1
|
Paniagua-López M, Silva-Castro GA, Romero-Freire A, Martín-Peinado FJ, Sierra-Aragón M, García-Romera I. Integrating waste valorization and symbiotic microorganisms for sustainable bioremediation of metal(loid)-polluted soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174030. [PMID: 38885698 DOI: 10.1016/j.scitotenv.2024.174030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Remediation strategies for metal(loid)-polluted soils vary among the wide range of approaches, including physical, chemical, and biological remediation, or combinations of these. In this study, we assessed the effectiveness of a set of soil remediation treatments based on the combined application of inorganic (marble sludge) and organic amendments (vermicompost, and dry olive residue [DOR] biotransformed by the saprobic fungi Coriolopsis rigida and Coprinellus radians) and inoculation with arbuscular mycorrhizal fungi (AMFs) (Rhizophagus irregularis and Rhizoglomus custos). The treatments were applied under greenhouse conditions to soil residually polluted by potentially toxic elements (PTEs) (Pb, As, Zn, Cu, Cd, and Sb), and wheat was grown in the amended soils to test the effectiveness of the treatments in reducing soil toxicity and improving soil conditions and plant performance. Therefore, we evaluated the influence of the treatments on the main soil properties and microbial activities, as well as on PTE availability and bioaccumulation in wheat plants. Overall, the results showed a positive influence of all treatments on the main soil properties. Treatments consisting of a combination of marble and organic amendments, especially biotransformed DOR amendments, showed the greatest effectiveness in improving the soil biological status, promoting plant growth and survival, and reducing PTE availability and plant uptake. Furthermore, AMF inoculation further enhanced the efficacy of DOR amendments by promoting the immobilization of PTEs in soil and stimulating the phytostabilization mechanisms induced by AMFs, thus playing an important bioprotective role in plants. Therefore, our results highlight that biotransformed DOR may represent an efficient product for use as a soil organic amendment when remediating metal(loid)-polluted soils, and that its application in combination with AMFs may represent a promising sustainable bioremediation strategy for recovering soil functions and reducing toxicity in polluted areas.
Collapse
Affiliation(s)
- Mario Paniagua-López
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain; Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain.
| | - Gloria Andrea Silva-Castro
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain
| | - Ana Romero-Freire
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Francisco José Martín-Peinado
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Manuel Sierra-Aragón
- Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, Granada, 18071, Spain
| | - Inmaculada García-Romera
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda, 1, Granada, 18008, Spain
| |
Collapse
|
2
|
Radziemska M, Blazejczyk A, Gusiatin MZ, Cydzik-Kwiatkowska A, Majewski G, Brtnický M. Compost-diatomite-based phytostabilization course under extreme environmental conditions in terms of high pollutant contents and low temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174917. [PMID: 39034003 DOI: 10.1016/j.scitotenv.2024.174917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The effects of changes in environmental temperatures on the immobilization or removal of cationic potentially toxic elements (PTE) in heavily polluted soils are often poorly understood, although both are widely studied in the context of phytostabilization. To address this issue, a novel compost-diatomite hybrid (CDH) amendment was developed and applied for assisted phytostabilization at two external temperature regimes. (Cd/Ni/Cu/Zn)-extremely polluted soils (unenriched and CDH-enriched) were cultivated with perennial ryegrass and native soil microbiome under greenhouse conditions and then transferred to freeze-thaw conditions (FTC). The decrease in metal potential toxicity in soils subjected to phytostabilization following both temperature treatments was characterized by a combination of sequential extraction and atomic absorption measurements. The soil microbiome was characterized by high-throughput sequencing. In a relative comparison, the greatest decrease in the content of all PTEs in CDH-enriched soil (compared to unenriched soil) appeared in FTC. Furthermore, under the influence of FTC, in the relative comparison between two CDH-enriched soils (exposed-, and not-exposed- to FTC) and two unenriched soils (exposed-, and not-exposed- to FTC), the content of all PTEs decreased more sharply in the CDH-enriched series than in the unenriched series. The largest redistribution into four sequentially extracted fractions in CDH-enriched soil was found for Zn. Based on the distribution pattern, Zn immobilization was greater in CDH-enriched soil in FTC. CDH increased species richness in the soil, while FTC stimulated the growth of Bacteroidia, Alphaproteobacteria, Theromomicrobia, and Gammaproteobacteria. The analysis of the functionalities of the microbiome indicated enhanced metal transportation and defense systems in samples exposed to FTC. The current research is crucial for understanding how extreme environmental conditions in both cases high pollutant levels and low temperatures affect the movement and transformation of PTEs in polluted soils during phytostabilization.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Aurelia Blazejczyk
- Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Mariusz Z Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland
| | - Grzegorz Majewski
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
3
|
Atika M, Leila B, Pereira SIA, Castro PML, Ali B. Enhancing Native Plant Establishment in Mine Tailings under Drought Stress Conditions through the Application of Organo-Mineral Amendments and Microbial Inoculants. PLANTS (BASEL, SWITZERLAND) 2024; 13:863. [PMID: 38592869 PMCID: PMC10975093 DOI: 10.3390/plants13060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The implementation of phytoremediation strategies under arid and semiarid climates requires the use of appropriate plant species capable of withstanding multiple abiotic stresses. In this study, we assessed the combined effects of organo-mineral amendments and microbial inoculants on the chemical and biological properties of mine tailings, as well as on the growth of native plant species under drought stress conditions. Plants were cultivated in pots containing 1 kg of a mixture of mine tailings and topsoil (i.e., pre-mined superficial soil) in a 60:40 ratio, 6% marble sludge, and 10% sheep manure. Moreover, a consortium of four drought-resistant plant growth-promoting rhizobacteria (PGPR) was inoculated. Three irrigation levels were applied: well-watered, moderate water deficit, and severe water deficit, corresponding to 80%, 45%, and 30% of field capacity, respectively. The addition of topsoil and organo-mineral amendments to mine tailings significantly improved their chemical and biological properties, which were further enhanced by bacterial inoculation and plants' establishment. Water stress negatively impacted enzymatic activities in amended tailings, resulting in a significant decrease in acid and alkaline phosphatases, urease, and dehydrogenase activities. Similar results were obtained for bacteria, fungi, and actinomycete abundance. PGPR inoculation positively influenced the availability of phosphorus, total nitrogen, and organic carbon, while it increased alkaline phosphatase, urease (by about 10%), and dehydrogenase activity (by 50%). The rhizosphere of Peganum harmala showed the highest enzymatic activity and number of culturable microorganisms, especially in inoculated treatments. Severe water deficit negatively affected plant growth, leading to a 40% reduction in the shoot biomass of both Atriplex halimus and Pennisetum setaceum compared to well-watered plants. P. harmala showed greater tolerance to water stress, evidenced by lower decreases observed in root and shoot length and dry weight compared to well-watered plants. The use of bioinoculants mitigated the negative effects of drought on P. harmala shoot biomass, resulting in an increase of up to 75% in the aerial biomass in plants exposed to severe water deficit. In conclusion, the results suggest that the combination of organo-mineral amendments, PGPR inoculation, and P. harmala represents a promising approach to enhance the phytoremediation of metal-polluted soils under semiarid conditions.
Collapse
Affiliation(s)
- Madline Atika
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549, Guéliz, Marrakech 40000, Morocco;
| | - Benidire Leila
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549, Guéliz, Marrakech 40000, Morocco;
- Ecole Supérieure de Technologie El Kelâa des Sraghna, Université Cadi Ayyad, Route de Béni Mellal Km 8 B.P 104, El Kelaa des Sraghna 43000, Morocco
| | - Sofia I. A. Pereira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.I.A.P.); (P.M.L.C.)
| | - Paula M. L. Castro
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.I.A.P.); (P.M.L.C.)
| | - Boularbah Ali
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549, Guéliz, Marrakech 40000, Morocco;
- Center of Excellence for Soil and Africa Research in Africa, College of Agriculture and Environmental Sciences, Université Mohammed VI Polytechnique (UM6P), Benguerir 43150, Morocco
| |
Collapse
|
4
|
Vassilev N, Mendes GDO. Soil Fungi in Sustainable Agriculture. Microorganisms 2024; 12:163. [PMID: 38257989 PMCID: PMC10819681 DOI: 10.3390/microorganisms12010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
It is widely accepted that the continuously growing human population needs rapid solutions to respond to the increased global demand for high agricultural productivity [...].
Collapse
Affiliation(s)
- Nikolay Vassilev
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
- Institute of Biotechnology, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - Gilberto de Oliveira Mendes
- Laboratório de Microbiologia e Fitopatologia, Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Monte Carmelo 38500-000, Brazil;
| |
Collapse
|
5
|
Romero-Estonllo M, Ramos-Castro J, San Miguel del Río Y, Rodríguez-Garrido B, Prieto-Fernández Á, Kidd PS, Monterroso C. Soil amendment and rhizobacterial inoculation improved Cu phytostabilization, plant growth and microbial activity in a bench-scale experiment. Front Microbiol 2023; 14:1184070. [PMID: 37455720 PMCID: PMC10346841 DOI: 10.3389/fmicb.2023.1184070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Mine driven trace elements' pollution entails environmental risks and causes soil infertility. In the last decades, in situ techniques such as phytostabilization have become increasingly important as ways to tackle these negative impacts. The aim of this study was to test the individual and combined effects of different aided phytostabilization techniques using substrate from barren tailings of a Cu mine, characterized by extreme infertility (high acidity and deficiency of organic matter and nutrients). The experiment analyzed the growth of Populus nigra L. planted alone (P) or in co-cropping with Trifolium repens L. (PT), in pots containing mine soil amended with compost (1, 10, compost, soil, w/w) non inoculated (NI) or inoculated with plant growth promoting rhizobacteria (PGP), mycorrhizae (MYC) or a combination of bacterial and fungal inocula (PGPMYC). Non-amended, non-planted and non-inoculated reference ports were also prepared. Plants were harvested after 110 days of plant development and several biometric and phytopathological parameters (stem height, aerial biomass, root biomass, wilting, chlorosis, pest and death) and macro and micronutrient composition were determined. The growth substrate was analyzed for several physicochemical (pH, CECe, and exchangeable cations, total C and N, P Olsen and availability of trace elements) and microbiological (community level physiological profiles: activity, richness and diversity) parameters. The use of the amendment, P. nigra plantation, and inoculation with rhizobacteria were the best techniques to reduce toxicity and improve soil fertility, as well as to increase the plant survival and growth. Soil bacterial functional diversity was markedly influenced by the presence of plants and the inoculation with bacteria, which suggests that the presence of plant regulated the configuration of a microbial community in which the inoculated bacteria thrive comparatively better. The results of this study support the use of organic amendments, tolerant plants, and plant growth promoting rhizobacteria to reduce environmental risk and improve fertility of soils impacted by mining.
Collapse
Affiliation(s)
- Marc Romero-Estonllo
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Judith Ramos-Castro
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yaiza San Miguel del Río
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Beatriz Rodríguez-Garrido
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Ángeles Prieto-Fernández
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Petra S. Kidd
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Carmen Monterroso
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Qian L, Lin H, Li B, Dong Y. Physicochemical characteristics and microbial communities of rhizosphere in complex amendment-assisted soilless revegetation of gold mine tailings. CHEMOSPHERE 2023; 320:138052. [PMID: 36739989 DOI: 10.1016/j.chemosphere.2023.138052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Amendment-assisted soilless revegetation is a promissing ecological restoration method of mine tailings because of its eco-friendliness and low-cost. However, it is difficult to establish the plant community during ecological restoration because of its nutrient deficiency and heavy metal toxicity. In this study, the complex amendment, consisting of 1% peat, 1% sludge and 4% bentonite, was used to assist tall fescue to revegetate gold mine tailings. The variation in physicochemical characteristics and microbial community diversity and composition of rhizosphere tailings were investigated. The complex amendments significantly promoted tall fescue growth with an increase of 35.33% in shoot length and 27.19% in fresh weight. The improved plant growth was attributed to the reduction in heavy metal accumulation and the variation in the characteristics of rhizosphere tailing microecology. The heavy metal concentrations in plant tissues were decreased by 27.71-53.44% in the amended groups. Compared with the control, the available nitrogen (N), phosphorus (P) and potassium (K) levels in TA (without plant cultivation) and TPA (with plant cultivation) were also enhanced by 36.67-49.09% and 42.21-71.47%, respectively. Besides, the amendments introduced more exclusive operational taxonomic units (OTU) and increased the relative abundance of ecologically beneficial microbes in the rhizosphere. Overall, this study provides insight into amendment-assisted soilless revegetation and its effects on microecology to expand ecological restoration of gold mine tailings.
Collapse
Affiliation(s)
- Ling Qian
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
7
|
Caravaca F, Díaz G, Torres P, Campoy M, Roldán A. Synergistic enhancement of the phytostabilization of a semiarid mine tailing by a combination of organic amendment and native microorganisms (Funneliformis mosseae and Bacillus cereus). CHEMOSPHERE 2023; 312:137106. [PMID: 36336022 DOI: 10.1016/j.chemosphere.2022.137106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The goal of this work was to evaluate the effects of fermented sugar beet residue and inoculation with a native arbuscular mycorrhizal (AM) fungus, Funneliformis mosseae (Nicol. and Gerd.) Gerd. and Trappe, or a native bacterium, Bacillus cereus Frankland & Frankland, alone or in combination, on the establishment of Lygeum spartum L. seedlings grown in a mine tailing under semiarid conditions. We conducted a field study to analyse root and shoot dry biomass, shoot nutrient contents, mycorrhization, plant nitrate reductase (NR) and acid phosphomonoesterase activities, soil enzyme activities and aggregate stability. Ten months after field transplanting, it was found that the three experimental factors had interacted synergistically with regard to shoot and root biomass, with increases of about 410% and 370%, respectively relative to plants in the untreated soil. The treatment combining all three factors increased the root content of all heavy metals, and the levels of nitrogen (N), phosphorus, potassium and NR activity in shoot tissues, whereas it decreased root acid phosphomonoesterase activity. Soil dehydrogenase, protease and β-glucosidase activities, total N content and aggregate stability were increased by the combined treatment. In conclusion, the combination of the organic amendment, the native AM fungus and the native bacterium can be regarded as a suitable tool for phytostabilization with L. spartum due to its ability to enhance the tolerance of plants to heavy metals, improve the plant nutritional status and increase the soil microbial function related to the C cycling.
Collapse
Affiliation(s)
- F Caravaca
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo, 30100, Murcia, Spain.
| | - G Díaz
- Universidad Miguel Hernández de Elche, Department of Applied Biology, Avda. Ferrocarril, s/n. Edf. Laboratorios, 03202, Elche, Alicante, Spain
| | - P Torres
- Universidad Miguel Hernández de Elche, Department of Applied Biology, Avda. Ferrocarril, s/n. Edf. Laboratorios, 03202, Elche, Alicante, Spain
| | - M Campoy
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo, 30100, Murcia, Spain
| | - A Roldán
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
8
|
Yang H, Wang C, Chen F, Yue L, Cao X, Li J, Zhao X, Wu F, Wang Z, Xing B. Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151105. [PMID: 34688768 DOI: 10.1016/j.scitotenv.2021.151105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Improving maize drought tolerance is of great importance for scaling up production due to food security and population growth. Carbon dots (CDs) were synthesized by hydrothermal method with citric acid and ethylenediamine as carbon sources. Then, CDs (5 ml, 5 mg‧L-1) were sprayed on 25th day-old maize (Zea mays L., drought-stress, 35% soil moisture) for seven consecutive days (spraying ultra-pure water as control), after which the physiological parameters and rhizospheric properties of maize under drought were evaluated. Foliar sprayed CDs (5 mg‧L-1) could increase root exudates (e.g., succinic acid (14.5 folds), pyruvic acid (10.0 folds), and betaine (11.8 folds)), and modify microbial community. Particularly, the relative abundance of Pseudomonas, Sphingomonas, Nitrospira, and Conocybe were significantly increased by 344.4%, 233.3%, 126.2%, and 122.6%, respectively. The altered microbial abundance could improve soil available nitrogen and phosphorus by 33.5% and 16.8%, respectively, and increase plant water uptake by 37.2%. The change of exudate synthesis and microbial abundance could be driven by the significantly increased in net photosynthesis rate by 122.9%, and carbohydrate content by 35.4% in shoots and 113.6% in roots, respectively upon foliar application of CDs. Meanwhile, fresh weight of shoots and roots were increased by 62.1% and 50.6%, and dry weight of shoots and roots were increased by 29.2% and 37.5%, respectively. These results demonstrated that foliar application of CDs could improve the rhizosphere environment to enhance maize drought tolerance and even growth. Therefore, foliar application of CDs would be a promising strategy for sustainable nano-agriculture in response to drought stress.
Collapse
Affiliation(s)
- Hanyue Yang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|