) 2023; 9:1082. [PMID: 37998887 PMCID: PMC10672707 DOI: 10.3390/jof9111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The insect pathogenic fungus, Ascosphaera apis, is the causative agent of honeybee chalk brood disease. Amylases are secreted by many plant pathogenic fungi to access host nutrients through the metabolism of starch, and the identification of new amylases can have important biotechnological applications. Production of amylase by A. apis in submerged culture was optimized using the response surface method (RSM). Media composition was modeled using Box-Behnken design (BBD) at three levels of three variables, and the model was experimentally validated to predict amylase activity (R2 = 0.9528). Amylase activity was highest (45.28 ± 1.16 U/mL, mean ± SE) in media composed of 46 g/L maltose and1.51 g/L CaCl2 at a pH of 6.6, where total activity was ~11-fold greater as compared to standard basal media. The enzyme was purified to homogeneity with a 2.5% yield and 14-fold purification. The purified enzyme had a molecular weight of 75 kDa and was thermostable and active in a broad pH range (> 80% activity at a pH range of 7-10), with optimal activity at 55 °C and pH = 7.5. Kinetic analyses revealed a Km of 6.22 mmol/L and a Vmax of 4.21 μmol/mL·min using soluble starch as the substrate. Activity was significantly stimulated by Fe2+ and completely inhibited by Cu2+, Mn2+, and Ba2+ (10 mM). Ethanol and chloroform (10% v/v) also caused significant levels of inhibition. The purified amylase essentially exhibited activity only on hydrolyzed soluble starch, producing mainly glucose and maltose, indicating that it is an endo-amylase (α-amylase). Amylase activity peaked at 99.38 U/mL fermented in a 3.7 L-bioreactor (2.15-fold greater than what was observed in flask cultures). These data provide a strategy for optimizing the production of enzymes from fungi and provide insight into the α-amylase of A. apis.
Collapse
Affiliation(s)
- Jincheng Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Sen Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Chenjie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA;
| | - Huili Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Longbin Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Xiaoxia Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Peisong Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Jieming Pan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Philip C. Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.C.S.); (G.M.F.-G.)
| | | | - Liaoyuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Yuxi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junzhi Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (S.L.); (C.Y.); (H.P.); (L.L.); (X.L.); (L.Z.); (Y.C.)
| |
Collapse
|
8
|
Peng Q, Lü X, Ou J, Zhou Y, Xu T, Hu B, Yu G, Zhu C, Xie Z. Study on removal of phosphorus and COD in wastewater by sinusoidal AC Fenton oxidation-coagulation. ENVIRONMENTAL TECHNOLOGY 2023; 44:3382-3392. [PMID: 35332842 DOI: 10.1080/09593330.2022.2058423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In order to treat domestic wastewater containing phosphorus and chemical oxygen demand (COD), the new technology of Sinusoidal Alternating Current (AC) Fenton Oxidation-Coagulation (SACFOC) was used to improve the removal efficiency (Re) and reduce energy consumption (EEC). The morphology, elemental composition, crystal structure and functional groups of the sludge were characterised by Scanning Electron Microscope (SEM), Energy-dispersive X-ray Spectroscopy (EDS), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The results show that total phosphorus removal efficiency {Re(TP)} and removal efficiency of organic matter {Re(COD)} can reach 97.56% and 87.77%, respectively, but EEC is only 0.09 kWh·m-3 under the optimum conditions of pH0 = 3, current density (j) = 0.5 A·m-2, c0(TP) = 18 mg·dm-3, c0(COD) = 300 mg·dm-3, c0(H2O2) = 0.06 mol·dm-3, t = 45 min. As compared with direct current (DC) Fenton Oxidation-Coagulation (DCFOC), the COD removal efficiency of SACFOC treatment was improved by 37%, but the energy consumption was reduced by 45%. The degradation process of total phosphorus and COD by SACFOC abides by the quasi-first-order kinetic model. The process of SACFOC includes double effects of electrocoagulation of iron sol by electrolysis and degrade COD by oxidation of formed hydroxyl radicals (·OH) in wastewater, which improves removal efficiency of total phosphorus and COD in wastewater. Our research findings will provide technical guidance and a theoretical basis for the simultaneous treatment of wastewater containing phosphorus and COD applying SACFOC process.
Collapse
Affiliation(s)
- Qingjuan Peng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Xiaoliu Lü
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Jinhua Ou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
- Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, People's Republic of China
| | - Yihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Tao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Bonian Hu
- Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang, People's Republic of China
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | - Chunyou Zhu
- Aerospace kaitian Environmental Technology Co., Ltd, Changsha, People's Republic of China
| | - Zhihui Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People's Republic of China
| |
Collapse
|
9
|
Liu T, Li J, Lei H, Zhen X, Wang Y, Gou D, Zhao J. Preparation of Chitosan/β-Cyclodextrin Composite Membrane and Its Adsorption Mechanism for Proteins. Molecules 2023; 28:3484. [PMID: 37110716 PMCID: PMC10143531 DOI: 10.3390/molecules28083484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A significant portion of the protein in food waste will contaminate the water. The chitosan/modified β-cyclodextrin (CS/β-CDP) composite membranes were prepared for the adsorption of bovine serum albumin (BSA) in this work to solve the problem of poor adsorption protein performance and easy disintegration by a pure chitosan membrane. A thorough investigation was conducted into the effects of the preparation conditions (the mass ratio of CS and β-CDP, preparation temperature, and glutaraldehyde addition) and adsorption conditions (temperature and pH) on the created CS/β-CDP composite membrane. The physical and chemical properties of pure CS membrane and CS/β-CDP composite membrane were investigated. The results showed that CS/β-CDP composite membrane has better tensile strength, elongation at break, Young's modulus, contact angle properties, and lower swelling degree. The physicochemical and morphological attributes of composite membranes before and after the adsorption of BSA were characterized by SEM, FT-IR, and XRD. The results showed that the CS/β-CDP composite membrane adsorbed BSA by both physical and chemical mechanisms, and the adsorption isotherm, kinetics, and thermodynamic experiments further confirmed its adsorption mechanism. As a result, the CS/β-CDP composite membrane of absorbing BSA was successfully fabricated, demonstrating the potential application prospect in environmental protection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| |
Collapse
|
10
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023. [DOI: 10.3390/catal13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH•) generated from an oxidizing agent (H2O2 or O2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e− route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e− catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e− and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e− processes are summarized.
Collapse
|
11
|
Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. TOXICS 2023; 11:185. [PMID: 36851059 PMCID: PMC9965714 DOI: 10.3390/toxics11020185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.
Collapse
Affiliation(s)
- Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
12
|
Lv H, Liu Y, Wu X, Lv R, Zhou X, Ma X, Xiong Q. A closed-loop electrokinetic system for recovery of PbO 2@Fe composite derived from lead-containing sludge. CHEMOSPHERE 2022; 304:135338. [PMID: 35709836 DOI: 10.1016/j.chemosphere.2022.135338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Lead-containing sludge produced from lead-acid battery factory will cause environmental hazards if they are not treated properly. A novel process was developed to recycle lead from sludge back into Fe-doped PbO2 electrodes and realize sludge reduction in this study. The effects of Fenton conditioning on Pb removal efficiency in electro-kinetic (EK) treatment process and its mechanism as well as electro-dewatering (ED) performance were investigated. It was found that the oxidation of Fenton can promote desorption and release of Pb from the organic binding state, and improve the removal efficiency of Pb during EK process, as well as enhance sludge ED performance. About 63.8 wt% Pb can be removed from sludge during EK process, achieving sludge reduction of 63.5 wt% by ED treatment. The composite PbO2@Fe electrode recovered from lead-containing sludge showed a high electrocatalytic activity for acid red G (ARG) degradation. The electrode obtained by electrodeposition at 20 mA cm-2 had the largest exchange current density (3.26 × 10-5 A cm-2). In the experiment of dye wastewater electrocatalytic degradation, over 99.5% organic matter was degraded within 80 min.
Collapse
Affiliation(s)
- Hang Lv
- Hubei Engineering University, Wuhan, Hubei, 432000, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yao Liu
- College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, Hubei, 430065, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ruibing Lv
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiangjun Zhou
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Xiao Ma
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Qiao Xiong
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, Hubei, 435002, China.
| |
Collapse
|
13
|
Luo L, Deng D, Zhao X, Hu H, Li X, Gu J, He Y, Yang G, Deng O, Xiao Y. The Dual Roles of Nano Zero-Valent Iron and Zinc Oxide in Antibiotics Resistance Genes (ARGs) SPREAD in Sediment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159405. [PMID: 35954758 PMCID: PMC9368363 DOI: 10.3390/ijerph19159405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
Nanoparticles (NPs) are widely used and ubiquitous in the environment, but the consequences of their release into the environment on antibiotics resistance genes (ARGs), microbial abundance, and community, are largely unknown. Therefore, this study examined the effect of nano zero-valent iron (nZVI) and zinc oxide (nZnO) on tetracycline resistance genes (tet-ARGs) and class 1 integron (intI1) in sediment under laboratory incubation. The coexistence of NPs and tetracycline (TC) on tet-ARGs/intI1 was also investigated. It was found that nZVI and nZnO promoted tet-ARGs/intI1 abundance in sediment without TC but reduced the inducing effect of TC on tet-ARGs/intI1 in sediment overlaid with TC solution. Without TC, nZVI, intI1, and the bacterial community could directly promote tet-ARGs spread in nZVI sediment, while intI1 and bacterial abundance were the most directly important reasons for tet-ARGs spread in nZnO sediment. With TC, nZVI and bacterial community could reduce tet-ARGs abundance in nZVI sediment, while nZnO and bacterial community could directly promote tet-ARGs in nZnO sediment. Finally, these findings provided valuable information for understanding the role of NPs in promoting and reducing ARGs in the environment.
Collapse
Affiliation(s)
- Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
- Correspondence: (L.L.); (Y.X.)
| | - Dahang Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Xin Zhao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Hairong Hu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Xinyi Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Jidong Gu
- Environmental Science and Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou 515063, China;
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, China;
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (X.Z.); (H.H.); (X.L.); (Y.H.); (G.Y.)
- Correspondence: (L.L.); (Y.X.)
| |
Collapse
|
14
|
Ozturk D. Fe 3O 4/Mn 3O 4/ZnO-rGO hybrid quaternary nano-catalyst for effective treatment of tannery wastewater with the heterogeneous electro-Fenton process: Process optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154473. [PMID: 35278567 DOI: 10.1016/j.scitotenv.2022.154473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
This study investigated chemical oxygen demand (COD) removal from tannery wastewater (TWW) with a novel Fe3O4/Mn3O4/ZnO-rGO heterogeneous electro Fenton (HEF) hybrid magnetically-separable nano-catalyst. The graphite cathode and Ti/IrO2/RuO2 anode were used in the HEF process. With aeration (2 L/min), in-situ H2O2 generation occurred. The nano-catalyst was characterized by XRD, XPS, DLS, FT-IR, ζ potential, SEM, TEM, and BET techniques in detail. The system was modelled with a central composite design and optimized numerically. The established model was adequate, valid, reliable, and reproducible to predict the COD removal efficiency. OH and O2- were the oxidative species responsible for organic matter degradation. The effect of different processes was investigated, and efficiency was ranked from high to low as; HEF > anodic oxidation-H2O2 > anodic oxidation > adsorption. Under the optimum conditions; pH: 3.5, current density: 7.37 mA/cm2, reaction time: 79.43 min, and catalyst dose: 0.06 g/L, COD removal efficiency reached a maximum of 97.08%. The energy consumption and cost to remove 1 kg COD were 10.87 kWh and $1.41. The degradation of COD fitted the pseudo-first-order model. The nano-catalyst was stable and reusable with a minimum yield of 78.12% after 5 cycles.
Collapse
Affiliation(s)
- Dilara Ozturk
- Department of Environmental Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van, Turkey.
| |
Collapse
|
15
|
Zhao X, Wang Z, Xu T, Feng Z, Liu J, Luo L, He Y, Xiao Y, Peng H, Zhang Y, Deng O, Zhou W. The fate of antibiotic resistance genes and their influential factors during excess sludge composting in a full-scale plant. BIORESOURCE TECHNOLOGY 2021; 342:126049. [PMID: 34592456 DOI: 10.1016/j.biortech.2021.126049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The alteration of antibiotic resistance genes (ARGs) during sludge composting has been less studied in a full-scale plant, causing the miss of practical implications for understanding/managing ARGs. Therefore, this study tracked the changes of ARGs and microbial communities in a full-scale plant engaged in excess sludge composting and then explored the key factors regulating ARGs through a series of analyses. After composting, the absolute and relative abundance of ARGs decreased by 91.90% and 66.57%, respectively. Additionally, pathway analysis showed that MGEs, composting physicochemical properties were the most vital factors directly influencing ARGs. Finally, network analysis indicated that Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria were the main hosts of ARGs. Based on these findings, it can be known that full-scale composting could reduce ARGs risk to an extent.
Collapse
Affiliation(s)
- Xin Zhao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zimu Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Tao Xu
- Hangzhou Chunlai Technology Co., Ltd., Hangzhou 310052, PR China
| | - Zhihan Feng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jie Liu
- Chengdu Lvshan Biotechnology Co., Ltd., Chengdu 611139, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hong Peng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yanzong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|