1
|
Wang G, Yang F, Wang Y, Ren F, Hou Y, Su S, Li W. Magnetic response and bioaccessibility of toxic metal pollution in outdoor dustfall in Shanghai, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125115. [PMID: 39401559 DOI: 10.1016/j.envpol.2024.125115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/17/2024]
Abstract
Toxic metal content testing, environmental magnetic monitoring and in vitro bioaccessibility experiments each have their own advantages and are often used independently for environmental monitoring, but there are few studies that combine the three to evaluate the hazards of toxic metals to humans. This paper investigated the total content, magnetic properties and bioaccessibility of nine potentially toxic metal elements (Zn, Sn, Pb, Cu, Fe, Ni, Cr, Sr, Mn) in dustfall from different functional zones in Shanghai, China, and systematically compared the related results. The results show that these nine metal elements have different degrees of contamination and enrichment in outdoor dustfall, and their content distribution shows the following trend: Zn > Sn > Pb > Cu > Fe > Ni > Cr > Sr > Mn. Magnetic characteristics χlf and SIRM are mostly positively correlated with the metal elements, indicating that the higher the content of magnetic minerals in the sample, the higher the concentration of metal elements. It was also found that χlf, SIRM, and χARM can well reflect the characteristics of dustfall pollution. The magnetic minerals have a certain degree of enrichment, and the particle size of the magnetic minerals is relatively coarse, mainly in the form of coarse multi-domain and pseudo-single-domain particles, which are largely derived from anthropogenic pollution. The χlf and PM10 concentrations in the precipitation show relatively similar spatial trends, so χlf, SIRM, and χARM can be used as air pollution indices to facilitate the evaluation of metal elements pollution in dustfall. The overall trend in gastric bioaccessibility is Pb > Zn > Mn > Cu > Cr. Due to the increase in the pH of digestive fluid, the bioavailability of toxic metals decreases significantly from the gastric stage to the intestinal stage. χlf, SIRM, and χARM/SIRM are all related to the bioaccessibility of toxic metals in the intestinal stage, so they can be used as toxicity indicators to evaluate the bioaccessibility of toxic metals in dustfall.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Fan Yang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yangyang Wang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Feifan Ren
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China.
| | - Yumei Hou
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shiguang Su
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wenxin Li
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
2
|
Gao X, Jian S, Lei Y, Li B, Huang J, Ma X, He X. Evaluation and mechanistic analysis of the effect of the addition of alkaline earth metal CaO on Cd solidification enhancement in lightweight aggregate preparation. RSC Adv 2024; 14:30518-30528. [PMID: 39318453 PMCID: PMC11421553 DOI: 10.1039/d4ra04610b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
The volatilization of Cd during the preparation of lightweight aggregates (LWAs) can cause serious damage to the environment, so a method to harmlessly transform Cd during this process is required. In this regard, the alkaline earth metal CaO was added to Cd-containing aggregate raw materials for treatment, and the effect of CaO addition on the properties of LWAs in the presence of chlorine and sulfate was investigated. Kinetic models of the Cd volatilization were established by using the Arrhenius equation to predict the volatilization of Cd at different sintering stages. The results showed that 0.8% wt of CaO under the influence of chlorine can reduce the Cd volatilization rate from 84.9% to 12.64%, corresponding to an increase in the reaction activation energy (E a) from 22.62 to 49.55 kJ mol-1. Additionally, the Cd volatilization rate under the influence of sulfate was reduced from 30% to 8%, with an increase in the E a from 33.25 to 42.62 kJ mol-1. The activation energy increase suggests that the addition of CaO is beneficial because it increases the energy required for Cd volatilization. According to the Cd leaching experiments conducted on the LWAs, it was found that the solidification ratio of Cd was higher than 99.9% for all samples after the addition of CaO. The addition of CaO promotes the formation of CdFe2O4 and anorthite for effective solidification of Cd, thus optimizing the structures of the LWAs. This work may provide a new idea for Cd waste recycling.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| | - Shouwei Jian
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| | - Yuting Lei
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| | - Baodong Li
- Department of Architecture and Civil Engineering, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Jianxiang Huang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| | - Xiaoyao Ma
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| | - Xinxin He
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan Hubei 430070 China
| |
Collapse
|
3
|
Zhang Y, Frimpong AJ, Tang J, Olayode IO, Kyei SK, Owusu-Ansah P, Agyeman PK, Fayzullayevich JV, Tan G. An explicit review and proposal of an integrated framework system to mitigate the baffling complexities induced by road dust-associated contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123957. [PMID: 38631446 DOI: 10.1016/j.envpol.2024.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Road dust-associated contaminants (RD-AC) are gradually becoming a much thornier problem, as their monotonous correlations render them carcinogenic, mutagenic, and teratogenic. While many studies have examined the harmful effects of road dust on both humans and the environment, few studies have considered the co-exposure risk and gradient outcomes given the spatial extent of RD-AC. In this spirit, this paper presents in-depth elucidation into the baffling complexities induced by both major and emerging contaminants of road dust through a panorama-to-profile up-to-date review of diverse studies unified by the goal of advancing innovative methods to mitigate these contaminants. The paper thoroughly explores the correlations between RD-AC and provides insights to understand their potential in dispersing saprotrophic microorganisms. It also explores emerging challenges and proposes a novel integrated framework system aimed at thermally inactivating viruses and other pathogenic micro-organisms commingled with RD-AC. The main findings are: (i) the co-exposure risk of both major and emerging contaminants add another layer of complexity, highlighting the need for more holistic framework strategies, given the geospatial morphology of these contaminants; (ii) road dust contaminants show great potential for extended prevalence and severity of viral particles pollution; (iii) increasing trend of environmentally persistent free radicals (EPFRs) in road dust, with studies conducted solely in China thus far; and (iv) substantial hurdle exists in acquiring data concerning acute procedural distress and long-term co-exposure risk to RD-ACs. Given the baffling complexities of RD-ACs, co-exposure risk and the need for innovative mitigation strategies, the study underscore the significance of establishing robust systems for deep road dust contaminants control and future research efforts while recognizing the interconnectivity within the contaminants associated with road dust.
Collapse
Affiliation(s)
- Yuxiao Zhang
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Alex Justice Frimpong
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Jingning Tang
- National Special Purpose Vehicle Product Quality Inspection and Testing Center, Suizhou City, Hubei Province, China
| | - Isaac Oyeyemi Olayode
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, P. O. Box 2028, Johannesburg, South Africa
| | - Sampson Kofi Kyei
- Department of Chemical Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Prince Owusu-Ansah
- Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Philip Kwabena Agyeman
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Jamshid Valiev Fayzullayevich
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; School of Automobile and Automotive Economy, Tashkent State Transport University, Tashkent, Uzbekistan
| | - Gangfeng Tan
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China.
| |
Collapse
|
4
|
Chen L, Fang L, Yang X, Luo X, Qiu T, Zeng Y, Huang F, Dong F, White JC, Bolan N, Rinklebe J. Sources and human health risks associated with potentially toxic elements (PTEs) in urban dust: A global perspective. ENVIRONMENT INTERNATIONAL 2024; 187:108708. [PMID: 38703447 DOI: 10.1016/j.envint.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Long-term exposure to urban dust containing potentially toxic elements (PTEs) poses detrimental impacts on human health. However, studies estimating human health risks in urban dusts from a global perspective are scarce. We evaluated data for twelve PTEs in urban dusts across 59 countries from 463 published articles, including their concentrations, input sources, and probabilistic risks to human health. We found that 34.1 and 60.3% of those investigated urban dusts have been heavily contaminated with As and Cd, respectively. The input of PTEs was significantly correlated with economic structure due to emissions of industrial activities and traffic emissions being the major sources. Based on the Monte Carlo simulation, we found that the mean hazard index below the safe threshold (1.0) could still cause non-negligible risks to human health. Arsenic and Cr were the major PTEs threatening human health, and relatively high risk levels were observed in cities in China, Korea, Chile, Malaysia, and Australia. Importantly, our analysis suggested that PTEs threaten the health of approximately 92 million adults and 280 million children worldwide. Overall, our study provides important foundational understanding and guidance for policy decision-making to reduce the potential risks associated with PTE exposure and to promote sustainable development of urban economies.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Xing Yang
- College of Ecology and Environment, Hainan University, Haikou 570100, China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fengyu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China; College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, University of Wuppertal, Pauluskirchstraße 7, Wuppertal 42285, Germany
| |
Collapse
|
5
|
Das M, Proshad R, Chandra K, Islam M, Abdullah Al M, Baroi A, Idris AM. Heavy metals contamination, receptor model-based sources identification, sources-specific ecological and health risks in road dust of a highly developed city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8633-8662. [PMID: 37682507 DOI: 10.1007/s10653-023-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
The present study quantified Ni, Cu, Cr, Pb, Cd, As, Zn, and Fe levels in road dust collected from a variety of sites in Tangail, Bangladesh. The goal of this study was to use a matrix factorization model to identify the specific origin of these components and to evaluate the ecological and health hazards associated with each potential origin. The inductively coupled plasma mass spectrometry was used to determine the concentrations of Cu, Ni, Cr, Pb, As, Zn, Cd, and Fe. The average concentrations of these elements were found to be 30.77 ± 8.80, 25.17 ± 6.78, 39.49 ± 12.53, 28.74 ± 7.84, 1.90 ± 0.79, 158.30 ± 28.25, 2.42 ± 0.69, and 18,185.53 ± 4215.61 mg/kg, respectively. Compared to the top continental crust, the mean values of Cu, Pb, Zn, and Cd were 1.09, 1.69, 2.36, and 26.88 times higher, respectively. According to the Nemerow integrated pollution index (NIPI), pollution load index (PLI), Nemerow integrated risk index (NIRI), and potential ecological risk (PER), 84%, 42%, 30%, and 16% of sampling areas, respectively, which possessed severe contamination. PMF model revealed that Cu (43%), Fe (69.3%), and Cd (69.2%) were mainly released from mixed sources, natural sources, and traffic emission, respectively. Traffic emission posed high and moderate risks for modified NIRI and potential ecological risks. The calculated PMF model-based health hazards indicated that the cancer risk value for traffic emission, natural, and mixed sources had been greater than (1.0E-04), indicating probable cancer risks and that traffic emission posed 38% risk to adult males where 37% for both adult females and children.
Collapse
Affiliation(s)
- Mukta Das
- Department of Zoology, Government Saadat College, Tangail, 1903, Bangladesh
| | - Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Krishno Chandra
- Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Maksudul Islam
- Department of Environmental Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Mamun Abdullah Al
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia
| |
Collapse
|
6
|
Proshad R, Dey HC, Ritu SA, Baroi A, Khan MSU, Islam M, Idris AM. A review on toxic metal pollution and source-oriented risk apportionment in road dust of a highly polluted megacity in Bangladesh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2729-2762. [PMID: 36472681 DOI: 10.1007/s10653-022-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/06/2022] [Indexed: 06/01/2023]
Abstract
Heavy metal enrichment in road dust has resulted from intensive anthropogenic activity, particularly urbanization, industrial activities and traffic emission, posing a hazard to urban ecosystems and human health. To promote optimal road dust management in urban environments, it is necessary to assess the possible ecological and health impact of toxic elements in road dust. In a heavily populated megacity like Dhaka, Bangladesh, large-scale risk assessments of contamination in road dust with heavy metals are limited. The present study aims at presenting a concentration of twenty-five metals in road dust (Na, K, Cs, Rb, Mg, Ca, Sr, Ba, Al, Zn, Cd, Pb, As, Sb, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr and W) in Dhaka megacity. We used a critical source-based positive matrix factorization model, source-oriented potential ecological risks and health risks. Out of the studied metals, Na, Ca, Zn, Cd, Cu, Zr and W exceeded the shale value. About 73%, 48%, 29% and 32% of sampling sites showed a higher level of pollution based on PLI, NIPI, PER and NIRI, respectively. PMF model identified that Cd (85.3%), Cr (62.4%), Ni (58.2%), Zn (81.8%) and Mn (65.9%) in road dust were primarily attributed to traffic emission, fuel combustion, metal processing, transport sources and natural sources, respectively. Fuel combustion and metal processing posed considerable and high risks based on modified potential ecological risk and NIRI. Based on health hazards, traffic emission posed a high cancer risk in adult males (29%), whereas transport sources contributed to females (21%) and children (23%).
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hridoy Chandra Dey
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, 8602, Patuakhali, Bangladesh
| | - Sadia Afroz Ritu
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shihab Uddine Khan
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Maksudul Islam
- Department of Environmental Science, Patuakhali Science and Technology University, Dumki, 8602, Patuakhali, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
7
|
Zhang J, Tao H, Ge H, Shi J, Zhang M, Xu Z, Xiao R, Li X. Assessment of heavy metal contamination of an electrolytic manganese metal industrial estate in northern China from an integrated chemical and magnetic investigation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2963-2983. [PMID: 36123510 DOI: 10.1007/s10653-022-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/01/2022] [Indexed: 06/01/2023]
Abstract
Heavy metal concentrations (Al, V, Mn, Fe, Co, Ni, Cu, Zn, and Pb) and the magnetic properties of soil and sediment samples in/around an electrolytic manganese metal (EMM) industrial estate in northern China were investigated. Potential enrichment of Mn, Zn, and Pb was found in/around the core area of the EMM industrial estate; however, the pollution load index (PLI) values did not indicate severely polluted levels. For adults, all hazard index (HI) values of noncarcinogenic risks in the soil samples were below the safe level of 1.00. For children, none of the HI values exceeded the safe level, except Mn (HI = 1.23) in one industrial estate sample. The particle size of magnetic materials was mostly in the range of stable single-domain, and coarser ferrimagnetic phases enhanced the magnetic parameters in the industrial estate soils. Highly positive correlations were found between magnetic parameters, heavy metal concentrations, and PLI values, demonstrating that the magnetic parameters are an efficient proxy for assessing heavy metal contamination. Enrichment of Mn, Zn, and Pb was mainly derived from the EMM industry. The data showed that the EMM industrial estate under cleaner production had limited adverse impacts on the adjacent environment from the perspective of heavy metal contamination.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Huanyu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Mengtao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zonglin Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruijie Xiao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Zeng F, Jiang Z. Spatial and temporal evolution of mine dust research: visual knowledge mapping analysis in Web of Science from 2001 to 2021. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62170-62200. [PMID: 36940022 PMCID: PMC10025797 DOI: 10.1007/s11356-023-26332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/03/2023] [Indexed: 05/10/2023]
Abstract
Dust pollution control is the basic guarantee of mine safety production, which has been widely concerned by scholars. Based on a total of 1786 publications collected by the Web of Science Core Collection (WOSCC) from 2001 to 2021, this paper analyzes the spatial-temporal distribution characteristics, hot topics, and frontier trends of the international mine dust field during the past 20 years by using Citespace and VOSviewer knowledge graph technology. The research shows that the study of mine dust can be divided into three stages: initial period (2001 ~ 2008), stable transition period (2009 ~ 2016), and boom period (2017 ~ 2021). The journals and disciplines which belong to mine dust research mainly focus on environmental science and engineering technology. A stable core group of authors and institutions have been preliminarily formed in the dust research field. The main themes of the study contained the whole process of mine dust generation, transport, prevention, and control, as well as the consequences of disaster. At present, the hot research fields mainly focus on mine dust particle pollution, multi-stage dust prevention, and emission reduction technologies, and mine occupational protection, monitoring, and early warning. In the future, the research should focus on the mechanism of dust production and transportation, the theory of efficient prevention and control, the technology and equipment of precise prevention and control of dust, and the high-precision monitoring and early warning of dust concentration. Future research should be concerned with dust control in underground mines and deep concave open-pit mines with complicated and treacherous environments, and strengthen research institutions, interdisciplinary cooperation, and interaction so as to promote the integration and application of mine dust and automation, information, and intelligent technology.
Collapse
Affiliation(s)
- Fabin Zeng
- School of Civil & Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zhongan Jiang
- School of Civil & Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
9
|
Gong Y, Yang S, Chen S, Zhao S, Ai Y, Huang D, Yang K, Cheng H. Soil microbial responses to simultaneous contamination of antimony and arsenic in the surrounding area of an abandoned antimony smelter in Southwest China. ENVIRONMENT INTERNATIONAL 2023; 174:107897. [PMID: 37001217 DOI: 10.1016/j.envint.2023.107897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Soil contamination with heavy metal(loid)s may influence microbial activities in the soil, and consequently jeopardize soil health. Microbial responses to soil contamination play an important role in ecological risk assessment. This study investigated the effect of heavy metal(loid)s contamination on microbial community structure and abundance in the surrounding soil of an abandoned antimony (Sb) smelter in Qinglong county, Guizhou province, Southwest China. A total of 46 soil samples were collected from ten sampling sites (labelled as A-I, and CK) across the study area at depths of 0-2, 2-10, 10-20, 20-30, 30-40, and 40-50 cm. The soil samples were analyzed for total and bioavailable heavy metal(loid) concentrations, bacterial, fungal, and archaeal community structures, diversities, and functions, together with soil basic physicochemical properties. Much greater ecological risk of Sb and arsenic (As) was present in the surface soil (0-2 cm) compared to that in the subsoils. The activities of dominant microorganisms tended to be associated with soil pH and heavy metal(loid)s (i.e., Sb, As, lead (Pb), cadmium (Cd), and chromium (Cr)). Bacteria associated with IMCC26256, Rhizobiales, Burkholderiales, and Gaiellales, and archaea associated with Methanocellales were estimated to be tolerant to high concentrations of Sb and As in the soil. In addition, the magnitude of soil microbial responses to Sb and As contamination was in the order of archaea > bacteria > fungi. In contrast to the negligible response of fungi and negative response of bacteria to Sb and As contamination, there was a strongly positive correlation between archaeal activity and total Sb and As concentrations in the soil. Our findings provide a theoretical basis for the remediation of Sb smelter-affected soil.
Collapse
Affiliation(s)
- Yiwei Gong
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuwen Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shaoyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shoudao Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yadi Ai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Di Huang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
10
|
Li F, Zhang S, Zhu N, Ke J, Zhao Y, Ma W, Wu P. Strong binding of heavy metals in fayalite of copper smelting slags: Lattice site substitution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161351. [PMID: 36603619 DOI: 10.1016/j.scitotenv.2022.161351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
A deep understanding of the binding relationship between Fe2SiO4 and heavy metals from the perspective of lattice site substitution is essential to improve the theoretical knowledge regarding heavy metals binding in copper smelting slags (CSS). Here, we proposed the lattice site substitution behavior of heavy metals in Fe2SiO4 by preparing M-Fe2SiO4 (M = Cu, Pb, and As). X-ray diffraction refinement, scanning electron microscopy, and Fourier transform-infrared spectroscopy analysis showed that heavy metals were involved in the formation of Fe2SiO4 during the smelting process. Compared with pure Fe2SiO4, the fine structure of M-Fe2SiO4 was significantly changed by the lattice substitution of heavy metals. X-ray photoelectron spectroscopy and Raman and Mossbauer spectra combined with Density Functional Theory calculation confirmed that the divalent metal elements including Cu and Pb were bound to the Fe2SiO4 lattice by replacing M2 site. However, the trivalent As element could substitute both the positions of M2 site and part of the central Si atom through a charge compensation mechanism. Overall, the proposed lattice site substitution behavior of heavy metals in Fe2SiO4 could enrich the theory of the lattice substitution of heavy metals in CSS, also further provide guidance for the comprehensive disposal of CSS.
Collapse
Affiliation(s)
- Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Sihai Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China.
| | - Junyao Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yun Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Weiwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
11
|
Qi M, Wu Y, Zhang S, Li G, An T. Pollution Profiles, Source Identification and Health Risk Assessment of Heavy Metals in Soil near a Non-Ferrous Metal Smelting Plant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1004. [PMID: 36673760 PMCID: PMC9858899 DOI: 10.3390/ijerph20021004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution related to non-ferrous metal smelting may pose a significant threat to human health. This study analyzed 58 surface soils collected from a representative non-ferrous metal smelting area to screen potentially hazardous heavy metals and evaluate their health risk in the studied area. The findings demonstrated that human activity had contributed to the pollution degrees of Cu, Cd, As, Zn, and Pb in the surrounding area of a non-ferrous metal smelting plant (NMSP). Cu, Cd, As, Zn, Pb, Ni, and Co pollution within the NMSP was serious. Combining the spatial distribution and Spearman correlations with principal component analysis (PCA), the primary sources of Cd, As, Pb, and Zn in surrounding areas were related to non-ferrous metal smelting and transportation activities. High non-cancer (THI = 4.76) and cancer risks (TCR = 2.99 × 10-4) were found for adults in the NMSP. Moreover, heavy metals in the surrounding areas posed a potential cancer risk to children (TCR = 3.62 × 10-6) and adults (TCR = 1.27 × 10-5). The significant contributions of As, Pb, and Cd to health risks requires special attention. The construction of a heavy metal pollution management system will benefit from the current study for the non-ferrous metal smelting industry.
Collapse
Affiliation(s)
- Mengdie Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingjun Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Goren A, Genisoglu M, Kazancı Y, Sofuoglu SC. Countrywide Spatial Variation of Potentially Toxic Element Contamination in Soils of Turkey and Assessment of Population Health Risks for Nondietary Ingestion. ACS OMEGA 2022; 7:36457-36467. [PMID: 36278098 PMCID: PMC9583639 DOI: 10.1021/acsomega.2c04261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Countrywide surface soil concentrations of potentially toxic elements (PTEs) in Turkey were reviewed in the Web of Science database. A total of 93 papers were investigated to compose a PTE dataset for determining spatial variations and estimating exposure and health risks. Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were selected as PTEs in surface soil. A compiled PTE concentration dataset was used to estimate chronic toxic risks (CTRs) and carcinogenic risks (CRs) according to the deterministic and probabilistic approaches. While the CTR and CR levels of age and sex groups were estimated using a deterministic approach, population risks were estimated using a probabilistic approach. CTR and CR levels in lower age groups and female sex groups were estimated to be higher than those in higher age groups and associated male sex groups. The average CTR levels of the nondietary ingestion of As-containing soil in <11 year age groups were near/just above the threshold level, while As-associated average CR levels of adults and other age groups were estimated to be in the acceptable risk range (10-6 < CR < 10-5) and low priority risk range (10-5 < CR < 10-4), respectively. As-, Cr(VI)-, and Pb-associated upper-bound CR levels of the Turkish population were simulated to be 5.14 × 10-4, 6.23 × 10-5, and 2.34 × 10-6, respectively. Health risk models show the significance of As in both chronic toxic and carcinogenic effects.
Collapse
|
13
|
Xu DM, Fu RB. A typical case study from smelter-contaminated soil: new insights into the environmental availability of heavy metals using an integrated mineralogy characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57296-57305. [PMID: 35352226 DOI: 10.1007/s11356-022-19823-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Mineralogy was an important driver for the environmental release of heavy metals. Therefore, the present work was conducted by coupling mineral liberation analyzer (MLA) with complementary geochemical tests to evaluate the geochemical behaviors and their potential environmental risks of heavy metals in the smelter contaminated soil. MLA analysis showed that the soil contained 34.0% of quartz, 17.15% of biotite, 1.36% of metal sulfides, 19.48% of metal oxides, and 0.04% of gypsum. Moreover, As, Pb, and Zn were primarily hosted by arsenopyrite (29.29%), galena (88.41%), and limonite (24.15%), respectively. The integrated geochemical results indicated that among the studied metals, Cd, Cu, Mn, Pb, and Zn were found to be more bioavailable, bioaccessible, and mobile. Based on the combined mineralogical and geochemical results, the environmental release of smelter-driven elements such as Cd, Cu, Mn, Pb, and Zn were mainly controlled by the acidic dissolution of minerals with neutralizing potential, the reductive dissolution of Fe/Mn oxides, and the partial oxidation of metal sulfide minerals. The present study results have confirmed the great importance of mineralogy analysis and geochemical approaches to explain the contribution of smelting activities to soil pollution risks.
Collapse
Affiliation(s)
- Da-Mao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Rong-Bing Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
14
|
Wang H, Zhu R, Dong K, Zhang S, Zhao R, Jiang Z, Lan X. An experimental comparison: Horizontal evaluation of valuable metal extraction and arsenic emission characteristics of tailings from different copper smelting slag recovery processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128493. [PMID: 35739674 DOI: 10.1016/j.jhazmat.2022.128493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
This study comprehensively investigated arsenic's enrichment, distribution, and characteristics in tailings. XRD and SEM-EDS characterized the phase and morphology of tailings from various smelting processes. At the same time, the embedding characteristics of arsenic in the ore phase were analyzed by EPMA. The differences between arsenic's leading ore phase carriers in different recovery processes were found. It was discussed that this phenomenon would be related to the element-binding ability and the precipitation priority of the ore phase. The occurrence state of arsenic was discussed by sequential chemical extraction experiments. The proportion of leachable arsenic is higher than the low-risk limit, whatever which smelting method is adopted, which leads to high environmental risk. In the experiment of comparing the leaching toxicity of tailings by different leaching methods, the arsenic concentration in the leaching solution of tailings recovered by the flotation method exceeds the specified safety range. Although the tailings after reduction smelting did not show high leaching toxicity, a large number of accumulations also would not represent absolute safety.
Collapse
Affiliation(s)
- Hongyang Wang
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Rong Zhu
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Kai Dong
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China.
| | - Siqi Zhang
- Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China; University of Science and Technology Beijing, School of Civil and Resources Engineering, Beijing 100083, China
| | - Ruimin Zhao
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Zhenqiang Jiang
- University of Science and Technology Beijing, School of Metallurgical and Ecological Engineering, Beijing 100083, China; Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China
| | - Xinyi Lan
- Beijing Key Laboratory for special melting and preparation of high-end metal materials, Beijing 100083, China; University of Science and Technology Beijing, School of Automation and Electrical Engineering, Beijing 100083, China
| |
Collapse
|
15
|
Investigations of Metal Pollution in Road Dust of Steel Industrial Area and Application of Magnetic Separation. SUSTAINABILITY 2022. [DOI: 10.3390/su14020919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pollution characteristics and ecological risks for metals in non-magnetic and magnetic road dust from steel industrial areas were investigated by applying a magnetic separation method. Metal (except for Al, Li, Ti, As, and Sb) concentrations in the magnetic road dust were 1.2 (Sn) to 7.8 (Fe) times higher than those in the non-magnetic road dust. For the magnetic road dust, the geo-accumulation index revealed a strongly to extremely polluted status for Cr, Zn, Cd, and Sb, a strongly polluted status for Mn, Cu, and Pb, and a moderately to strongly polluted status for Fe, Ni, Mo, and Hg. This result indicates that the dominant metal pollution sources of road dust in industrial areas were the traffic activities of heavy-duty vehicles. The mean content of magnetic particles accounted for 44.7% of the total road dust. The metal loadings in the magnetic road dust were 86% (Fe), 77% (Cr), 67% (Mn), 86% (Ni), 76% (Cu), 72% (Zn), 64% (Mo), and 62% (Cd), respectively. Removal of the magnetic fraction from road dust using magnetic separation techniques not only reduces metal contamination but can also improve effective road cleaning strategies or reduce waste generation.
Collapse
|