1
|
Yang Y, Li Z, Chen Y, Zhang Y, Lu L. Periodic flooding alters ecological processes and carbon metabolism efficiency of riparian soil microbial communities in the three Gorges Reservoir area, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124534. [PMID: 39965502 DOI: 10.1016/j.jenvman.2025.124534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/11/2024] [Revised: 12/26/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Soil microbial communities are the most active components in the riparian biota, and are critical in driving carbon cycling. The periodic flooding in riparian zones is a primary driving force in the changes of soil microbial community structures and function. However, whether such events can induce changes in microbial carbon metabolism efficiency has not been fully revealed, especially in large reservoirs that experience counter-seasonal water level fluctuations (WLFs). In this study, high-throughput sequencing and the 18O-H2O cultivation method were applied to investigate the soil microbial community and carbon metabolism in a tributary riparian zone in China's Three Gorges Reservoir, which has experienced large WLFs. Three elevations in the riparian zone (155, 165, and 170 m) were selected as treatments for different flooding intensities. As the frequency of flooding decreased, soil enzyme activity decreased first and then increased. In contrast, soil water content, fungal α-diversity, microbial co-occurrence network complexity, average variation degree, βNTI, and total cohesion decreased slowly. The assembly mechanism of microbial communities is primarily governed by homogeneous dispersion. This suggests that periodic flooding significantly alters microbial ecological processes. Additionally, we found that decreased extracellular enzyme activity increases microbial carbon use efficiency and decreases the metabolic quotient, promoting soil carbon storage. This study enhances our understanding of the response and mechanisms of soil microbial communities to periodic flooding. It provides a theoretical foundation for soil ecosystem management and conservation.
Collapse
Affiliation(s)
- Yining Yang
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhe Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Yao Chen
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Yuanyuan Zhang
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Lunhui Lu
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
2
|
Pérez-Burillo J, Mann DG, Trobajo R. Biogeography and genetic diversity of freshwater diatoms: The potential of large combined rbcL metabarcoding datasets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178727. [PMID: 39923473 DOI: 10.1016/j.scitotenv.2025.178727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/30/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Aiming to gain a general picture of rbcL diversity within freshwater diatom species, this study assembles and analyzes multiple metabarcoding datasets spanning various geographical regions. From these datasets, we inferred >10,000 amplicon sequence variants (ASVs) of 263-bp length. More than half of the 1000 most abundant ASVs were recorded in both Eurasia and N America and there was only limited evidence for continent-specific lineages. The geographical range was extended for some species, illustrating the potential of metabarcoding datasets for such checks. For detailed analysis of intraspecific diversity, 73 freshwater species were selected, corresponding to 360 ASVs assigned phylogenetically. We found notable variation, some species being represented by only one or a few ASVs, while others were represented by a higher number. Furthermore, within species, ASVs exhibited different dominance and distribution patterns, in some cases with a head-tail pattern, in others a more equal spread of abundance or unresolved reticulate relationships. Except for Ulnaria ulna, no geographical structure among species' ASVs was detectable in haplotype networks using the 263-bp rbcL marker. Observed heterogeneity within species was categorized by computing several metrics of genetic variation and classified into three groups, reflecting optimal sampling strategies based on the patterns of intraspecific variation in the 73 target species There was a significant relationship between intraspecific diversity and the traditional separation between 'centric' and 'pennate' diatoms, with centric species exhibiting significantly fewer variants than pennates, possibly because of different plastid inheritance patterns.
Collapse
Affiliation(s)
- Javier Pérez-Burillo
- Marine and Continental Waters Programme, IRTA-Institute for Food and Agricultural Research and Technology, Ctra de Poble Nou Km 5.5, E43540, LaRàpita, Tarragona, Spain; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - David G Mann
- Marine and Continental Waters Programme, IRTA-Institute for Food and Agricultural Research and Technology, Ctra de Poble Nou Km 5.5, E43540, LaRàpita, Tarragona, Spain; Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, UK
| | - Rosa Trobajo
- Marine and Continental Waters Programme, IRTA-Institute for Food and Agricultural Research and Technology, Ctra de Poble Nou Km 5.5, E43540, LaRàpita, Tarragona, Spain
| |
Collapse
|
3
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
4
|
Smucker NJ, Pilgrim EM, Nietch CT, Gains-Germain L, Carpenter C, Darling JA, Yuan LL, Mitchell RM, Pollard AI. Using DNA metabarcoding to characterize national scale diatom-environment relationships and to develop indicators in streams and rivers of the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173502. [PMID: 38815829 PMCID: PMC11247516 DOI: 10.1016/j.scitotenv.2024.173502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Recent advancements in DNA techniques, metabarcoding, and bioinformatics could help expand the use of benthic diatoms in monitoring and assessment programs by providing relatively quick and increasingly cost-effective ways to quantify diatom diversity in environmental samples. However, such applications of DNA-based approaches are relatively new, and in the United States, unknowns regarding their applications at large scales exist because only a few small-scale studies have been done. Here, we present results from the first nationwide survey to use DNA metabarcoding (rbcL) of benthic diatoms, which were collected from 1788 streams and rivers across nine ecoregions spanning the conterminous USA. At the national scale, we found that diatom assemblage structure (1) was strongly associated with total phosphorus and total nitrogen concentrations, conductivity, and pH and (2) had clear patterns that corresponded with differences in these variables among the nine ecoregions. These four variables were strong predictors of diatom assemblage structure in ecoregion-specific analyses, but our results also showed that diatom-environment relationships, the importance of environmental variables, and the ranges of these variables within which assemblage changes occurred differed among ecoregions. To further examine how assemblage data could be used for biomonitoring purposes, we used indicator species analysis to identify ecoregion-specific taxa that decreased or increased along each environmental gradient, and we used their relative abundances of gene reads in samples as metrics. These metrics were strongly correlated with their corresponding variable of interest (e.g., low phosphorus diatoms with total phosphorus concentrations), and generalized additive models showed how their relationships compared among ecoregions. These large-scale national patterns and nine sets of ecoregional results demonstrated that diatom DNA metabarcoding is a robust approach that could be useful to monitoring and assessment programs spanning the variety of conditions that exist throughout the conterminous United States.
Collapse
Affiliation(s)
- Nathan J Smucker
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
| | - Erik M Pilgrim
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Christopher T Nietch
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | | | | | - John A Darling
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27703, USA
| | - Lester L Yuan
- United States Environmental Protection Agency, Office of Water, Washington, D.C. 20004, USA
| | - Richard M Mitchell
- United States Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, D.C. 20004, USA
| | - Amina I Pollard
- United States Environmental Protection Agency, Office of Water, Washington, D.C. 20004, USA
| |
Collapse
|
5
|
Hay Mele B, Ruggiero MV, D'Alelio D. Population bottlenecks and sexual recombination shape diatom microevolution. Ecol Evol 2024; 14:e11464. [PMID: 39091335 PMCID: PMC11289787 DOI: 10.1002/ece3.11464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2024] [Revised: 04/04/2024] [Accepted: 05/08/2024] [Indexed: 08/04/2024] Open
Abstract
Diatoms are single-celled organisms that contribute approximately 20% of the global primary production and play a crucial role in biogeochemical cycles and trophic chains. Despite their ecological importance, our knowledge of microevolution is limited. We developed a model using the SLiM evolutionary framework to address this knowledge gap. As a reference, we used the diatom Pseudo-nitzschia multistriata, which has been extensively studied in the Gulf of Naples. Our model recapitulates what we observe in natural populations, with microevolutionary processes that occur annually during a three-stage bloom phase. Interestingly, we found that non-bloom phases allow the population to maintain sex-generated diversity produced during blooms. This finding suggests that non-bloom phases are critical to counteract bloom-related pressures and mitigate genetic divergence at the species level. Moreover, our model showed that despite the consistent genetic differentiation during bloom phases, the population tends to return to pre-bloom states. While our model is limited to neutral dynamics, our study provides valuable insights into diatoms' microevolution, paving the way to explore the ecological implications of the life history dynamics of these organisms.
Collapse
Affiliation(s)
- Bruno Hay Mele
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
| | | | - Domenico D'Alelio
- Stazione Zoologica Anton DohrnNaplesItaly
- National Biodiversity Future Center (NBFC)PalermoItaly
| |
Collapse
|
6
|
Kelly MG, Mann DG, Taylor JD, Juggins S, Walsh K, Pitt JA, Read DS. Maximising environmental pressure-response relationship signals from diatom-based metabarcoding in rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169445. [PMID: 38159778 DOI: 10.1016/j.scitotenv.2023.169445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
DNA metabarcoding has been performed on a large number of river phytobenthos samples collected from the UK, using rbcL primers optimised for diatoms. Within this dataset the composition of non-diatom sequence reads was studied and the effect of including these in models for evaluating the nutrient gradient was assessed. Whilst many non-diatom taxonomic groups were detected, few contained the full diversity expected in riverine environments. This may be due to the performance of the current primers in characterising the wider phytobenthic community and influenced by the sampling method employed, as both were developed specifically for diatoms. Nevertheless, the study identified considerable diversity in some groups, e.g. Eustigmatophyceae and a wider distribution than previously thought for freshwater Phaeophyceae. These results offer a strong case for the benefits of metabarcoding for expanding knowledge of aquatic biodiversity in the UK and elsewhere. Many of the ASVs associated with non-diatoms showed significant pressure responses; however, models that included non-diatoms had similar predictive strength to those based on diatoms alone. Whilst limitations of the primers for assessing non-diatoms may play a role in explaining these results, the diatoms provide a strong signal along the nutrient gradient and other algae, therefore, add little unique information. We recommend that future developments should use ASVs to calculate metrics, with links to reference databases made as a final step to generate lists of taxa to support interpretation. Any further exploration of the potential of non-diatoms would benefit from access to a well-curated reference database, similar to diat.barcode. Such a database does not yet exist, and we caution against the indiscriminate use of NCBI GenBank as a taxonomic resource as many rbcL sequences deposited have not been curated.
Collapse
Affiliation(s)
- Martyn G Kelly
- Bowburn Consultancy, 11 Monteigne Drive, Bowburn, Durham DH6 5QB, UK; School of Geography, Nottingham University, Nottingham NG7 2RD, UK.
| | - David G Mann
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, UK; Marine and Continental Waters, Institute for Food and Agricultural Research and Technology (IRTA), Crta de Poble Nou Km 5.5, E-43540 La Ràpita, Catalunya, Spain
| | - Joe D Taylor
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire OX10 8BB, UK
| | - Stephen Juggins
- School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kerry Walsh
- Chief Scientist's Group, Environment Agency, Deanery Road, Bristol BS1 5AH, UK
| | - Jo-Anne Pitt
- Chief Scientist's Group, Environment Agency, Deanery Road, Bristol BS1 5AH, UK
| | - Daniel S Read
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire OX10 8BB, UK
| |
Collapse
|
7
|
Taurozzi D, Cesarini G, Scalici M. Diatom and macroinvertebrate communities dynamic: A co-occurrence pattern analysis on plastic substrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169071. [PMID: 38049005 DOI: 10.1016/j.scitotenv.2023.169071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Wetlands are habitats that provide numerous ecosystem services, but are often understudied and threatened by anthropogenic pollution, particularly plastic pollution. Macroplastics are a significant component of plastic litter that have high biological impacts but are often understudied. Previous studies have highlighted negative impacts on biota, but there is a lack of information about the communities of micro and macro organisms that settle on macroplastic litter. In this context, we investigated the colonization patterns and community structures of diatoms and macroinvertebrates on virgin substrates composed of two different plastic polymers, polystyrene and polyethylene terephthalate, located at two different depths in a protected wetland in Central Italy over a period of 10 months. The results show that diatom community is not highly structured by competitive forces and aggregation patterns emerges. In contrast, macroinvertebrate community appears to be randomly structured, without the presence of patterns following specific assembly rules. Randomness in macroinvertebrates assemblages could highlight the presence of different niches available for settlement of different taxa. Combined matrix analyses show that diatoms and macroinvertebrates co-occur, and their community assemblages are sometimes structured, while they appeared to be randomly assembled at other times. Whenever non-randomness of diatoms and macroinvertebrates co-occurrences was detected, it suggested aggregation. Moreover, the possible predatory relationship between different macroinvertebrates taxa should be investigated, as it could reveal important scenarios in the establishment of macroinvertebrate structured communities on plastic litter, including taxa that exploit different ecological niches. This could lead to an enrichment of the biological community within areas impacted by plastics.
Collapse
Affiliation(s)
- Davide Taurozzi
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy; National Research Council - Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922 Verbania, Italy.
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
8
|
Kezlya E, Tseplik N, Kulikovskiy M. Genetic Markers for Metabarcoding of Freshwater Microalgae: Review. BIOLOGY 2023; 12:1038. [PMID: 37508467 PMCID: PMC10376359 DOI: 10.3390/biology12071038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The metabarcoding methods for studying the diversity of freshwater microalgae and routine biomonitoring are actively used in modern research. A lot of experience has been accumulated already, and many methodological questions have been solved (such as the influence of the methods and time of sample conservation, DNA extraction and bioinformatical processing). The reproducibility of the method has been tested and confirmed. However, one of the main problems-choosing a genetic marker for the study-still lacks a clear answer. We analyzed 70 publications and found out that studies on eukaryotic freshwater microalgae use 12 markers (different nuclear regions 18S and ITS and plastids rbcL, 23S and 16S). Each marker has its peculiarities; they amplify differently and have various levels of efficiency (variability) in different groups of algae. The V4 and V9 18S and rbcL regions are used most often. We concentrated especially on the studies that compare the results of using different markers and microscopy. We summarize the data on the primers for each region and on how the choice of a marker affects the taxonomic composition of a community.
Collapse
Affiliation(s)
- Elena Kezlya
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Natalia Tseplik
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Maxim Kulikovskiy
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| |
Collapse
|
9
|
Baker LA, Beauger A, Kolovi S, Voldoire O, Allain E, Breton V, Chardon P, Miallier D, Bailly C, Montavon G, Bouchez A, Rimet F, Chardon C, Vasselon V, Ector L, Wetzel CE, Biron DG. Diatom DNA metabarcoding to assess the effect of natural radioactivity in mineral springs on ASV of benthic diatom communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162270. [PMID: 36801401 DOI: 10.1016/j.scitotenv.2023.162270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/22/2022] [Revised: 12/16/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Little is still known about the low dose effects of radiation on the microbial communities in the environment. Mineral springs are ecosystems than can be affected by natural radioactivity. These extreme environments are, therefore, observatories for studying the influence of chronic radioactivity on the natural biota. In these ecosystems we find diatoms, unicellular microalgae, playing an essential role in the food chain. The present study aimed to investigate, using DNA metabarcoding, the effect of natural radioactivity in two environmental compartments (i.e. spring sediments and water) on the genetic richness, diversity and structure of diatom communities in 16 mineral springs in the Massif Central, France. Diatom biofilms were collected during October 2019, and a 312 bp region of the chloroplast gene rbcL (coding for the Ribulose Bisphosphate Carboxylase) used as a barcode for taxonomic assignation. A total of 565 amplicon sequence variants (ASV) were found. The dominant ASV were associated with Navicula sanctamargaritae, Gedaniella sp., Planothidium frequentissimum, Navicula veneta, Diploneis vacillans, Amphora copulata, Pinnularia brebissonii, Halamphora coffeaeformis, Gomphonema saprophilum, and Nitzschia vitrea, but some of the ASVs could not be assigned at the species level. Pearson correlation failed to show a correlation between ASV' richness and radioactivity parameters. Non-parametric MANOVA analysis based on ASVs occurrence or abundances revealed that geographical location was the main factor influencing ASVs distribution. Interestingly, 238U was the second factor that explained diatom ASV structure. Among the ASVs in the mineral springs monitored, ASV associated with one of the genetic variants of Planothidium frequentissimum was well represented in the springs and with higher levels of 238U, suggesting its high tolerance to this particular radionuclide. This diatom species may therefore represent a bio-indicator of high natural levels of uranium.
Collapse
Affiliation(s)
- Lory-Anne Baker
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, GEOLAB, F-63000 Clermont-Ferrand, France; LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, France.
| | - Aude Beauger
- Université Clermont Auvergne, CNRS, GEOLAB, F-63000 Clermont-Ferrand, France; LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, France
| | - Sofia Kolovi
- LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, France; Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont (LPC), UMR 6533, F-63178 Aubière Cedex, France
| | - Olivier Voldoire
- Université Clermont Auvergne, CNRS, GEOLAB, F-63000 Clermont-Ferrand, France; LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, France
| | - Elisabeth Allain
- Université Clermont Auvergne, CNRS, GEOLAB, F-63000 Clermont-Ferrand, France; LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, France
| | - Vincent Breton
- LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, France; Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont (LPC), UMR 6533, F-63178 Aubière Cedex, France
| | - Patrick Chardon
- LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, France; Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont (LPC), UMR 6533, F-63178 Aubière Cedex, France
| | - Didier Miallier
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont (LPC), UMR 6533, F-63178 Aubière Cedex, France
| | - Céline Bailly
- Laboratoire SUBATECH, UMR 6457, IN2P3/CNRS/IMT Atlantique, Université de Nantes, 4, rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
| | - Gilles Montavon
- LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, France; Laboratoire SUBATECH, UMR 6457, IN2P3/CNRS/IMT Atlantique, Université de Nantes, 4, rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
| | - Agnès Bouchez
- Université Savoie Mont-Blanc, INRAE, UMR CARRTEL, 75 bis avenue de Corzent, FR-74200 Thonon-les-Bains, France
| | - Frédéric Rimet
- Université Savoie Mont-Blanc, INRAE, UMR CARRTEL, 75 bis avenue de Corzent, FR-74200 Thonon-les-Bains, France
| | - Cécile Chardon
- Université Savoie Mont-Blanc, INRAE, UMR CARRTEL, 75 bis avenue de Corzent, FR-74200 Thonon-les-Bains, France
| | - Valentin Vasselon
- Science-Management Interface for Biodiversity Conservation (SCIMABIO Interface),74200 Thonon-les-Bains, France
| | - Luc Ector
- Luxembourg Institute of Science and Technology (LIST), Department Environmental Research and Innovation (ERIN), Observatory for Climate, Environment and Biodiversity (OCEB), 4422 Belvaux, Luxembourg
| | - Carlos E Wetzel
- Luxembourg Institute of Science and Technology (LIST), Department Environmental Research and Innovation (ERIN), Observatory for Climate, Environment and Biodiversity (OCEB), 4422 Belvaux, Luxembourg
| | - David G Biron
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France; LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, France
| |
Collapse
|
10
|
Akcaalan R, Ozbayram EG, Kaleli A, Cam AO, Koker L, Albay M. Does environmental DNA reflect the actual phytoplankton diversity in the aquatic environment? Case study of marine mucilage in the Sea of Marmara. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27528-7. [PMID: 37178301 DOI: 10.1007/s11356-023-27528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Academic Contribution Register] [Received: 12/13/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The present study was designed to assess the effectiveness of the eDNA metabarcoding approach to determine the phytoplankton composition in the marine environment with a special focus on mucilage episodes in the Sea of Marmara. For this purpose, the samples were collected from 5 different sites located in the Sea of Marmara and the northern Aegean Sea during the mucilage episode in June 2021. The phytoplankton diversity was analyzed morphologically and by 18S rRNA gene amplicon sequencing, and the dataset of both methods was compared, accordingly. The results showed significant differences between methods in terms of composition and the abundance of the phytoplankton groups. While Miozoa was the most abundant group by metabarcoding, light microscopy (LM) indicated a dominance of Bacillariophyta. Katablepharidophyta was found at lower abundances by the metabarcoding (representing < 1% of the community); the members of this phylum were not observed by a microscope. At the lower taxonomic levels, Chaetoceros was the only genus detected in all samples by both methods. Additionally, while mucilage-forming Gonyaulax fragilis, Cylindrotheca closterium, and Thalassiosira rotula were detected to species-level by LM, metabarcoding was able to determine these organisms at the genus level. On the other hand, the genus Arcocellulus was found in all metabarcoding datasets and not detected by microscopy. The results indicated that metabarcoding can detect a greater number of genera and reveal taxa that were overlooked by light microscopy but to develop a complete picture of phytoplankton diversity in the sample, microscopical observations still are in need.
Collapse
Affiliation(s)
- Reyhan Akcaalan
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey.
| | - Emine Gozde Ozbayram
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey
| | - Aydın Kaleli
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey
| | - Ayca Oguz Cam
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey
| | - Latife Koker
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey
| | - Meric Albay
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey
| |
Collapse
|
11
|
Yuan LL, Mitchell RM, Pollard AI, Nietch CT, Pilgrim EM, Smucker NJ. Understanding the effects of phosphorus on diatom richness in rivers and streams using taxon-environment relationships. FRESHWATER BIOLOGY 2023; 68:473-486. [PMID: 37538102 PMCID: PMC10395338 DOI: 10.1111/fwb.14040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/21/2022] [Accepted: 12/11/2022] [Indexed: 08/05/2023]
Abstract
Changes in phosphorus concentrations affect periphytic diatom composition in streams, yet we rarely observe strong relationships between diatom richness and phosphorus. In contrast, changes in conductivity are strongly associated with differences in both diatom composition and richness. We hypothesised that we could better understand the mechanisms that control the phosphorus-richness relationship by examining relationships between phosphorus and the occurrence of individual diatom taxa, comparing these with relationships between conductivity and taxon occurrence, and documenting how niche breadths of taxa affect richness patterns. We estimated relationships between phosphorus and taxon occurrence using DNA metabarcoding data of diatoms collected from 1,811 sites distributed across the conterminous U.S.A. and contrasted patterns in these relationships with those between conductivity and taxon occurrence. The distribution of taxon optima for phosphorus was bimodal, with most optima located at either the maximum or minimum observed phosphorus concentration. The distribution of taxon optima for conductivity was unimodal. Niche breadths of taxa for phosphorus and for conductivity both generally increased with optimum values. The distribution of conductivity optima gave rise to a prominent hump-shaped relationship between richness and conductivity. The relationship between richness and phosphorus was also slightly hump-shaped, but this relationship would not be expected from the bimodal distribution of optima. Instead, we determined that broad niche breadths caused the hump-shaped relationship between richness and phosphorus. Our results highlight the nuanced effects that increased P loadings exert on diatom assemblages in rivers and streams and identify reasons that weak relationships between taxon richness and increased phosphorus have been observed. These findings allow us to better describe how excess phosphorus and subsets of taxa and their niche breadths contribute to patterns of taxa richness in diatom assemblages, and to improve the tools used to manage phosphorus pollution.
Collapse
Affiliation(s)
- Lester L. Yuan
- Office of Water, U. S. Environmental Protection Agency, Washington, District of Columbia, U.S.A
| | - Richard M. Mitchell
- Office of Water, U. S. Environmental Protection Agency, Washington, District of Columbia, U.S.A
| | - Amina I. Pollard
- Office of Water, U. S. Environmental Protection Agency, Washington, District of Columbia, U.S.A
| | - Christopher T. Nietch
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, Ohio, U.S.A
| | - Erik M. Pilgrim
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, Ohio, U.S.A
| | - Nathan J. Smucker
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, Ohio, U.S.A
| |
Collapse
|
12
|
Rimet F, Canino A, Chonova T, Guéguen J, Bouchez A. Environmental filtering and mass effect are two important processes driving lake benthic diatoms: Results of a DNA metabarcoding study in a large lake. Mol Ecol 2023; 32:124-137. [PMID: 36239474 DOI: 10.1111/mec.16737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2021] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Environmental filtering is often found to dominate assembly rules in diatoms. These microalgae are diverse, especially at subspecies level, and tend to exhibit a niche phylogenetic conservatism. Therefore, other rules, such as competition or mass effects, should be detectable when environmental gradients and dispersal barriers are limited. We used metabarcoding to analyse benthic littoral diatom communities in 153 sites in a large lake (Geneva) exhibiting weak geographical barriers and weak environmental gradients outside river estuaries. We assessed assembly rules using variance partitioning, phylogenetic and source tracking analyses. No phylogenetic over-dispersion of communities, indicative of exclusive competition, was detected. Instead, we found these communities to be phylogenetically over-clustered, indicating environmental filtering, which was even stronger near river estuaries where environmental gradients are stronger. Finally, using a Bayesian method (SourceTracker), we found that rivers flowing into the lake bring communities that settle, especially in sites close to estuaries. Rivers with the highest discharges are primarily responsible for immigration, explaining 27% of lake composition. Therefore, despite favourable conditions to observe other rules, our results support that diatom communities are prominently assembled by environmental filtering and immigration processes, in particular from rivers. However, this does not exclude that other assembly rules may be at play at a finer spatial, temporal and/or phylogenetic scale.
Collapse
Affiliation(s)
- Frédéric Rimet
- UMR Carrtel, INRAE, Université Savoie-Mont Blanc, Thonon les Bains, France
| | - Alexis Canino
- UMR Carrtel, INRAE, Université Savoie-Mont Blanc, Thonon les Bains, France.,OFB, Auffargis, France
| | - Teofana Chonova
- UMR Carrtel, INRAE, Université Savoie-Mont Blanc, Thonon les Bains, France
| | - Julie Guéguen
- UMR Carrtel, INRAE, Université Savoie-Mont Blanc, Thonon les Bains, France.,OFB, Auffargis, France
| | - Agnès Bouchez
- UMR Carrtel, INRAE, Université Savoie-Mont Blanc, Thonon les Bains, France
| |
Collapse
|
13
|
Baricevic A, Chardon C, Kahlert M, Karjalainen SM, Pfannkuchen DM, Pfannkuchen M, Rimet F, Tankovic MS, Trobajo R, Vasselon V, Zimmermann J, Bouchez A. Recommendations for the preservation of environmental samples in diatom metabarcoding studies. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.85844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022] Open
Abstract
Implementation of DNA metabarcoding for diatoms for environmental monitoring is now moving from a research to an operational phase, requiring rigorous guidelines and standards. In particular, the first steps of the diatom metabarcoding process, which consist of sampling and storage, have been addressed in various ways in scientific and pilot studies and now need to be rationalised. The objective of this study was to compare three currently applied preservation protocols through different storage durations (ranging from one day to one year) for phytobenthos and phytoplankton samples intended for diatom DNA metabarcoding analysis. The experimental design used samples from four freshwater and two marine sites of diverse ecological characteristics. The impact of the sample preservation and storage duration was assessed through diatom metabarcoding endpoints: DNA quality and quantity, diversity and richness, diatom assemblage composition and ecological index values (for freshwater samples). The yield and quality of extracted DNA only decreased for freshwater phytobenthos samples preserved with ethanol. Diatom diversity was not affected and their taxonomic composition predominantly reflected the site origin. Only rare taxa (< 100 reads) differed among preservation methods and storage durations. For biomonitoring purposes, freshwater ecological index values were not affected by the preservation method and storage duration tested (including ethanol preservation), all treatments returning the same ecological status for a site. This study contributes to consolidating diatom metabarcoding. Thus, accompanied by operational standards, the method will be ready to be confidently deployed and prescribed in future regulatory monitoring.
Collapse
|