1
|
Yang Y, Li X, Wang S, Lei Y, Xu W, Li Y, Yang L, Miao J, Wang W, Yin L. Assessing the impact of temperature on acute exacerbation of chronic obstructive pulmonary disease hospitalizations in residents of Panzhihua City: a multi-districts study using a distributed lag non-linear model. BMC Public Health 2024; 24:2151. [PMID: 39112974 PMCID: PMC11308688 DOI: 10.1186/s12889-024-19677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Temperature fluctuations can impact the occurrence and progression of respiratory system diseases. However, the current understanding of the impact of temperature on acute exacerbation of chronic obstructive pulmonary disease (AECOPD) remains limited. Therefore, our study aims to investigate the relationship between daily mean temperature (DMT) and the risk of AECOPD hospitalizations within Panzhihua City. METHODS We systematically collected data on AECOPD hospitalizations at Panzhihua Central Hospital from 2015 to 2020 and meteorological factors across Panzhihua City's districts. A two-stage analysis method was used to establish a distributed lag non-linear model to elucidate the influence of DMT on the frequency of admissions for AECOPD. Subgroup analyses were conducted by gender and age to identify populations potentially susceptible to the impact of DMT. RESULTS A total of 5299 AECOPD hospitalizations cases were included. The DMT and the risk of AECOPD hospitalization showed a non-linear exposure-response pattern, with low temperatures exacerbating the risk of hospitalizations. The lag effects of low temperature and relatively low temperature peaked at 2th day, with the lag effects disappearing at 16-17 days. Females and elders aged ≥ 65 years were more sensitive to effects of low and relatively low temperature at lag 0-4 days, while male AECOPD patients exhibited longer lasting lag effects. CONCLUSIONS Low temperatures are associated with an increased risk of AECOPD hospitalizations. Females or elders aged ≥ 65 years with chronic obstructive pulmonary disease should pay more attention to taking protective measures in cold environments. These findings are crucial for the formulation of public health policies, as they will help significantly alleviate the burden of AECOPD and improve respiratory health in the face of climate challenges.
Collapse
Affiliation(s)
- Yan Yang
- Department of Respiratory and Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
| | - Xianzhi Li
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
- Clinical Research Center, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
| | - Shigong Wang
- College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Yingchao Lei
- School of Health and Wellness, Panzhihua University, Panzhihua, Sichuan, 617000, China
| | - Wenhao Xu
- Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
| | - Yongjun Li
- Panzhihua Meteorological Bureau, Panzhihua Meteorological Office, Panzhihua, Sichuan, 617000, China
| | - Lei Yang
- Department of Respiratory and Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
| | - Jinli Miao
- The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, Zhejiang, 314006, China
| | - Wenmin Wang
- The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, Zhejiang, 314006, China
| | - Li Yin
- Department of Respiratory and Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China.
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China.
| |
Collapse
|
2
|
Li W, Wang J, Huang W, Yan Y, Liu Y, Zhao Q, Chen M, Yang L, Guo Y, Ma W. The association between humidex and tuberculosis: a two-stage modelling nationwide study in China. BMC Public Health 2024; 24:1289. [PMID: 38734652 PMCID: PMC11088084 DOI: 10.1186/s12889-024-18772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Under a changing climate, the joint effects of temperature and relative humidity on tuberculosis (TB) are poorly understood. To address this research gap, we conducted a time-series study to explore the joint effects of temperature and relative humidity on TB incidence in China, considering potential modifiers. METHODS Weekly data on TB cases and meteorological factors in 22 cities across mainland China between 2011 and 2020 were collected. The proxy indicator for the combined exposure levels of temperature and relative humidity, Humidex, was calculated. First, a quasi-Poisson regression with the distributed lag non-linear model (DLNM) was constructed to examine the city-specific associations between humidex and TB incidence. Second, a multivariate meta-regression model was used to pool the city-specific effect estimates, and to explore the potential effect modifiers. RESULTS A total of 849,676 TB cases occurred in the 22 cities between 2011 and 2020. Overall, a conspicuous J-shaped relationship between humidex and TB incidence was discerned. Specifically, a decrease in humidex was positively correlated with an increased risk of TB incidence, with a maximum relative risk (RR) of 1.40 (95% CI: 1.11-1.76). The elevated RR of TB incidence associated with low humidex (5th humidex) appeared on week 3 and could persist until week 13, with a peak at approximately week 5 (RR: 1.03, 95% CI: 1.01-1.05). The effects of low humidex on TB incidence vary by Natural Growth Rate (NGR) levels. CONCLUSION A J-shaped exposure-response association existed between humidex and TB incidence in China. Humidex may act as a better predictor to forecast TB incidence compared to temperature and relative humidity alone, especially in regions with higher NGRs.
Collapse
Affiliation(s)
- Wen Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong University Climate Change and Health Center, Jinan, Shandong, China
| | - Jia Wang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenzhong Huang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yu Yan
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong University Climate Change and Health Center, Jinan, Shandong, China
| | - Yanming Liu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong University Climate Change and Health Center, Jinan, Shandong, China
| | - Mingting Chen
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Liping Yang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wei Ma
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Shandong University Climate Change and Health Center, Jinan, Shandong, China.
| |
Collapse
|
3
|
Ji Y, Huang Z, Yuan Z, Xiong J, Li L. Exposure to low humidex increases the risk of hip fracture admissions in a subtropical coastal Chinese city. Bone 2024; 181:117032. [PMID: 38307177 DOI: 10.1016/j.bone.2024.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVE The adverse impacts of meteorological factors on human health have attracted great attention. However, no studies have investigated the nonlinear effects of humidex on hip fractures (HF), particularly in middle-aged and older adults. This study aimed to quantify the impacts of humidex, a comprehensive index of temperature and relative humidity, on HF admissions. METHODS Daily HF admissions, meteorological variables and air pollutants in the subtropical coastal city of Shantou, China, from 2015 to 2020 were collected. A generalized linear regression model combined with a distributed lag nonlinear model was applied to explore the exposure-lag-response relationship between humidex and HF admissions. Subgroup analyses were also conducted by gender, age and season. Attributable fractions (AF) and attributable numbers (AN) were used to represent the burden of disease. RESULTS A total of 6200 HF admissions were identified during the study period. Taking the median humidex (31.9) as a reference, the single-day lag effects of low humidex (13, 2.5th percentile) were significant at lag 0 [relative risk (RR) = 1.145, 95 % confidence interval (CI): 1.041-1.259] to lag 2 (RR = 1.049, 95 % CI: 1.010-1.089). The cumulative lag effects of low humidex were significant at lag 0-0 (RR = 1.145, 95 % CI: 1.041-1.259) to lag 0-6 (RR = 1.258, 95 % CI: 1.010-1.567) and reached a maximum at lag 0-3 (RR = 1.330, 95 % CI: 1.113-1.590). High humidex (44, 97.5th percentile) was not associated with the risk of HF. Females and people over the age of 75 appeared to be more susceptible to low humidex. In addition, the adverse effects of low humidex were more pronounced in the cold season. The AF and AN of low humidex on HF admissions were 24.8 % (95 % CI: 10.2-37.1 %) and 1538, respectively. CONCLUSION Low humidex was associated with an increased risk of HF admissions. The government should take timely measures to prevent people from being exposed to low humidex to effectively reduce HF admissions.
Collapse
Affiliation(s)
- Yanhu Ji
- School of Public Health, Shantou University, 515063 Shantou, China
| | - Zepeng Huang
- The Second Affiliated Hospital of Shantou University Medical College, 515041 Shantou, China
| | | | - Jianping Xiong
- The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, China
| | - Liping Li
- School of Public Health, Shantou University, 515063 Shantou, China.
| |
Collapse
|
4
|
Zhang J, Tao Y, Wang Y, Ji X, Wu Y, Zhang F, Wang Z. Independent and interaction effects of prenatal exposure to high AQI and extreme Humidex on the risk of preterm birth: A large sample population study in northern China. Reprod Toxicol 2024; 124:108544. [PMID: 38246475 DOI: 10.1016/j.reprotox.2024.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The combined effects of air pollution and extreme temperature on PTB remain unclear. To evaluate the independent effect and interaction effect of prenatal extreme exposure to air quality index (AQI) and Humidex, on PTB. Based on the National Health Care Data Platform of Shandong University, women who gave birth in 2019-2020 were selected for the study. First, the independent effects of AQI and Humidex on PTB were assessed by logistic regression model. Subsequently, the interaction effects of AQI and Humidex on PTB were estimated separately by calculation of the relative excess risk of interaction (RERI). A total of 34365 pregnant women were included and 1975 subjects were diagnosed with PTB. We observed a significant increase in the odds of PTB associated with maternal high AQI exposure, with an OR of 1.70 (95% CI: 1.59, 1.81). Similarly, extreme exposure to Humidex also demonstrated an elevated PTB odds, with a low Humidex OR of 2.48 (95% CI: 2.23, 2.76) and a high Humidex OR of 1.48 (95% CI: 1.31, 1.67). Finally, we observed an interaction between high AQI and extreme Humidex during the 1st trimester. Interaction effects were noted between high AQI and low Humidex throughout the entire trimester and the 2nd trimester. This study suggests that prenatal exposure to high AQI and extreme Humidex could increase the odds of PTB, with effects exhibiting the sensitivity window and a cumulative trend. Additionally, there is an interaction between AQI and Humidex.
Collapse
Affiliation(s)
- Jiatao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yu Tao
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yongchao Wang
- Institute for Medical Dataology, Shandong University, Shandong, PR China
| | - Xiaokang Ji
- Institute for Medical Dataology, Shandong University, Shandong, PR China
| | - Yanling Wu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Fengmei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China; Institute for Medical Dataology, Shandong University, Shandong, PR China.
| |
Collapse
|
5
|
Zhao H, Yang Y, Feng C, Wang W, Yang C, Yin Y, Gong L, Lin T. Nonlinear effects of humidex on risk of outpatient visit for allergic conjunctivitis among children and adolescents in Shanghai, China: A time series analysis. J Glob Health 2023; 13:04132. [PMID: 37921044 PMCID: PMC10623378 DOI: 10.7189/jogh.13.04132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Background Various epidemiological studies have focused on the adverse health outcomes of meteorological factors. However, there has been little research on the impact of humidex on allergic conjunctivitis, especially in child and adolescent populations. We aimed to explore the impact of humidex, a comprehensive index of relative humidity and temperature, on child and adolescent allergic conjunctivitis admissions. Methods Outpatient visit data for allergic conjunctivitis, meteorological factors and air pollutants in Shanghai for the 2017-2022 period were retrieved. For the purpose of analysing the nonlinear connection and lag impact between humidex and admissions for paediatric and adolescent allergic conjunctivitis, the distributed lag nonlinear model (DLNM) was fitted. Results A total of 147 090 cases were included in our cohort. We found a significantly nonlinear effect on humidex and allergic conjunctivitis. In the single-day lag pattern, the relative risks (RR) of allergic conjunctivitis were significant at lag 0 (RR = 1.08, 95% confidence interval (CI) = 1.05-1.11) to lag 2 (RR = 1.01, 95% CI = 1.00-1.01), lag 5 (RR = 1.01, 95% CI = 1.00-1.01) to lag 9 (RR = 1.01, 95% CI = 1.00-1.01), and lag 14 (RR = 1.02, 95% CI: 1.01-1.03). In the cumulative-lag day pattern, the RR of allergic conjunctivitis were significant at lag 0-0 (RR = 1.08, 95% CI = 1.05-1.11) to lag 0-14 (RR = 1.21, 95% CI = 1.13-1.28). We found that boys, children aged 7-17 years, and children in the warm season were more vulnerable to humidex. In addition, the highest attributable fraction (AF) and attributable number (AN) of humidex are at lag 0-14 (AF = 0.17, AN = 25 026). Conclusions Humidex exposure markedly increased the risk of allergic conjunctivitis, especially in highly high humidex. Appropriate public health management is needed for disease management and early intervention.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Yun Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Changming Feng
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Chenhao Yang
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Yue Yin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
6
|
Wang W, Wang Y, Chen L, Zhou B, Liao F. Inverted U-shaped association between bacillary dysentery and temperature: A new finding using a novel two-stage strategy in multi-region studies. PLoS Negl Trop Dis 2023; 17:e0011771. [PMID: 37976308 PMCID: PMC10691710 DOI: 10.1371/journal.pntd.0011771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Bacillary dysentery (BD) has brought a significant public health concern in China. Temperature is one of the main factors affecting BD incidence. Due to the largely different temperature ranges between regions, the classic multi-region time series studies could only explore the relative temperature-BD association and showed that BD incidence is positively associated with relative temperature (i.e., temperature percentile), which does not conform to the laboratory knowledge that both high and low temperature interfere with the survival of bacteria. The association on relative temperature scale also limits the intuition of epidemiological meanings. METHODS A novel two-stage strategy was proposed to investigate the association between monthly temperature and BD incidence on the original temperature scale in 31 provinces, China. In the first stage, truncated polynomial splines, as the substitute of the common natural splines or B-splines in generalized additive models, were used to characterize the temperature-BD association on the original temperature scale in each province. In the second stage, a multivariate meta-analysis compatible with missing values was used to pool the associations. The classic strategy based on relative temperature was used as a reference. RESULTS The average temperature-BD association presented a U-inverted shape, but not a monotonically increasing shape obtained using the classic strategy. This inverted U-shaped association conforms more to the laboratory knowledge and the original-scale association also provided an intuitive perspective and an easily explanatory result. Another advantage is that the novel strategy can extrapolate the province-specific association outside the observed temperature ranges by utilizing information from other provinces, which is meaningful considering the frequent incidences of extreme temperatures. CONCLUSIONS The association between temperature and BD incidence presented a U-inverted shape. The proposed strategy can efficiently characterize the association between exposure and outcome on original scale in a multi-region study with largely different exposure ranges.
Collapse
Affiliation(s)
- Wei Wang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yunqiong Wang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lin Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fang Liao
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
7
|
Li Y, Xia Y, Zhu H, Shi C, Jiang X, Ruan S, Wen Y, Gao X, Huang W, Li M, Xue R, Chen J, Zhang L. Impacts of exposure to humidex on cardiovascular mortality: a multi-city study in Southwest China. BMC Public Health 2023; 23:1916. [PMID: 37794404 PMCID: PMC10548730 DOI: 10.1186/s12889-023-16818-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Many studies have reported the association between ambient temperature and mortality from cardiovascular disease (CVD). However, the health effects of humidity are still unclear, much less the combined effects of temperature and humidity. In this study, we used humidex to quantify the effect of temperature and humidity combined on CVD mortality. METHODS Daily meteorological, air pollution, and CVD mortality data were collected in four cities in southwest China. We used a distributed lag non-linear model (DLNM) in the first stage to assess the exposure-response association between humidex and city-specific CVD mortality. A multivariate meta-analysis was conducted in the second stage to pool these effects at the overall level. To evaluate the mortality burden of high and low humidex, we determined the attributable fraction (AF). According to the abovementioned processes, stratified analyses were conducted based on various demographic factors. RESULTS Humidex and the CVD exposure-response curve showed an inverted "J" shape, the minimum mortality humidex (MMH) was 31.7 (77th percentile), and the cumulative relative risk (CRR) was 2.27 (95% confidence interval [CI], 1.76-2.91). At extremely high and low humidex, CRRs were 1.19 (95% CI, 0.98-1.44) and 2.52 (95% CI, 1.88-3.38), respectively. The burden of CVD mortality attributed to non-optimal humidex was 21.59% (95% empirical CI [eCI], 18.12-24.59%), most of which was due to low humidex, with an AF of 20.16% (95% eCI, 16.72-23.23%). CONCLUSIONS Low humidex could significantly increase the risk of CVD mortality, and vulnerability to humidex differed across populations with different demographic characteristics. The elderly (> 64 years old), unmarried people, and those with a limited level of education (1-9 years) were especially susceptible to low humidex. Therefore, humidex is appropriate as a predictor in a CVD early-warning system.
Collapse
Affiliation(s)
- Yang Li
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, China
| | - Yizhang Xia
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, China
- School of Public Health, Chengdu Medical College, No.783, Xindu Road, Xindu District, Chengdu, 610500, China
| | - Hongbin Zhu
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, China
| | - Chunli Shi
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, China
| | - Xianyan Jiang
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, China
| | - Shijuan Ruan
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, China
| | - Yue Wen
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, China
| | - Xufang Gao
- Chengdu Center for Disease Control and Prevention, No.6, Longxiang Road, Wuhou District, Chengdu, 610041, China
| | - Wei Huang
- Zigong Center for Disease Control and Prevention, No.826, Huichuan Road, Ziliujing District, Zigong, 643000, China
| | - Mingjiang Li
- Panzhi hua Center for Disease Control and Prevention, No.996, Jichang Road, Dong District, Panzhi hua, 617067, China
| | - Rong Xue
- Guangyuan Center for Disease Control and Prevention, No.996, Binhebei Road,Lizhou District, Guangyuan, 628017, China
| | - Jianyu Chen
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, China.
| | - Li Zhang
- Sichuan Provincial Center for Disease Control and Prevention, No.6, Zhongxue Road, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
8
|
Cai W, Luo C, Geng X, Zha Y, Zhang T, Zhang H, Yang C, Yin F, Ma Y, Shui T. City-level meteorological conditions modify the relationships between exposure to multiple air pollutants and the risk of pediatric hand, foot, and mouth disease in the Sichuan Basin, China. Front Public Health 2023; 11:1140639. [PMID: 37601186 PMCID: PMC10433208 DOI: 10.3389/fpubh.2023.1140639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
Background Several studies have examined the effects of city-level meteorological conditions on the associations between meteorological factors and hand, foot, and mouth disease (HFMD) risk. However, evidence that city-level meteorological conditions modify air pollutant-HFMD associations is lacking. Methods For each of the 17 cities in the Sichuan Basin, we obtained estimates of the relationship between exposures to multiple air pollutants and childhood HFMD risk by using a unified distributed lag nonlinear model (DLNM). Multivariate meta-regression models were used to identify the effects of city-level meteorological conditions as effect modifiers. Finally, we conducted subgroup analyses of age and sex to explore whether the modification effects varied in different subgroups. Results The associations between PM2.5/CO/O3 and HFMD risk showed moderate or substantial heterogeneity among cities (I 2 statistics: 48.5%, 53.1%, and 61.1%). Temperature conditions significantly modified the PM2.5-HFMD association, while relative humidity and rainfall modified the O3-HFMD association. Low temperatures enhanced the protective effect of PM2.5 exposure against HFMD risk [PM2.5 <32.7 μg/m3 or PM2.5 >100 μg/m3, at the 99th percentile: relative risk (RR) = 0.14, 95% CI: 0.03-0.60]. Low relative humidity increased the adverse effect of O3 exposure on HFMD risk (O3 >128.7 μg/m3, at the 99th percentile: RR = 2.58, 95% CI: 1.48-4.50). However, high rainfall decreased the risk of HFMD due to O3 exposure (O3: 14.1-41.4 μg/m3). In addition, the modification effects of temperature and relative humidity differed in the female and 3-5 years-old subgroups. Conclusion Our findings revealed moderate or substantial heterogeneity in multiple air pollutant-HFMD relationships. Temperature, relative humidity, and rainfall modified the relationships between PM2.5 or O3 exposure and HFMD risk.
Collapse
Affiliation(s)
- Wennian Cai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Caiying Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaoran Geng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanyi Zha
- Graduate School of Kunming Medical University, Kunming, China
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huadong Zhang
- Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Changhong Yang
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tiejun Shui
- Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
9
|
Zhou Y, Ji A, Tang E, Liu J, Yao C, Liu X, Xu C, Xiao H, Hu Y, Jiang Y, Li D, Du N, Li Y, Zhou L, Cai T. The role of extreme high humidex in depression in chongqing, China: A time series-analysis. ENVIRONMENTAL RESEARCH 2023; 222:115400. [PMID: 36736551 DOI: 10.1016/j.envres.2023.115400] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
As global climate change intensifies, people are paying increasing attention to the impact of temperature changes on adverse mental health outcomes, especially depression. While increasing attention has been paid to the effect of temperature, there is little research on the effect of humidity. We aimed to investigate the association between humidex, an index combining temperature and humidity to reflect perceived temperature, and outpatient visits for depression from 2014 to 2019 in Chongqing, the largest and one of the most hot and humid cities of China. We also aimed to further identify susceptible subgroups. A distributed lag non-linear model (DLNM) was used to explore the concentration-response relationship between humidex and depression outpatient visits. Hierarchical analysis was carried out by age and gender. A total of 155,436 visits for depression were collected from 2014 to 2019 (2191 days). We found that depression outpatient visits were significantly associated with extremely high humidex (≥40). The significant positive single-lag day effect existed at lag 0 (RR = 1.029, 95%CI: 1.000-1.059) to lag 2 (RR = 1.01, 95%CI: 1.004-1.028), and lag 12 (RR = 1.013, 95%CI: 1.002-1.024). The significant cumulative adverse effects lasted from lag 01 to lag 014. Hierarchical analyses showed that females and the elderly (≥60 years) appeared to be more susceptible to extremely high humidex. The attributable numbers (AN) and fraction (AF) of extremely high humidex on depression outpatients were 1709 and 1.10%, respectively. Extremely high humidex can potentially increase the risk of depression, especially in females and the elderly. More protective measures should be taken in vulnerable populations.
Collapse
Affiliation(s)
- Yumeng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ailing Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Enjie Tang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jianghong Liu
- Department of Family and Community Health, University of Pennsylvania School of Nursing, Philadelphia, PA, 19104, USA
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chen Xu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Hua Xiao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuegu Hu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuexu Jiang
- Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University, Guiyang, 550025, China
| | - Dawei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ning Du
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Laixin Zhou
- Medical Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
10
|
Fang W, Li Z, Gao J, Meng R, He G, Hou Z, Zhu S, Zhou M, Zhou C, Xiao Y, Yu M, Huang B, Xu X, Lin L, Xiao J, Jin D, Qin M, Yin P, Xu Y, Hu J, Liu T, Huang C, Ma W. The joint and interaction effect of high temperature and humidity on mortality in China. ENVIRONMENT INTERNATIONAL 2023; 171:107669. [PMID: 36508749 DOI: 10.1016/j.envint.2022.107669] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Although many studies have reported the mortality effect of temperature, there were few studies on the mortality risk of humidity, let alone the joint effect of temperature and humidity. This study aimed to investigate the joint and interaction effect of high temperature and relative humidity on mortality in China, which will deepen understanding the health risk of mixture climate exposure. METHODS The mortality and meteorological data were collected from 353 locations in China (2013-2017 in Jilin, Hunan, Guangdong and Yunnan provinces, 2009-2017 in Zhejiang province, and 2006-2011 in other Provinces). We defined location-specific daily mean temperature ≥ 75th percentile of distribution as high temperature, while minimum mortality relative humidity as the threshold of high relative humidity. A time-series model with a distributed lag non-linear model was first employed to estimate the location-specific associations between humid-hot events and mortality, then we conducted meta-analysis to pool the mortality effect of humid-hot events. Finally, an additive interaction model was used to examine the interactive effect between high temperature and relative humidity. RESULTS The excess rate (ER) of non-accidental mortality attributed to dry-hot events was 10.18% (95% confidence interval (CI): 8.93%, 11.45%), which was higher than that of wet-hot events (ER = 3.21%, 95% CI: 0.59%, 5.89%). The attributable fraction (AF) of mortality attributed to dry-hot events was 10.00% (95% CI: 9.50%, 10.72%) with higher burden for females, older people, central China, cardiovascular diseases and urban city. While for wet-hot events, AF was much lower (3.31%, 95% CI: 2.60%, 4.30%). We also found that high temperature and low relative humidity had synergistic additive interaction on mortality risk. CONCLUSION Dry-hot events may have a higher risk of mortality than wet-hot events, and the joint effect of high temperature and low relative humidity may be greater than the sum of their individual effects.
Collapse
Affiliation(s)
- Wen Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhixing Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jinghua Gao
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruilin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhulin Hou
- Jilin Provincial Center for Disease Control and Prevention, Changchun 130062, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Maigeng Zhou
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing 100050, China
| | - Chunliang Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
| | - Yize Xiao
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650034, China
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310009, China
| | - Biao Huang
- Jilin Provincial Center for Disease Control and Prevention, Changchun 130062, China
| | - Xiaojun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Lifeng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Donghui Jin
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
| | - Mingfang Qin
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650034, China
| | - Peng Yin
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing 100050, China
| | - Yiqing Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
| | - Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Hao Q, Gao Q, Zhao R, Wang H, Li H, Jiang B. The effect and attributable risk of daily temperature on category C infectious diarrhea in Guangdong Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23963-23974. [PMID: 34817816 DOI: 10.1007/s11356-021-17132-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/17/2021] [Indexed: 05/16/2023]
Abstract
Previous studies have explored the effect between ambient temperature and infectious diarrhea (ID) mostly using relative risk, which provides limited information in practical applications. Few studies have focused on the disease burden of ID caused by temperature, especially for different subgroups and cities in a multi-city setting. This study aims to estimate the effects and attributable risks of temperature on category C ID and explore potential modifiers among various cities in Guangdong. First, distributed lag non-linear models (DLNMs) were used to explore city-specific associations between daily mean temperature and category C ID from 2014 to 2016 in Guangdong and pooled by applying multivariate meta-analysis. Then, multivariate meta-regression was implemented to analyze the potential heterogeneity among various cities. Finally, we assessed the attributable burden of category C ID due to temperature, low (below the 5th percentile of temperature) and high temperature (above the 95th percentile of temperature) for each city and subgroup population. Compared with the 50th percentile of daily mean temperature, adverse effects on category C ID were found when the temperature was lower than 12.27 ℃ in Guangdong Province. Some city-specific factors (longitude, urbanization rate, population density, disposable income per capita, and the number of medical technicians and beds per thousand persons) could modify the relationship of temperature-category C ID. During the study period, there were 60,505 category C ID cases (17.14% of total cases) attributable to the exposure of temperature, with the attributable fraction (AF) of low temperature (4.23%, 95% empirical confidence interval (eCI): 1.79-5.71%) higher than high temperature (1.34%, 95% eCI: 0.86-1.64%). Males, people under 5 years, and workers appeared to be more vulnerable to temperature, with AFs of 29.40%, 19.25%, and 21.49%, respectively. The AF varied substantially at the city level, with the largest AF of low temperature occurring in Shaoguan (9.58%, 95% eCI: 8.36-10.09%), and that of high temperature occurring in Shenzhen (3.16%, 95% eCI: 2.70-3.51%). Low temperature was an important risk factor for category C ID in Guangdong Province, China. The exposure-response relationship could be modified by city-specific characteristics. Considering the whole population, the attributable risk of low temperature was much higher than that of high temperature, and males, people under 5 years, and workers were vulnerable populations.
Collapse
Affiliation(s)
- Qiang Hao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong Province, People's Republic of China
- Shandong University Climate Change and Health Center, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qi Gao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Ran Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong Province, People's Republic of China
- Shandong University Climate Change and Health Center, Jinan, 250012, Shandong Province, People's Republic of China
| | - Haitao Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong Province, People's Republic of China
| | - Hao Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong Province, People's Republic of China
- Shandong University Climate Change and Health Center, Jinan, 250012, Shandong Province, People's Republic of China
| | - Baofa Jiang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong Province, People's Republic of China.
- Shandong University Climate Change and Health Center, Jinan, 250012, Shandong Province, People's Republic of China.
| |
Collapse
|