1
|
Zhang M, Liu L, Yang X, Kang Y, Qin Q, Fu Y, Zhu L, Xu Y. Virulence phenotype alteration impacts nosocomial pathogen persistence on inanimate surfaces in hospital settings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177877. [PMID: 39667160 DOI: 10.1016/j.scitotenv.2024.177877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
The hospital setting serves as a critical conduit for pathogen dissemination, particularly amid the escalating concern of nosocomial infections in China. Currently, most studies use metagenomics to investigate microbial communities in hospital settings, with less focus on the transmission strategies of individual bacteria. In our study, we identified two Klebsiella pneumoniae strains exhibiting different mucoid characteristics. The strain designated as KPE was obtained from a well sanitized ward, while the strain KPH was isolated from the sputum samples of patients within the identical ward. We characterized the KPE strain as not lethal to mice and showed a distinct hypomuciod phenotype, strikingly different from the virulent KPH isolate. Two strains harbored the single nucleotide polymorphism (SNP) mutations in the virulence-related gene rmpA and wcaJ promoter regions, resulting in the downregulation of mucoid regulatory gene rmpA and capsule synthesis genes. Consequently, this led to diminished production of capsular polysaccharides and weakened virulence in the KPE strain. Furthermore, the KPE strain exhibited an elevated capacity for acquiring antibiotic-resistant plasmids and greater material survival ability. These findings indicated that mucoid changes enable K. pneumoniae strains to survive better on inanimate surfaces, promoting their persistence ward environment and further transmission in patients.
Collapse
Affiliation(s)
- Meng Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lizhang Liu
- Department of Pharmacy, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoqiang Yang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanhua Kang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiuying Qin
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yingying Fu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yongchang Xu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
2
|
Chibwe M, Odume ON, Nnadozie CF. Assessment of risk of exposure to Campylobacter species and their antibiotic-resistant genes from selected rivers in the Eastern Cape, South Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122625. [PMID: 37788798 DOI: 10.1016/j.envpol.2023.122625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Contaminated rivers play a critical role in the transmission of Campylobacter and antibiotic-resistant genes (ARGs) in many parts of the world. South Africa is a water-scarce country which relies on its freshwater systems such as rivers for recreation, irrigation, and domestic activities. This study assesses the potential human exposure to Campylobacter and its ARGs from rivers through the ingestion route in two South African rivers. The concentration of viable Campylobacter and ARGs in selected rivers was determined using quantitative PCR. The concentrations were then used to estimate the number of gene copies a person could ingest after swimming in the contaminated water for 1 h (intake burden). The human intake burden of Campylobacter 16 S rRNA copies per 1-h swimming event ranged from 7.1 × 105-3.7 × 106 copies/h for the Bloukrans River, and 9.9 × 101-2.3 × 105 copies/h for the Swartkops River. The intake burden of Campylobacter ARGs ranged from 1.64 × 104-5.8 × 105 copies/h for cmeB; 1.0 × 103-5.7 × 104 copies/h for tetO for the Bloukrans River, and 3.6 × 102-1.551 × 105 copies/h (cmeB) and 9.98 × 102-5.7 × 104 copies/h (tetO) for the Swartkops River. Ingestion of water from contaminated rivers during recreation, cultural, or religious activities may lead to human exposure to ARGs, posing a health risk. In many communities in the world, rivers play an important role in the social and cultural lives of people, and so it is important to monitor the quality of river water. Studies such as these will help prevent the spread of antibiotic-resistant genes and waterborne diseases caused by pathogens such as Campylobacter.
Collapse
Affiliation(s)
- Mary Chibwe
- Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O Box 94 Grahamstown 6140, South Africa
| | - Oghenekaro Nelson Odume
- Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O Box 94 Grahamstown 6140, South Africa
| | - Chika Felicitas Nnadozie
- Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O Box 94 Grahamstown 6140, South Africa.
| |
Collapse
|
3
|
Sarink MJ, Bras W, Te Lintel Hekkert F, Voor In 't Holt AF, Severin JA. Swimming pool policies for carriers of highly-resistant micro-organisms receiving rehabilitation care in the Netherlands. J Hosp Infect 2023; 141:221-222. [PMID: 37722564 DOI: 10.1016/j.jhin.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/20/2023]
Affiliation(s)
- M J Sarink
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - W Bras
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre, Rotterdam, The Netherlands; Rijndam Rehabilitation Centre, Rotterdam, The Netherlands
| | | | - A F Voor In 't Holt
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - J A Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Ding D, Wang B, Zhang X, Zhang J, Zhang H, Liu X, Gao Z, Yu Z. The spread of antibiotic resistance to humans and potential protection strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114734. [PMID: 36950985 DOI: 10.1016/j.ecoenv.2023.114734] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance is currently one of the greatest threats to human health. Widespread use and residues of antibiotics in humans, animals, and the environment can exert selective pressure on antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG), accelerating the flow of antibiotic resistance. As ARG spreads to the population, the burden of antibiotic resistance in humans increases, which may have potential health effects on people. Therefore, it is critical to mitigate the spread of antibiotic resistance to humans and reduce the load of antibiotic resistance in humans. This review briefly described the information of global antibiotic consumption information and national action plans (NAPs) to combat antibiotic resistance and provided a set of feasible control strategies for the transmission of ARB and ARG to humans in three areas including (a) Reducing the colonization capacity of exogenous ARB, (b) Enhancing human colonization resistance and mitigating the horizontal gene transfer (HGT) of ARG, (c) Reversing ARB antibiotic resistance. With the hope of achieving interdisciplinary one-health prevention and control of bacterial resistance.
Collapse
Affiliation(s)
- Dong Ding
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China; College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinxin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Baquero F, Saralegui C, Marcos-Mencía D, Ballestero L, Vañó-Galván S, Moreno-Arrones ÓM, Del Campo R. Epidermis as a Platform for Bacterial Transmission. Front Immunol 2021; 12:774018. [PMID: 34925344 PMCID: PMC8671829 DOI: 10.3389/fimmu.2021.774018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
The epidermis constitutes a continuous external layer covering the body, offering protection against bacteria, the most abundant living organisms that come into contact with this barrier. The epidermis is heavily colonized by commensal bacterial organisms that help protect against pathogenic bacteria. The highly regulated and dynamic interaction between the epidermis and commensals involves the host’s production of nutritional factors promoting bacterial growth together to chemical and immunological bacterial inhibitors. Signal trafficking ensures the system’s homeostasis; conditions that favor colonization by pathogens frequently foster commensal growth, thereby increasing the bacterial population size and inducing the skin’s antibacterial response, eliminating the pathogens and re-establishing the normal density of commensals. The microecological conditions of the epidermis favors Gram-positive organisms and are unsuitable for long-term Gram-negative colonization. However, the epidermis acts as the most important host-to-host transmission platform for bacteria, including those that colonize human mucous membranes. Bacteria are frequently shared by relatives, partners, and coworkers. The epidermal bacterial transmission platform of healthcare workers and visitors can contaminate hospitalized patients, eventually contributing to cross-infections. Epidermal transmission occurs mostly via the hands and particularly through fingers. The three-dimensional physical structure of the epidermis, particularly the fingertips, which have frictional ridges, multiplies the possibilities for bacterial adhesion and release. Research into the biology of bacterial transmission via the hands is still in its infancy; however, tribology, the science of interacting surfaces in relative motion, including friction, wear and lubrication, will certainly be an important part of it. Experiments on finger-to-finger transmission of microorganisms have shown significant interindividual differences in the ability to transmit microorganisms, presumably due to genetics, age, sex, and the gland density, which determines the physical, chemical, adhesive, nutritional, and immunological status of the epidermal surface. These studies are needed to optimize interventions and strategies for preventing the hand transmission of microorganisms.
Collapse
Affiliation(s)
- Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Claudia Saralegui
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Daniel Marcos-Mencía
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luna Ballestero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sergio Vañó-Galván
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Óscar M Moreno-Arrones
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Health Sciences, Universidad Alfonso X El Sabio, Madrid, Spain.,Centro de Investigación en Red en Enfermedades Infecciosas (CIBER-EEII), Madrid, Spain
| |
Collapse
|