1
|
Man H, Shao X, Cai W, Wang K, Cai Z, Xue M, Liu H. Utilizing a optimized method for evaluating vapor recovery equipment control efficiency and estimating evaporative VOC emissions from urban oil depots via an extensive survey. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135710. [PMID: 39241364 DOI: 10.1016/j.jhazmat.2024.135710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
As an important intermediary between upstream refineries and downstream urban gas stations, volatile organic compound (VOC) emissions from urban oil depots were often disregarded, underestimating their environmental and health implications. An extensive investigation of urban depots' fuel composition and operational dynamics was conducted nationwide. We developed a novel approach that integrates theoretical models with easily measurable operational data from the depots to evaluate the efficiency of post-treatment devices in actual situations. Even in well-managed oil depots, the actual control efficiency of vapor recovery units fluctuates between 63 % and 85 %, depending on the concentration of hydrocarbon vapors in the intake of the device. The national emission factors for gasoline, diesel, and aviation kerosene at a national level were 6.64 ± 1.16, 2.07 ± 0.42, and 6.17 ± 1.05 tons per 10,000 tons, respectively. In 2019, China's urban oil depots emitted 165 thousand tons of VOC. Enhancing control strategies by optimizing the physical and chemical parameters of refined oil, improving storage capacity and turnover efficiency, and upgrading storage tanks had the potential to reduce emissions by more than 60 %. However, a 30 % failure rate in these systems could negate the benefits of these improved strategies.
Collapse
Affiliation(s)
- Hanyang Man
- College of Environmental and Resource Sciences, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China.
| | - Xiaohan Shao
- College of Environmental and Resource Sciences, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Wenying Cai
- College of Environmental and Resource Sciences, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Kai Wang
- China Automotive Technology and Research Center, Beijing 100070, China
| | - Zhitao Cai
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ming Xue
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Huan Liu
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
An T, Li Y, Wang R, Jing S, Gao Y, Liu S, Huang D, Zhou M, Dai H, Huang C, Lu J, Wang H, Fu Q. Characteristics of typical intermediate and semi volatile organic compounds in Shanghai during China International Import Expo event. CHEMOSPHERE 2024; 355:141779. [PMID: 38537709 DOI: 10.1016/j.chemosphere.2024.141779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
To ensure good air quality during the China International Import Expo (CIIE) event, stringent emission-reduction measures were implemented in Shanghai. To assess the efficacy of these measures, this study measured typical categories of intermediate/semi volatile organic compounds (I/SVOCs), including alkanes (C10-C26 n-alkanes and pristane), EPA-priority polycyclic aromatic hydrocarbons (PAHs), alkylnaphthalenes, benzothiazole (BTH) and chlorobenzenes (CBs), at an urban site of Shanghai before and during two CIIE events (2019 and 2020; non-CIIE versus CIIE). The average concentrations of alkanes and PAHs during both 2019 and 2020 CIIE events decreased by approximately 41% and 17%, respectively, compared to non-CIIE periods. However, the decline in BTH and CBs was only observed during CIIE-2019. Secondary organic aerosol (SOA) formation from alkanes, PAHs and BTH was evaluated under atmospheric conditions, revealing considerable SOA contributions from dimethylnaphthalenes and BTH. Positive matrix factorization (PMF) analysis further revealed that life-related sources, such as cooking and residential emissions, make a noticeable contribution (21.6%) in addition to the commonly concerned gasoline-vehicle sources (31.5%), diesel-related emissions (20.8%), industrial emissions (18.6%) and ship emissions (7.5%). These findings provide valuable insights into the efficacy of the implemented measures in reducing atmospheric I/SVOCs levels. Moreover, our results highlight the significance of exploring additional individual species of I/SVOCs and life-related sources for further research and policy development.
Collapse
Affiliation(s)
- Taikui An
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yingjie Li
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Rui Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Sheng'ao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yaqin Gao
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shuyu Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Dandan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Min Zhou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Haixia Dai
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jun Lu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Qingyan Fu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
3
|
Zuo H, Jiang Y, Yuan J, Wang Z, Zhang P, Guo C, Wang Z, Chen Y, Wen Q, Wei Y, Li X. Pollution characteristics and source differences of VOCs before and after COVID-19 in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167694. [PMID: 37832670 DOI: 10.1016/j.scitotenv.2023.167694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
During the outbreak of the COVID-19, the change in the way of people's living and production provided the opportunity to study the influence of human activity on Volatile organic compounds (VOCs) in the atmosphere. Therefore, this study analyzed VOCs concentration and composition characteristics in urban area of Beijing from 2019 to 2020. The results showed that the concentration of VOCs in Chaoyang district in 2020 was 73.1ppbv, lower than that in 2019 (92.8ppbv), and alkanes (45 % and 47 %) were the most dominant components. The concentrations of isopentane, n-pentane, n-hexane, and OVOCs significantly increased in 2020. According to the results of the PMF model, the contribution of VOCs from vehicle and pharmaceutical-related emissions increased to 45.8 % and 27.1 % in 2020, while coal combustion decreased by 23.7 %. This is likely linked to the strict implementation of the coal conversion policy, as well as the increment in individual travel and pharmaceutical production during the pandemic. The calculation results of OFP and SOAFP indicated that toluene had an increased impact on the formation of O3 and SOA in the Chaoyang district in 2020. Notably, VOCs emitted by vehicles have the highest potential for secondary generation. In addition, VOCs from vehicles and industries pose the greatest health risks, together accounting for 77.4 % and 79.31 % of the total carcinogenic risk in 2019 and 2020. Although industrial emission with the high proportions of halocarbons was controlled to some extent during the pandemic, the carcinogenic risk in 2020 was 3.74 × 10-6, which still exceeded the acceptable level, and more attention and governance efforts should be given to.
Collapse
Affiliation(s)
- Hanfei Zuo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Yuchun Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Ziqi Wang
- College of Arts and Sciences, University of Cincinnati, Cincinnati, State of Ohio 45221, USA
| | - Puzhen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ye Chen
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Qing Wen
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China.
| |
Collapse
|
4
|
Wang Z, Zhang P, Pan L, Qian Y, Li Z, Li X, Guo C, Zhu X, Xie Y, Wei Y. Ambient Volatile Organic Compound Characterization, Source Apportionment, and Risk Assessment in Three Megacities of China in 2019. TOXICS 2023; 11:651. [PMID: 37624157 PMCID: PMC10458435 DOI: 10.3390/toxics11080651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
In order to illustrate pollution characterization, source apportionment, and risk assessment of VOCs in Beijing, Baoding, and Shanghai, field observations of CO, NO, NO2, O3, and volatile organic compounds (VOCs) were conducted in 2019. Concentrations of VOCs were the highest in Beijing (105.4 ± 52.1 ppb), followed by Baoding (97.1 ± 47.5 ppb) and Shanghai (91.1 ± 41.3 ppb). Concentrations of VOCs were the highest in winter (120.3 ± 61.5 ppb) among the three seasons tested, followed by summer (98.1 + 50.8 ppb) and autumn (75.5 + 33.4 ppb). Alkenes were the most reactive VOC species in all cities, accounting for 56.0%, 53.7%, and 39.4% of ozone formation potential in Beijing, Baoding, and Shanghai, respectively. Alkenes and aromatics were the reactive species, particularly ethene, propene, 1,3,5-trimethylbenzene, and m/p-xylene. Vehicular exhaust was the principal source in all three cities, accounting for 27.0%, 30.4%, and 23.3% of VOCs in Beijing, Baoding, and Shanghai, respectively. Industrial manufacturing was the second largest source in Baoding (23.6%) and Shanghai (21.3%), and solvent utilization was the second largest source in Beijing (25.1%). The empirical kinetic modeling approach showed that O3 formation was limited by both VOCs and nitric oxides at Fangshan (the suburban site) and by VOCs at Xuhui (the urban site). Acrolein was the only substance with an average hazard quotient greater than 1, indicating significant non-carcinogenic risk. In Beijing, 1,2-dibromoethane had an R-value of 1.1 × 10-4 and posed a definite carcinogenic risk.
Collapse
Affiliation(s)
- Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Puzhen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Libo Pan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| | - Yuanyuan Xie
- Foreign Environmental Cooperation Centre, Ministry of Ecology and Environment, Beijing 100035, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Z.W.)
| |
Collapse
|
5
|
Li X, Li B, Guo L, Feng R, Fang X. Research progresses on VOCs emission investigations via surface and satellite observations in China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1968-1981. [PMID: 36000414 DOI: 10.1039/d2em00175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) are important precursors of severe pollution of ozone (O3) and secondary organic aerosols in China. Fully understanding the VOCs emission is crucial for making regulations to improve air quality. This study reviews the published studies on atmospheric VOCs concentration observations in China and observation-based estimation of China's VOCs emission strengths and emission source structures. The results reveal that direct sampling and stainless-steel-tank sampling are the most commonly used methods for online and offline observations in China, respectively. The GC-MS/FID is the most commonly used VOCs measuring instrument in China (in 60.8% of the studies we summarized). Numerous studies conducted observation campaigns in urban areas (76.2%) than in suburban (17.1%), rural (18.1%), and background areas (14.3%) in China. Moreover, observation sites are largely set in eastern China (83.8%). Though there are published studies reporting observation-based China's VOCs emission investigation, these kinds of studies are still limited, and gaps are found between the results of top-down investigation and bottom-up inventories of VOCs emissions in China. In order to enhance the observation-based VOCs emission investigations in China, this study suggests future improvements including: (1) development of VOCs detection techniques, (2) strengthening of atmospheric VOCs observations, (3) improvement of the accuracy of observation-based VOCs emission estimations, and (4) facilitation of better VOCs emission inventories in China.
Collapse
Affiliation(s)
- Xinhe Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Bowei Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Liya Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Rui Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Xuekun Fang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Lu J, Li Y, Li J, Jing S, An T, Luo H, Ma C, Wang H, Fu Q, Huang C. An online method for monitoring atmospheric intermediate volatile organic compounds with a thermal desorption-gas chromatography/mass spectrometry. J Chromatogr A 2022; 1677:463299. [PMID: 35853419 DOI: 10.1016/j.chroma.2022.463299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
Abstract
As one of important precursors of secondary organic aerosol (SOA), intermediate volatile organic compounds (IVOCs) have attracted much attention in recent years. Most of the previous studies however largely focused on characteristics of IVOCs from different emission sources, while data from field observations to study their temporal variations was limited for lacking the sufficient time resolution monitoring data. In this study, an online thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed to generate monitor data with a three-hour time resolution for gaseous atmospheric IVOCs. The method used two multi-sorbent traps that alternated for conducting sample collection and sample analysis. Compounds of C12C22 n-alkanes and 2-4 ring PAHs were chosen as surrogates to evaluate the performance of this method. Regression coefficients of external calibration curves were greater than 0.93 and 0.96 for all individual n-alkanes and PAHs, respectively. Average relative standard deviation (RSD) values among replicate samples spiked at 3 ng for each individual standard were 9% ± 5%. The detection limits of this method for individual n-alkanes and PAHs were 3.1-16.2 ng/m3 and 1.0-2.7 ng/m3, respectively. Atmospheric IVOCs were continuously monitored from September 28 to 30 and October 22 to November 9 in 2018, in an urban area of Shanghai. Besides targeted n-alkanes and PAHs, unspeciated complex mixtures (UCM) of IVOCs as well as total-IVOCs concentrations in the atmosphere were also determined. Measured concentrations and compositions of gaseous IVOCs in the atmosphere in this study were comparable to other similar studies.
Collapse
Affiliation(s)
- Jun Lu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yingjie Li
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Jie Li
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Sheng'ao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Taikui An
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Heng Luo
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Changwen Ma
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Qingyan Fu
- Shanghai Environmental Monitor Center, Shanghai 200030, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
7
|
Luo Z, Wang Y, Lv Z, He T, Zhao J, Wang Y, Gao F, Zhang Z, Liu H. Impacts of vehicle emission on air quality and human health in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152655. [PMID: 34954164 DOI: 10.1016/j.scitotenv.2021.152655] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The growing of vehicle population aggravates air pollution and threatens human health. In this study, based on the refined whole-process vehicle emission inventory considering volatile organic compounds (VOCs) evaporation emission, the CAMx model was applied to comprehensively quantify the impacts of the vehicle sector on the annual and seasonal concentrations of PM2.5 and O3 in China. Also, the health risks caused by long-term exposure to PM2.5 and O3 were evaluated. The model results showed that vehicle emission was an important source of severe O3 pollution in summer, with a contribution of more than 30% in most parts of China, but not an important source of serious PM2.5 pollution in winter, with a contribution of less than 20% in heavily polluted regions in China. Compared to tailpipe emission, vehicle VOCs evaporation emission led to increases of 25% and 47% to sectoral contribution to PM2.5 and O3. Health risk assessment results showed that attributable deaths caused by long-term exposure to PM2.5 and O3 were 975,029 and 46,043 in 2018, to which vehicle emission contributed approximately 12.5% and 22.2%, respectively.
Collapse
Affiliation(s)
- Zhenyu Luo
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Wang
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhaofeng Lv
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tingkun He
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junchao Zhao
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yongyue Wang
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fei Gao
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhining Zhang
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huan Liu
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|