1
|
Yang H, Zeng G, Liu Y, Tang Y, Bai G, Liu Z, Diao H, Zhang Y, Liu L, Xue Q, Xia S, Zhou Q, Wu Z. Study on adsorption and recovery utilization of phosphorus using alkali melting-hydrothermal treated oil-based drilling cutting ash. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117373. [PMID: 36708598 DOI: 10.1016/j.jenvman.2023.117373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Oil-based drill cutting ash (OBDCA) was treated by alkali melting-hydrothermal method and used as novel adsorbent (AM-HT-OBDCA) for the recovery of phosphorus (P) in water body. The experiment parameter for preparation of AM-HT-OBDCA was optimized, including alkali melting ratio (MOBDCA: MNaOH), alkali melting temperature and hydrothermal temperature. The adsorption process of phosphorus on AM-HT-OBDCA was fit well with the pseudo-second-order model and the Langmuir model. The calculated theoretic adsorption capacity of phosphorus on AM-HT-OBDCA was 62.9 mg/g. The adsorption behavior was spontaneous and endothermic. The effect of pH value and interfering ions on the adsorption of phosphorus in AM-HT-OBDCA was investigated. The main existing form of adsorbed phosphorus on AM-HT-OBDCA was sodium hydroxide extraction form phosphorus (NaOH-P), including iron form phosphorus (Fe-P) and aluminum form phosphorus (Al-P). Precipitation and ligand exchange were the main mechanisms of phosphorus adsorption on AM-HT-OBDCA. The AM-HT-OBDCA used for phosphorus adsorption (AM-HT-OBDCA-P) could be further utilized as fertilizer to promote plant growth. The results of this study provide fundamental data and evaluation support for resource utilization of OBDCA. These results will also provide a reference for the adsorption and recovery utilization of phosphorus using solid waste-based adsorbent.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Guanli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yadong Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Guoliang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Hongli Diao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lei Liu
- State Key Laboratory of Rock and Soil Mechanics and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Qiang Xue
- State Key Laboratory of Rock and Soil Mechanics and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| |
Collapse
|
2
|
Zhang J, Han X, Su Y, Staehelin C, Xu C. T-DNA insertion mutagenesis in Penicillium brocae results in identification of an enolase gene mutant impaired in secretion of organic acids and phosphate solubilization. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37068121 DOI: 10.1099/mic.0.001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Penicillium brocae strain P6 is a phosphate-solubilizing fungus isolated from farmland in Guangdong Province, China. To gain better insights into the phosphate solubilization mechanisms of strain P6, a T-DNA insertion population containing approximately 4500 transformants was generated by Agrobacterium tumefaciens-mediated transformation. The transformation procedure was optimized by using a Hybond N membrane for co-cultivation of A. tumefaciens and P. brocae. A mutant impaired in phosphate solubilization (named MT27) was obtained from the T-DNA insertion population. Thermal asymmetric interlaced PCR was then used to identify the nucleotide sequences flanking the T-DNA insertion site. The T-DNA in MT27 was inserted into the fourth exon of an enolase gene, which shows 90.8 % nucleotide identity with enolase mRNA from Aspergillus neoniger. Amino acid sequence homology analysis indicated that the enolase is well conserved among filamentous fungi and Saccharomyces cerevisiae. Complementation tests with the MT27 mutant confirmed that the enolase gene is involved in phosphate solubilization. Analysis of organic acids in culture supernatants indicated reduced levels of oxalic acid and lactic acid for the MT27 mutant compared to the parent strain P6 or the complementation strain. In conclusion, we suggest that the identified enolase gene of P. brocae is involved in production of specific organic acids, which, when secreted, act as phosphate solubilizing agents.
Collapse
Affiliation(s)
- Juntao Zhang
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, PR China
| | - Xiaoge Han
- School of Ecological Environment Technology, Guangdong Industry Polytechnic, Nanhai Campus, Foshan 528225, PR China
| | - Yang Su
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, PR China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Changchao Xu
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, PR China
| |
Collapse
|